- 1. (a) Scrivere una funzione MATLAB/Octave [g, r] = angolo(v, w) che calcoli l'angolo compreso tra due vettori di $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ in gradi (g) e in radianti (r).
 - Nota bene: Le seguenti funzioni di MATLAB/Octave potrebbero essere utili: dot, norm, acos, acosd. Si consiglia di invocare il comando help o di consultare il manuale per conoscere meglio tale funzioni.
 - (b) Si calcoli l'angolo tra la diagonale interna e lo spigolo di un cubo.
 - (c) Per $n=2,3,10,10^3,10^6$ si calcoli l'angolo α_n compreso tra i vettori

$$\mathbf{v} = (1, 2, 3, \dots, n)$$
 e $\mathbf{w} = (n, n - 1, n - 2, \dots, 1)$

e si formuli una congettura sul limite di α_n per $n \to \infty$.

- 2. (Quarteroni-Saleri, Esercizio 1.4, pag. 39) Si costruiscano in MATLAB/Octave una matrice triangolare superiore ed una triangolare inferiore di dimensione 10 con 2 sulla diagonale principale e -3 sulla seconda sopra (rispettivamente, sotto) diagonale.
- 3. (Quarteroni-Saleri, Esercizio 1.5, pag. 39) Si scrivano le istruzioni MATLAB/ Octave che consentono di scambiare fra loro la terza e la settima riga delle matrici costruite nell'Esercizio 2, indi quelle per scambiare l'ottave con la quarta colonna.
- 4. (a) Scrivere una funzione MATLAB/Octave B = scambiarighe(A,i,k) che consenta di scambiare fra loro la *i*-esima e la *k*-esima riga della matrice **A**.
 - (b) Siano P = scambiarighe(eye(7),2,5) (una cosiddetta matrice di permutazione) e A la matrice definita mediante l'istruzione

for
$$i = 1 : 7$$
 for $k = 1 : 7$ A(i,k) = $7*(i-1) + k$; end; end.

Confrontare le matrici P * A e A * P con la matrice A.