Istituzioni di Matematica – C. d. L. in Biotecnologie

- 1. Un brodo di coltura è infetto da N_0 batteri. Le cellule dei batteri si dividono ogni quattro ore.
 - (a) Quanti batteri ci saranno nel brodo dopo 24 h?
 - (b) Determinare il parametro λ (in h⁻¹) in modo tale che il numero N dei batteri presenti dopo t ore possa essere approssimata mediante la funzione $N = N(t) = N_0 2^{\lambda t}$.
 - (c) Determinare il parametro μ (in h⁻¹) in modo tale che il numero N dei batteri presenti dopo t ore possa essere approssimata mediante la funzione $N = N(t) = N_0 e^{\mu t}$.
- 2. Trovare le derivate di

a)
$$v(t) = \sqrt{t} + \ln(\sqrt{t})$$
, b) $y = \sin(2x^2 - 3)$, c) $y = \frac{\log_{10} x}{r}$, d) $y = x^2 \cdot e^x$.

- 3. Data la funzione $f(x) = x \frac{1}{x}, \quad x \neq 0,$
 - (a) trovare gli asintoti;
 - (b) disegnare il grafico di f;
 - (c) calcolare il polinomio di Taylor di f di grado 2 e di punto iniziale $x_0 = 1$.
- 4. Calcolare gli integrali:

(a)
$$\int_0^3 |x-1| dx$$
, (b) $\int_0^\pi \sin \frac{x}{2} dx$, (c) $\int_1^{+\infty} \frac{1}{x^2} dx$, (d) $\int (x-1)e^{-x} dx$.

5. Nella decomposizione del pentossido d'azoto $2 N_2 O_5 \longrightarrow 4 NO_2 + O_2$ la concentrazione molare $C = C(t) = [N_2 O_5]$ in funzione del tempo t è soluzione del problema di Cauchy

$$\begin{cases} \frac{dC}{dt} = -kC \\ C(0) = C_0 \end{cases}$$

dove k è una costante positiva.

- (a) Calcolare la soluzione del problema di Cauchy.
- (b) Trovare il limite di C(t) per $t \to \infty$.
- 6. Si consideri la funzione

$$z = f(x,y) = x^2 + y^2 - 2x - 5, \quad (x,y) \in \mathbf{R}^2.$$

- (a) Disegnare la curva di livello della funzione f per la quota z=3.
- (b) Calcolare il gradiente della funzione f.
- (c) Trovare i minimi e i massimi relativi della funzione f.