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GENERALIZED SAMUEL MULTIPLICITIES AND
APPLICATIONS

Dedicated to Paolo Valabrega on the occasion of his 60 th birthday

Abstract. In this note we survey and discuss the main results on the multiplicity sequence we
introduced in former papers as a generalization of Samuel’s multiplicity. We relate this new
multiplicity to other numbers introduced in different contexts, for example the Segre numbers
of Gaffney and Gassler and the Hilbert coefficients defined by Ciupercǎ. Discussing some
examples we underline the usefulness of the multiplicity sequence for concrete calculations
in algebraic geometry using computer algebra systems.

1. Introduction

Intersection theory and singularity theory stimulated the development of a theory of
multiplicities in local rings.

For example, the Samuel multiplicity of the maximal ideal m of a local ring
(A,m) measures the singularity of a variety at some point or along some subvarieties,
and the Samuel multiplicity of anm-primary ideal was introduced in order to define the
intersection number of an irreducible component of the intersection of two varieties X
and Y .

If X and Y intersect improperly, one must assign intersection numbers to cer-
tain embedded components of X ∩ Y , see for example [18] and [16]. In Fulton and
MacPherson’s approach this is done without a preliminary study of intersection mul-
tiplicity, since their construction gives a well defined cycle, whose coefficients are the
intersection multiplicities, which coincide with Samuel’s multiplicities in the case of
proper intersections. In any case the theory developed by Fulton and MacPherson gives
a motivation to define algebraic multiplicities, which extend Samuel’s one and can pro-
vide intersection numbers.

In Stückrad and Vogel’s approach (see [16]) some components of the intersec-
tion cycle are defined over the base field k and are called k-rational (see Definition 1,
Section 3.2), and in [2] it was proved that they correspond to ideals of maximal analytic
spread. In [3] it was defined a multiplicity j (I, A) for such ideals I which generalizes
Samuel’s multiplicity. Later in [4] this construction was extended to arbitrary ideals in
a local ring. The new algebraic multiplicity for an ideal I of a d-dimensional local ring
(A,m) is a sequence of non-negative integers c(I ) := (c0(I, A), . . . , cd(I, A)) which
can be used to describe the degrees of the intersection cycle in the sense of [16]. The
first number c0(I, A) coincides with the multiplicity j (I, A) defined in [3].

In this note we survey and discuss the main results on the multiplicity sequence
c(I ) and relate this sequence to other numbers introduced in different contexts, for ex-
ample the Segre numbers introduced by T. Gaffney and R. Gassler [19] and the Hilbert
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coefficients defined by C. Ciupercǎ [10]. Furthermore we give some examples which
show the usefulness of the multiplicity sequence for concrete calculations in algebraic
geometry using computer algebra systems.

Under certain hypothesis the j-multiplicity can be expressed as a length multi-
plicity (see 3.3) and can be computed by an intersection algorithm using generic filter-
regular sequences called “super-reductions”. In 3.4 the precise meaning of “generic”
will be given.

Flenner and Manaresi [14] used the j-multiplicity to give a numerical charac-
terization of reduction ideals, which generalizes a classical theorem of E. Böger (see
3.5). Later C. Ciupercǎ generalized this result using the j-multiplicity and second
highest Hilbert coefficients, giving a numerical characterization of the S2-closure of
the extended Rees algebra, see Theorem 9.

The multiplicity sequence and the j-multiplicity can be calculated using inter-
section algorithms defined in [3] and in [4], which will be presented in Section 3.6.
These algorithms have been used by several authors, who sometimes produced inter-
esting modifications of them. Here we will refer only to the original versions.

In 1999, T. Gaffney and R. Gassler introduced Segre numbers of an ideal in
a local ring of an analytic space that turned out to be very useful in the study of the
equisingularity of families of hypersurfaces with non-isolated singularities. The Segre
numbers of the Jacobian ideal are simply the generic Lê numbers of D. B. Massey [30].
In analytic intersection theory, P. Tworzewski [47] (see also Remark 5) defined the ex-
tended index of intersection, which, in the case of improper intersections, replaces the
classical intersection number of a proper intersection component by a set of numbers.
In 3.7 we will show that all these new invariants can be considered as generalizations
of Samuel’s multiplicity of an m-primary ideal in a noetherian local ring (A,m) to an
arbitrary ideal.

In 3.8 we present an application of generalized Samuel multiplicities to singu-
larity theory, more precisely to Whitney stratification of surfaces (see [5]), and discuss
an example.

The paper is divided into two parts: in Section 2 we review some classical re-
sults on Samuel’s multiplicity whose analogues for the generalized Samuel multiplicity
will be presented in Section 3, which is devoted to this new multiplicity, its properties
and its relations to other important invariants.

Notation. In this paper all rings are assumed to be noetherian and the dimension of
a ring means its Krull dimension. A (noetherian) local ring (A,m) is formally equidi-
mensional (or, in Nagata’s terminology, quasi-unmixed) if each minimal prime ideal p
in the m-adic completion Â satisfies dim( Â/p) = dim( Â). For the properties of for-
mally equidimensional local rings we refer to [23], (18.17). In particular we recall that
if A is a formally equidimensional local ring and I is an ideal of A, then the associ-
ated graded ring GI (A) of A with respect to I is formally equidimensional, see[23],
(18.24).

We denote the n-dimensional projective space over a field K by PnK and the
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affine space by An
K , respectively. If not explicitly stated the contrary, our base field

will always be algebraically closed and we simply write Pn or An . By a variety or
subvariety of Pn we mean a closed reduced (but possibly reducible) equidimensional
subscheme of Pn without embedded components. A surface is a 2-dimensional variety,
a hypersurface is an (n − 1)-dimensional subvariety. Sometimes, for simplicity, we
will state the results for varieties, but most of them hold for algebraic schemes too.

2. Some classical results on Samuel’s multiplicity

Following [39], in this section we review some classical results on Samuel’s multiplic-
ity whose analogues for the generalized Samuel multiplicity will be presented in the
next section.

2.1. The Samuel multiplicity

Let (A,m) be a d-dimensional local ring and let I be an m-primary ideal.
For each non negative integer j let

H (0)
I ( j) := length(I j/I j+1)

and

H (1)
I ( j) :=

j∑

k=0
H (0)
I ( j) = length(A/I j+1) .

Note that these lengths are finite since I is m-primary. It is well known that for all
sufficiently large j the function H (1)

I becomes a polynomial, the so called Hilbert-
Samuel polynomial, which can be written in the form

e0
(
j + d
d

)
− e1

(
j + d − 1
d − 1

)
+ · · · + (−1)ded ,

where e0, e1, . . . , ed are integers and e0 ≥ 1. The positive integer

e(I, A) := e0

is called Samuel multiplicity of I in A. Sometimes, when the ring is clear from the
context, the multiplicity e(I, A) will be denoted by e(I ). In the case I = m we write
simply

e(A) := e(m, A).

It is immediate that for each couple of m-primary ideals J ⊂ I ⊂ A one has e(J ) ≥
e(I ).
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2.2. Samuel multiplicity as an intersection number

Samuel’s multilplicity can be applied in the following situation.
Let X, Y be subvarieties ofAn (or Pn). Assume that Y is a complete intersection

defined by the ideal I (Y ) and let C be an irreducible component of X ∩ Y . Let A :=
OX∩Y,C and let I := I (Y )A. Under these assumptions the ideal I is primary with
respect to the maximal ideal of the local ring A and e(I, A) is the intersection number
i(X,Y ;C) of X and Y along C , see [40].

We remark that Samuel proposed this definition of intersection number without
any assumption on the dimension of C . We recall that it is always

dimC ≥ dim X + dim Y − n

and C is called a proper component of X ∩ Y if equality holds, an improper compo-
nent otherwise. Samuel only assumed C to be an irreducible (isolated) component of
X ∩ Y and in [42] Stückrad and Vogel could prove a theorem of Bézout for improper
intersections counting irreducible components with Samuel’s multiplicities.

2.3. Samuel multiplicity as a length

Let (A,m) be local ring, I ⊂ A an m-primary ideal generated by a system of parame-
ters. One has

(1) length(A/I ) ≥ e(I, A)

and equality holds if and only if A is the Cohen–Macaulay (see, for example, [43],
Theorem 1.2 and Lemma 1.3).

D. Buchsbaum conjectured that the difference

length(A/I )− e(I, A)

was an invariant of A, that is, independent of the choice of I , but it turned out that the
conjecture holds only for the so called Buchsbaum rings, which form a class of local
rings containing the Cohen–Macaulay rings (see [43]).

In Cohen–Macaulay rings the inverse of (1) holds, that is

(2) e(I, A) ≥ length(A/I ) ,

and, if A/m is infinite, equality holds if and only if I can be generated by d = dim A
elements, that is, by a system of parameters (see for example [18], Example 4.3.5.).

We remark that, without the Cohen–Macaulay assumption on A, when the ideal
I is generated by a system of parameters, then one can construct an ideal J containing
I such that

length(A/J ) = e(I, A).
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The ideal J is obtained from I by the following intersection algorithm (see [7]). Let
a1, . . . , ad be a system of parameters generating I (observe that an m-primary ideal I
needs at least d generators) and, for an ideal K of A, let U (K ) denote the intersection
of all primary ideals Q associated to A/K such that dim A/Q = dim A/K . Then set

I0 := (0) and
Ik := ak A +U (Ik−1) for k = 1, . . . , d.

The last ideal Id ⊇ I is the desired ideal J such that

e(I, A) = length(A/Id),

see [7], Proposition 1.

2.4. Reduction ideals and Samuel multiplicity

Let (A,m) be a d-dimensional local ring and let I ⊂ A be an ideal. An ideal J ⊂ I is
called a reduction of I if

J I n = I n+1 for at least one positive integer n.

J is called a minimal reduction of I if no ideal strictly contained in J is a reduction of
I .

Reductions can be described using the integral closure of ideals. Recall that if
I ⊂ A is an ideal, the integral closure I of I is the ideal of A defined by

I = {x ∈ A | ∃ m positive integer and, for i = 1, . . . ,m, elements ai ∈ I i

such that xm + a1xm−1 + · · · + am = 0}.

J ⊆ I is a reduction of I if and only if I ⊆ J (see [32] p. 34 ex. 4 and [28] p. 112).

Denote by G := GI A :=
⊕

n≥0 I n/I n+1 the graded ring of A with respect to
I . The analytic spread of I can be defined as

s(I ) := dim(G/mG) = dim(G ⊗A k)

and one has
height(I ) ≤ dim A − dim A/I ≤ s(I ) ≤ dim A ,

where height(I ) denotes the height of the ideal I (see [34], p. 151).
The notions of reduction and analytic spread were introduced by Northcott and

Rees in 1954 (see [34]), who proved that if k is infinite then minimal reductions exist
and are minimally generated by s(I ) elements.

If I is m-primary, then s(I ) = dim A and a minimal reduction J of I is gener-
ated by a system of parameters. In this case the algorithm of (2.3) gives

e(J, A) = length(A/Id).
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Moreover, if J is a reduction of I , then e(I, A) = e(J, A). In fact, for large m the
lengthA(A/Im) is given by a polynomial of degree d = dim A, which can be written
in the form

hI (m) = e(I )
md

d!
+ terms of degree < d .

If J I n = I n+1, for each integer m ≥ 1 we have Jm I n = I n+m , hence hI (m + n) ≥
hJ (m) ≥ hI (m) which implies e(I ) = e(J ).

EXAMPLE 1. If A = C[[x, y]], I = (x3, y2, x2y), J = (x3, y2), then I J = I 2
and e(I ) = e(J ) = 6.

In 1961 D. Rees [38] proved that in formally equidimensional local rings the
converse is also true.

THEOREM 1 (Rees, 1961). Let (A,m) be a formally equidimensional local
ring, let J ⊆ I be m-primary ideals such that e(J ) = e(I ). Then J is a reduction
of I .

For the geometric significance of this theorem we refer the reader to J. Lipman
[28].

If J ⊆ I are ideals in a local ring (A,m) such that J is a reduction of I , then
e(J Ap) = e(I Ap) for each minimal prime ideal p of I . In general the converse is not
true, but, using the characterization of ideals with height(I ) = s(I ) given by E. C. Dade
in [12], E. Böger proved the following result.

THEOREM 2 (Böger [8], 1970). Let J ⊆ I be ideals in a formally equidimen-
sional local ring (A,m) such that

√
J =

√
I , height(J ) = s(J ) and e(J Ap) = e(I Ap)

for each minimal prime ideal p of I . Then J is a reduction of I .

A further generalization of this result was given by B. Ulrich (see [16], (3.6.3)),
who proved:

PROPOSITION 1. Let (A,m) be a formally equidimensional local ring and J ⊆
I be ideals of I . Then either height(J I n−1 : I n) < s(J ) for all n ≥ 1 or J is a
reduction of I .

COROLLARY 1. Let (A,m) and J ⊆ I as in the above proposition. Then J
is a reduction of I if and only if Jp is a reduction of Ip for all prime ideals p with
height(p) = s(Jp).

REMARK 1. If J ⊆ m is an ideal of a formally equidimensional local ring
(A,m), then {p ∈ Spec A | s(Jp) = height(p)} is a finite set, precisely, it coincides
with AssA(A/Jn) for sufficiently large n, where Jn denotes the integral closure of the
ideal Jn . In fact,

AssA(A/J ) ⊆ AssA(A/J 2) ⊆ AssA(A/J 3) ⊆ . . .
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and this sequence eventually stabilizes to a limit set

∞⋃

k=1
AssA(A/J k) = AssA(A/Jn) (for some n > 0) ,

which is called the set of asymptotic primes of J (see [31], (4.1), p. 26) and which will
be denoted by Asymp(J ). One can prove that

Asymp(J ) = {p ∈ Spec A | ∃ P ∈ AssGJ (A)(GJ A) such that p = P ∩ A}
= {p ∈ Spec A | s(Jp) = height(p)} .

3. Generalized Samuel multiplicities

This section is devoted to a generalization of Samuel’s multiplicity by a sequence of
numbers, the so-called generalized Samuel multiplicity, which we have introduced and
studied in several papers, partly in collaboration with H. Flenner. We also present the
main properties of this new multiplicity and its relation to other important invariants of
local rings.

3.1. Generalized Samuel multiplicities (see [4])

Let (A,m, k) be a d-dimensional local ring and let I ⊂ A be an arbitrary ideal (not
necessarily m-primary).

Let GI (A) :=
⊕

j≥0 I j/I j+1 be the associated graded ring of A with respect
to I and let us consider the bigraded ring

R =
⊕

i, j≥0
Ri, j =

⊕

i, j≥0
Gi

m(G j
I (A)) =

⊕

i, j≥0
(mi I j + I j+1)/(mi+1 I j + I j+1) ,

where R00 = A/m = k is a field.
Let H (0,0)(i, j) := dim Ri j the Hilbert function of the bigraded ring R and let

H (1,1)(i, j) :=
j∑

q=0

i∑

p=0
H (0,0)(p, q)

its twofold sum transform. For both i, j >> 1 this function becomes a polynomial in
(i, j), which can be written in the form

∑

k+l≤d
a(1,1)
k,l

(
i + k
k

)(
j + l
l

)
.

Following [4] define the generalized Samuel multiplicity to be

(a(1,1)
0,d , a(1,1)

1,d−1, . . . , a
(1,1)
d,0 ) =: (c0(I ), c1(I ), . . . , cd(I )) =: c(I ) .
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It will turn out that the first coefficient c0(I ) plays an important role as an intersection
number and permits generalizations of results about Samuel’s multiplicity. We will call
it the j -multiplicity j (I ) = j (I, A).

In a geometric way the j-multiplicity can be described as follows. Let X =
Spec A, let d = dim X , let Y be the subscheme of X defined by I and let p : Z → X be
the blowing up of X along Y . Consider the union E of all the irreducible components of
the exceptional set p−1(Y ) contained in the special fiber p−1(m). This is a projective
scheme over A/mn for some n. The multiplicity j (I, A) is the (d − 1)-dimensional
degree of E .

THEOREM 3 ([4], Prop. 2.3, 2.4, 2.5). With the above notations set q := dim
(A/I ), G := GI (A), s := s(I ) = dimG/mG. Then

1. ck = 0 for k < d − s and k > q, that is,

(c0, c1, . . . , cd) = (0, . . . , 0, cd−s, . . . , cq , 0, . . . , 0);

2. cd−s =
∑

P e(mGP) · e(GP),
where P runs over all highest dimensional associated prime ideals of G/mG
such that dimG/P + dimGP = dimG;

3. cq =
∑

p e(I Ap) · e(A/p),

where p runs over all highest dimensional associated prime ideals of A/I such
that dim A/p + dim Ap = dim A;

4. e(GI (A)) =
∑d

k=0 ck(I, A);

5. if height(I ) = s(I ) then

(c0, . . . , cq−1, cq , cq+1, . . . , cd) = (0, . . . , 0, cq , 0, . . . , 0).

In particular, if I is m-primary, then height(I ) = s(I ) = d, q = 0 and

(c0, . . . , cd) = (e(I ), 0, . . . , 0) ,

that is, the sequence (c0, . . . , cd) generalizes the Samuel multiplicity to arbitrary ide-
als.

REMARK 2. By Theorem 3, (1) and (2), if G = GI A is formally equidimen-
sional, then

j (I ) = c0(I ) /= 0 if and only if s(I ) = dim A .

REMARK 3. With the notation of (3.1) N.V. Trung (see [46], Cor. 2.8) proved
that if (A,m) and I are such that the ring R = Gm(GI A) is a domain or a Cohen–
Macaulay ring, then ci (I ) > 0 for all d − s ≤ i ≤ q where d = dim A, s = s(I ) and
q = dim(A/I ).
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REMARK 4. If J ⊂ I ⊂ A are two ideals of A with
√
I =

√
J and c(I ) =

(c0(I ), . . . , cd(I )), c(J ) = (c0(J ), . . . , cd(J )) are their generalized Samuel multiplic-
ities, then from Theorem 3 (3) we have cq(I ) ≤ cq(J ), but we can say nothing about
cq−1(I ) and cq−1(J ), as one can see from the two following examples.

EXAMPLE 2. (Erika Giorgi) Let A = k[x, y, z](x,y,z) where K is a field and
consider the ideals J = (x, y)3 ∩ (x, z)3 ∩ (y, z) and I = (x2, y) ∩ (x, z)2 ∩ (y, z).
Obviously J ⊂ I and

√
J =

√
I . By using [1] we get c(J ) = (4, 19, 0, 0) and

c(I ) = (6, 7, 0, 0).
Let L = (x2, y2)∩(x3, z3)∩(y, z) and M = (x, y)2∩(x, z)3∩(y, z). Obviously

L ⊂ M and
√
L =

√
M . In this case we get c(L) = (29, 14, 0, 0) and c(M) =

(0, 14, 0, 0).
The last example shows also the importance of the condition height(L) = s(L)

in Böger’s Theorem 2. Here the condition e(Lp, Ap) = e(Mp, Ap) for all minimal
primes p of M is satisfied, but L is not a reduction of M . In fact, if L was a reduction
of M then L and M would share a minimal reduction and then they would have the
same analytic spread, but s(L) = dim A = 3, while s(M) = 2.

3.2. Generalized Samuel multiplicities as intersection numbers

Let X , Y be equidimensional closed subschemes of PnK = Proj(K [X0, . . . , Xn]),
where K is an arbitrary field. For indeterminates Ui j (0 ≤ i, j ≤ n) let L be the
pure transcendental field extension K (Ui j )0≤i, j≤n and XL := X ⊗K L , etc. Proving
a Bézout theorem for improper intersections, Stückrad and Vogel (see [16]) introduced
a cycle v(X,Y ) = v0 + · · · + vn on XL ∩ YL , which is obtained by an intersection
algorithm on the ruled join variety

J := J (XL ,YL) ⊂ P2n+1L = Proj(L[X0, . . . , Xn,Y0, . . . ,Yn])

as follows.
Let ! be the “diagonal” subspace of P2n+1L given by the equations

X0 − Y0 = · · · = Xn − Yn = 0 ,

let Hi ⊆ J be the divisor given by the equation

"i :=
n∑

j=0
Ui j (X j − Y j ) = 0,

and set " := ("0, . . . , "n). Then one defines inductively cycles βk and vk by setting
β0 := [J ]. If βk is already defined, decompose the intersection

βk ∩ Hk = vk+1 + βk+1 (0 ≤ k ≤ dim J ) ,

where the support of vk+1 lies in ! and where no component of βk+1 is contained
in ! (if k = dim J , then the support of vk+1 is the empty set). It follows that vk is
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a (dim J − k)-cycle on XL ∩ YL ∼= J ∩ !. The part of dimension k of the cycle
v(X,Y ) := v(", J ) :=

∑
vk will be denoted by vk , so that the upper index denotes the

codimension in the ruled join and the lower one the dimension of the cycle. In general,
the cycle v(X,Y ) is defined over L .

DEFINITION 1. The cycle v(X,Y ) is called the v-cycle of the intersection of X
and Y . An irreducible subvariety C of XL ∩ YL is said to be a characteristic subvariety
if C occurs in v(X,Y ). The coefficient of C in v(X,Y ) is denoted by j (X,Y ;C). Thus

v(X,Y ) =
∑

C
j (X,Y ;C) [C] ,

where C runs through the characteristic subvarieties. The set of all these subvarieties is
denoted by C = C(X,Y ). Moreover, the set of all elements of C which are defined over
K is denoted by Crat = Crat (X,Y ), that is, Crat is the set of K -rational or distinguished
or fixed subvarieties and C \ Crat is the set of the so-called non K -rational or movable
subvarieties of the intersection of X and Y .

By a result of van Gastel ([21], Prop. 3.9), a K -rational irreducible subvariety
C of XL ∩ YL occurs in v(X,Y ) if and only if C is a distinguished variety of the
intersection of X and Y in the sense of Fulton ([18], p. 95), and this is equivalent to the
maximality of the analytic spread (see [2]) or the maximality of the dimension of the
so-called limit of join variety (see [17]).

For an arbitrary irreducible subvariety Z ⊆ XL ∩ YL ⊂ PnL we set Z! :=
J (Z , Z) ∩ !. By Ĵ and Ẑ! we denote the affine cones of the ruled join J :=
J (XL ,YL) ⊂ P2n+1L and Z! in the affine space A2n+2L . Let (A,m) be the local ring
O Ĵ ,Ẑ! and I ⊂ A be the ideal of the diagonal subspace ! and let G(X,Y ; Z) denote
the associated graded ring GI (A) = ⊕∞j=0 I

j/I j+1. If Z is the empty subvariety of
Pn , then A becomes the homogeneous ring of coordinates of the ruled join J ⊂ P2n+1L
localized at the irrelevant maximal ideal; that is, we obtain a global picture of the in-
tersection algorithm.

PROPOSITION 2 ([4], Section 4). With the preceding notation,

e(G(X,Y ; Z)) = e(GI (A)) =
d∑

k=0
ck(I, A) =

∑

C
j (X,Y ;C) · e(OC,Z ) ,

where C runs through the characteristic subvarieties of X and Y with C ⊇ Z. In
particular, if Z ∈ Crat (X,Y ), then j (X,Y ; Z) = j (I, A).

If Z = ∅, then d = dim A = dim J + 1 and

c0 = j (X,Y ;∅), c1 = deg v0, c2 = deg v1, . . . , cd = deg vd−1 ;

moreover, if k > dim(X ∩ Y ) + 1, then ck = 0.
If Z /= ∅ is K -rational, then d = dim A = dim J − dim Z and

ck =
∑

C
j (X,Y ;C) · e(OC,Z ) (0 ≤ k ≤ d) ,
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where C runs through all varieties of C(X,Y ) with C ⊇ Z and codimC Z = k. If
k > dim(X ∩ Y )− dim Z, then ck = 0.

We will illustrate the above proposition by recomputing the self-intersection of
a monomial curve in P3 obtained by hand in [44], Example 2, p. 269, as a result of a
heavy calculation.

EXAMPLE 3. Consider the curve X in P3K (char(K ) /= 2, 3) given parametri-
cally by (s6, s4t2, s3t3, t6) and with defining ideal

I (X) = (x0x3 − x22 , x
2
0 x3 − x31) ⊂ K [x0, x1, x2, x3] .

Using [1] (see the sample file Segre4.txt) and the above proposition in the case Z =
∅, we want to calculate its self-intersection cycle v(X, X). Running the computer
program, with the notation of the proposition, we get c(I, A) = (c0, c1, c2, 0, 0), where

c0(I, A) = j (X, X;∅) = 12,
c1(I, A) = deg(v0(X, X)) = 18,
c2(I, A) = deg(v1(X, X)) = 6.

Since X is a complete intersection of degree 6, it follows that j (X, X; X) = 1. In
order to understand v1(X, X) we recall that by [2], Corollary 2.5, a point of X is a
K -rational component of v1(X, X) if and only if it is a singular point of X . One checks
that X has the two singular points P = (0 : 0 : 0 : 1) and Q = (1 : 0 : 0 : 0).
One applies now Proposition 2 in the cases Z = P and Z = Q, more precisely, in the
previous calculation one substitutes x3 = 1 for P obtaining c = (8, 3, 0) and x0 = 1
for Q obtaining c = (3, 2, 0). This means that P is a point of multiplicity 3 in X and
j (X, X; P) = 8 and Q is a double point of X and j (X, X, Q) = 3. The contribution
of non K -rational points is therefore 7.

REMARK 5 (Analytic case). In the paper [47], Tworzewski has constructed an
intersection cycle for complex analytic subsets X and Y of a manifold M which do
not intersect necessarily properly. His construction is based on a pointwise defined
intersection multiplicity g(x) = g(X × Y,!M , x) for a point x ∈ !M , where !M is
the diagonal of M×M and g(x) is the sum of the coordinates of the so-called extended
index of intersection g̃(x) (see [47], Definition (4.2), p. 185).

Let A = OX×Y,x and I = I!M ·OX×Y,x . K. Nowak [35], [36] (see also [6]) has
proved that g(x) = e(GI (A)) and that g̃(X) is composed of the generalized Samuel
multiplicities c0(I, A), . . . , cdim(X∩Y )(I, A) and of zeros.

REMARK 6. Recall that a d-dimensional projective variety X is said to be con-
nected in dimension d − 1 if for every closed subvariety Z of X of dimension < d − 1
the set X \ Z is connected.

Flenner, van Gastel and Vogel (see [13], Theorem 3.4) proved that if X and
Y are pure dimensional projective varieties connected in dim X − 1 and dim Y − 1
respectively, A is the ring of coordinates of the ruled join of X and Y localized at the
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irrelevant maximal ideal and I is the ideal of “the diagonal” in the ring A, then we have
ci (I ) > 0 for all d − s ≤ i ≤ q, where d = dim A, s = s(I ) and q = dim(A/I ).

The assumption of the theorem by Flenner–van Gastel–Vogel does not imply
the assumption of Trung’s Corollary 2.8 as one can see by the following example.

EXAMPLE 4. ([42]) Let X ⊂ P3K be the non-singular curve of F. S. Macau-
lay ([29], page 98) given parametrically by {(s4, s3t, st3, t4)} and let Y ⊂ P3 be the
line x0 = x1 = 0. Then X and Y are connected in dimension 0 and the theorem of
Flenner–van Gastel–Vogel can be applied.

However, with the notation of Remark 6, the ring R = Gm(GI (A)) is nei-
ther Cohen–Macaulay (since the coordinate ring of X is not Cohen–Macaulay) nor a
domain (since the intersection cycle v(X,Y ) has two K -rational components), hence
both the conditions of Trung [46], Corollary 2.8 are not fulfilled.

3.3. The j-multiplicity as a length

We have seen that if (A,m) is a local ring of dimension d and I ⊂ A is an arbitrary
ideal, the j-multiplicity j (I ) := c0(I ) is an important generalization of the classical
Samuel multiplicity of an m-primary ideal since it measures the contribution of distin-
guished components of the intersection (see Proposition 2).

If the ring A is Cohen–Macaulay and the ideal I is m-primary, then e(I, A) is
given by

length(A/( f1, . . . , fd))

where f1, . . . , fd ∈ I are sufficiently generic elements, hence a minimal reduction of
I . Using the theory of residual intersections due to Huneke (see [25], [26]) and others,
under certain hypothesis on the pair (A, I ) a similar formula can be proved for the
j-multiplicity, (see [15], Theorem 3.4).

We recall the following definitions. Let A be a local ring, I ⊆ A an ideal.
As usual H∗(I, A) will denote the Koszul cohomology of (I, A), i.e. H∗(I, A) is the
cohomology of the Koszul complex K •(x1, . . . , xk; A), where x1, . . . , xk ∈ I is a
minimal set of generators for I . Following [16], the pair (A, I ) is called strongly
Cohen–Macaulay (SCM) if H p(I, A) is either zero or a Cohen–Macaulay module for
all p ≥ 0; note that this differs from the notion originally given in [25] as we also
require the Cohen–Macaulayness of A. For basic properties of this concept we refer
the reader to [25] and [16] (7.2). In particular we will need the following two facts.

If (A, I ) is SCM and H p(I, A) is nonzero then it is automatically a Cohen–
Macaulay module of dimension dim A/I over A/I , see [25] or [16], (7.2.7). Moreover,
the pair (A, I ) is SCM if and only if the Koszul cohomology H∗(y1, . . . , ye; A) is a
Cohen–Macaulay module for an arbitrary generating set y1, . . . , ye of I .

Another important notion in the theory of residual intersections is the Artin–
Nagata condition. An ideal I of a local ring A is said to satisfy the Artin–Nagata
condition Gs if

(Gs) µ(Ip) ≤ height p for all primes p ∈ V (I ) with height p < s.
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Here µ(Ip) denotes the minimal number of generators of the ideal Ip ⊆ Ap. The ideal
I is said to satisfy G∞ if Gs holds for all s ≥ 1.

THEOREM 4 ([15], Theorem 3.4). Let A be a d-dimensional local Cohen–
Macaulay ring, I ⊆ A an ideal. Assume that (A, I ) is SCM and that I satisfies Gd.
Then j (I, A) is given by the length of

I/( f1 + . . . + fd−1) + fd I,

where f1, . . . , fd are sufficiently generic elements of I .

REMARK 7. For the precise meaning of “sufficiently generic elements of I”
see [15], (3.3). Let I = (x1, . . . , xn). Extending the ring A with new indeterminates
u11, . . . , udn , that is passing from A to A′ = A[u11, . . . , udn]mA[u11,...,udn ], the ele-
ments

fi :=
n∑

h=1
uihxh for i = 1, . . . , d

are sufficiently generic.

REMARK 8. If I is an m-primary ideal of a d-dimensional Cohen–Macaulay
ring A, then (A, I ) is automatically strongly Cohen–Macaulay and satisfies the Artin–
Nagata condition Gd , so Theorem 4 generalizes the classical length formula.

REMARK 9. If one admits the assumption on the local ring A and I only sat-
isfies the Gd -condition, then by the proof of [15], Theorem 3.4 one can see that the
following inequality holds:

j (I, A) ≤ length(I/( f1, . . . , fd−1) + fd I ) ,

which generalizes the classical inequality for the Samuel multiplicity of a system of
parameters given in (2.3).

The result of Theorem 4 can be applied to give explicitly expressions for the
j-multiplicity in many examples where the SCM condition is satisfied (see [15], Sec-
tion 4). In particular one obtains a positive answer to the following problem posed by
Ein, Lazarsfeld and Nakamaye in some special cases.

PROBLEM 1. Let H ⊆ An be a hypersurface and C ⊆ H an irreducible subset
of codimension c such that C is an irreducible component of the two equimultiplicity
strata $l and $l+m , where $i := {x ∈ H | e(OH,x ) > i}.

Is then C a distinguished component of the (c + 1)-fold intersection Hc+1?
Moreover, does C appear with a coefficient ≥ mc+1 in the intersection cycle?

The general problem is even open in the special case when C is a point where
the multiplicity jumps (see [15], (4.4)). In this case the question becomes: assume that
H ⊆ An is a hypersurface with a jump of multiplicity at 0, i.e. e(OH,0) > e(OH,x )
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for all x /= 0 near 0. Is the point 0 then a distinguished component of the n-fold self-
intersection of H? By [15], Prop. 4.1 in this situation we only know that C = 0 is
a distinguished component of Hn when it is an irreducible component of the singular
locus Sing H .

3.4. Intersection algorithms for filter-regular sequences and computation of the
j-multiplicity

In [3] and [4] we introduced intersection algorithms in a local ring, which are counter-
parts of the construction of the Stückrad–Vogel cycle (see Definition 1), and compared
them with analogous algorithms in the associated graded ring. These algorithms can
be used to express multiplicities as lengthes and to generalize the last result of 2.3.

Again let (A,m) be a d-dimensional local ring, let I ⊆ m be an ideal of A and
letG := GI (A) be the associated graded ring. Consider a sequence a = (a1, . . . , at ) of
elements of I such that

√
aA =

√
I and the sequence a∗ = (a∗1 , . . . , a

∗
t ) of the initial

forms of a1, . . . , at in G is contained in G1 = A/I and is a filter-regular sequence
with respect to the ideal G+ = ⊕n≥1 I n/I n+1, that is

(a∗1 , . . . , a
∗
k−1)G :G a∗k ⊆

⋃

n>0
((a∗1 , . . . , a

∗
k−1)G :G (G+)n)

for k = 1, . . . , t , or equivalently, a∗k /∈ P for all relevant associated prime ideals
P ∈ AssG(G/(a∗1 , . . . , a

∗
k−1)G) for k = 1, . . . , t (see, for example, [43], Def. 1,

p. 252). In particular this implies that a = (a1, . . . , at ) is a filter-regular sequence in A
with respect to I , see, for example, [3], (2.2).

We define a cycle v(a, A) of A supported on V (I ) = V (aA) by the following
intersection algorithm in A. Set a−1 := (0), a0 := 0, J := aA and inductively

ak :=
⋃

n≥0
((ak−1 + ak A) :A Jn) (0 ≤ k ≤ t) .

Observe that at = A. Then

vk(a, A) :=
∑

p

length(A/(ak−1 + ak A))p [p] ,

where the sum is taken over all (d − k)-dimensional associated prime ideals p of
A/(ak−1 + ak A) that contain J and [p] denotes the cycle associated with p. We define
v(a, A) :=

∑t
k=0 vk(a, A), and the degree of vk(a, A) by

deg vk(a, A) :=
∑

p

length(A/(ak−1 + ak A))p · e(A/p) .

The cycle v(a, A) can also be constructed by the following unmixed intersection
algorithm in A, which is more closely related to the approach of Stückrad and Vogel in
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[42]. Recall that, given an ideal L , we denote by U (L) the intersection of all highest
dimensional primary ideals of L . Set a′−1 := (0) and inductively

a′k :=
⋃

n≥0
(U (a′k−1 + ak A)) :A Jn) (0 ≤ k ≤ t) .

Then, if a′k /= A, it holds a′k = U (ak) (see [3], proof of Proposition 3.2), hence

vk(a, A) =
∑

p

length(A/(a′k−1 + ak A))p [p] ,

where the sum is taken over all (d − k)-dimensional associated prime ideals p of
A/(a′k−1 + ak A) that contain J .

In the same way, replacing a by a∗ and J by G+, we define a cycle v(a∗,G) by
an intersection algorithm in G = GI (A) with ã−1 := 0 · G, a∗0 := 0, and

ãk := (ãk−1 + a∗k G) :G 〈G+〉 (0 ≤ k ≤ t) .

We put
vk(a∗,G) :=

∑

P

length(G/(ãk−1 + a∗k G))P [P] ,

where the sum is over all (d− k)-dimensional associated prime idealsP of G/(ãk−1+
a∗k G) that contain G+. Observe that the prime ideals of v(a; A) contain I and hence
correspond to prime ideals in the ring A/I . On the other hand, the prime ideals of
v(a∗,G) contain G+ and correspond to their contraction ideals in G0I (A) = A/I . So
both cycles v(a; A) and v(a∗,G) can be considered as cycles of A/I and we have the
following theorem ([4], 3.3):

THEOREM 5 (Deformation to the normal cone).

v(a, A) = v(a∗,G) as cycles of A/I .

A natural deformation space for the deformation to the normal cone is given by
the extended Rees ring of A with respect to I . L. O’Carroll and T. Pruschke used this
to introduce an analogue of the previous algorithms in Rees rings, see [37].

In order to generalize the last result of 2.3, that is, to compute the j-multiplicity
as a length, we must use in the above algorithms “generic elements” a1, . . . , ad of I .
The precise meaning of “generic” is that the elements must be a “super-reduction” in
the sense of [3], (2.7):

DEFINITION 2. Let (A,m) be a local ring, let I be an ideal of A such that
s(I ) = dim A = d. A sequence of elements a1, . . . , ad in I is called a super-reduction
for I if:

1. their initial forms a∗1 , . . . , a
∗
d in G = GI (A) are of degree one and form a

filter-regular sequence for G with respect to G+ :=
⊕

i>0 I i/I i+1, that is,
(a∗1 , . . . , a

∗
i−1)G : a∗i ⊆

⋃
n≥0((a∗1 , . . . , a

∗
i−1)G : (G+)n);
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2. for every relevant highest dimensional prime ideal p of G = GI A and d(p) :=
dimG/(mG + p) the initial forms a∗1 , . . . , a

∗
d(p) are a system of parameters for

G/(mG + p).

REMARK 10. If A/m is infinite, then every ideal of maximal analytic spread
has a super-reduction ([3], (2.9)).

If (a1, . . . , ad) is a super-reduction of I , then a1, . . . , ad form a minimal basis
of a minimal reduction of I (see [3], (2.8)).

If I is m-primary, then the notion of super-reduction coincides with that of a
superficial system of parameters in the sense of [39], p. 185.

Now let (A,m) be a d-dimensional local ring, let I be an ideal of A of maximal
analytic spread s(I ) = dim A = d > 0 and let a = (a1, . . . , ad) be a super-reduction
of I . We set

Int(a, A) := ad−1 + ad A and U-Int(a, A) := a′d−1 + ad A,

where ad−1 and a′d−1 are the ideals produced by the intersection algorithm and the un-
mixed intersection algorithm, respectively. Then the ideals Int(a, A), U-Int(a, A), are
equal andm-primary (see [3], 3.2). Analogously, the ideals Int(a∗,G) and U-Int(a∗,G)
are equal and primary with respect to the homogeneous maximal ideal of G (see [3],
3.3) and we have the following theorem ([3], Theorem 3.8):

THEOREM 6 (Computation of the j-multiplicity by super-reductions). Let
(A,m) be a d-dimensional local ring, let I be an ideal of A of maximal analytic spread
s(I ) = dim A = d > 0 and let a = (a1, . . . , ad) be a super-reduction of I . With the
notation introduced before, one has

j (I, A) = lengthA(A/ Int(a, A)) = lengthA(A/U-Int(a, A))

= lengthG(G/ Int(a∗,G)) = lengthG(G/U-Int(a∗,G)) = j (G+,G).

3.5. Reduction ideals and j-multiplicity

Using the j-multiplicity it is possible to give a numerical characterization of reduction
ideals, which generalizes Böger’s theorem, see Theorem 2. The easy direction is given
by the following proposition.

PROPOSITION 3 ([14], Proposition 2.10). Let (A,m) be a local ring, let J ⊆
I ⊆ m be ideals of A. If J is a reduction of I , then j (J, A) = j (I, A).

For the other direction we need to consider formally equidimensional local
rings. Precisely we have the following result.

THEOREM 7 ([14], Theorem 3.3). Let J ⊆ I ⊆ m be ideals of an equidi-
mensional local ring (A,m). Then J is a reduction of I if and only if j (Jp, Ap) =
j (Ip, Ap) for all prime ideals p ∈ Spec A.
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REMARK 11. Theorem 7 generalizes Böger’s theorem (see Theorem 2), since if√
I =

√
J then the ideals I and J have the same minimal primes, that is Min(A/I ) =

Min(A/J ). Moreover s(J ) = height(J ) implies that

{p ∈ Spec A | height(p) = s(Jp)} = Asymp(J ) = Min(A/I )

by Lipman’s Theorem 3, p. 116 and remark p. 117.
For each p ∈ Min(A/I ) we have

j (Jp, Ap) = e(Jp, Ap)

j (Ip, Ap) = e(Ip, Ap)

hence by Corollary 1 of (2.4) and Rees’ theorem (see Theorem 1) we can conclude that
J is a reduction of I .

REMARK 12. The numerical condition of Theorem 7 must be checked only
for a finite number of prime ideals, p ∈ Spec A. In fact, by Remark 2 in (3.1) and
Remark 1 in (2.4) the multiplicity j (Jp, Ap) /= 0 if and only if p ∈ Asymp(J ), hence
it is sufficient to compare j (Jp, Ap) and j (Ip, Ap) for all p ∈ Asymp(J ) ∪ Asymp(I )
and this is a finite set.

REMARK 13. Theorem 7 says that I is the largest ideal N containing I such
that j (Ip, Ap) = j (Np, Ap) for all p ∈ Spec A, see (2.4).

The proof of Theorem 7 uses the generalized multiplicity j (I,M) for a finite
A-module M , which was introduced in [16], Section 6.1. This multiplicity coincides
with j (I, A) when M = A, has nice properties like additivity for exact sequences of
A-modules (see [15], Lemma 3.1) and it is preserved under generic hyperplane sections
(see [15], Proposition 3.2). These properties are used to prove Theorem 7.

In [10] C. Ciupercǎ generalizes Proposition 3 in the following way.

PROPOSITION 4 ([10], Proposition 2.7). Let (A,m) be a d-dimensional local
ring and let J ⊆ I ⊆ m be ideals of A. If J is a reduction of I , then J and I have the
same generalized Samuel multiplicities, that is c(J ) = c(I ).

It would be interesting to have a converse of this proposition, which is known
in the analytic case, see [19], Corollary 4.9 and our Thorem 11. This would avoid
localization and would give a more useful numerical condition to test if an ideal J is a
reduction of I by using computer algebra systems.

3.6. Generalized Hilbert coefficients and Serre’s property (S2) for the Rees alge-
bra

Let (A,m) be a formally equidimensional local ring of dimension d, let I be an ideal
in A, let R = A[I t, t−1] be the extended Rees algebra of A with respect to I and
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let R = ⊕n∈Z I ntn be the integral closure of R. Then Flenner-Manaresi’s numerical
characterization of reduction ideals of Theorem 7 can be interpreted as follows:

I n is equal to the largest ideal, say K , containing I n such that j (I n Ap, Ap)
= j (Kp, Ap) for all p ∈ Spec A.

Let R be a noetherian integral domain. Then the well-known normality criterion
of Krull-Serre states that R is integrally closed if and only if it satisfies the following
two properties:

(R1) for each prime P of codimension ≤ 1, RP is regular;

(S2) for each prime P of codimension ≥ 2, depth RP ≥ 2.

If R is lacking the S2-property of Serre, one can try to construct the minimal extension
R̃ of R which satisfies S2. The ring R̃ is called the S2-closure or the S2-ification of
R and it exists when R has a canonical module or when R is a universally catenary,
analytically unramified domain (see [22], (5.11.2) and [24], (2.7)). It is a step in the
construction of the integral closure of R.

If I ⊂ A is anm-primary ideal, then K. Shah [41] proved the existence of unique
largest ideals (the so-called k-th coefficient ideals) I{k} (1 ≤ k ≤ d) lying between I
and I such that the first k + 1 Hilbert coefficients e0, . . . , ek (see Section 2.1) of I
and I{k} coincide. If A is a formally equidimensional, analytically unramified local
domain with infinite residue field and if A has positive dimension and is (S2), then
C. Ciupercǎ [9] showed that the n-th graded piece of the S2-closure of R = A[I t, t−1]
is precisely the first coefficient ideal (I n){1}, that is, the largest ideal K ⊇ I n such that
e0(K ) = e0(I n) and e1(K ) = e1(I n).

Using the generalized Hilbert coefficients a(1,1)
k,l (see Section 3.1), Ciupercǎ [10]

has generalized this to not necessarily m-primary ideals I . In order to describe Ciu-
percǎ’s result, we assume that d = dim A > 0 and introduce the following notation:

j0(I ) := j (I ) = c0(I ) = a(1,1)
0,d (I ) ,

j1(I ) := (c1(I ), a(1,1)
0,d−1(I )) = (a(1,1)

1,d−1(I ), a
(1,1)
0,d−1(I )) .

Note that in the case of an m-primary ideal I one gets the first two classical Hilbert
coefficients: j0(I ) = e0(I ) = e(I ) and j1(I ) = (0,−e1(I )). Ciupercǎ ([10], Def. 3.1)
extended the definition of the first coefficient ideal I{1} to not necessarily m-primary
ideals I as follows: if dim A/I < dim A, she defined

I{1} :=
⋃

(I n+1 :A a) ,

where the union ranges over all n ≥ 1 and all a ∈ I n \ I n+1 such that the initial form
a∗ of a in GI (A) is a part of a system of parameters of GI (A). If I is m-primary, this
definition coincides with the one given by Shah. Indeed, by the structure theorem for
the coefficient ideals proved by Shah ([41], Theorem 2), we have I{1} =

⋃
(I n+1 :A a),

where the union ranges over all n ≥ 1 and all a ∈ I n extendable to some minimal
reduction of I n . Note that a is extendable to some minimal reduction of I n if and only
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if the image of a∗ in GI (A)/mGI (A) is part of a system of parameters. But if the ideal
I is m-primary this is equivalent to the fact that a∗ is part of a system of parameters of
GI (A), since the ideal mGI (A) is nilpotent.

With this new definition of the first coefficient ideal I{1}, the above description
of the S2-closure of the extended Rees algebra can be generalized to not necessarily
m-primary ideals I .

THEOREM 8 ([10], Theorem 3.4). Let (A,m) be a formally equidimensional,
analytically unramified local domain with infinite residue field and positive dimension,
and let I be an arbitrary ideal of A. If R̃ = ⊕n∈Z Intn is the S2-ification of R =
A[I t, t−1], then

In ∩ A = (I n){1} for all n ≥ 1 .

In particular, if A is (S2), then In = (I n){1} for all n ≥ 1.

Now the announced numerical characterization of the S2-ification of the ex-
tended Rees algebra reduces to the problem of finding a numerical characterization of
the generalized first coefficient ideals. This is the contents of the following theorem.

THEOREM 9 ([10], Theorem 4.5). Let (A,m) be a formally equidimensional
local ring and let J ⊆ I ⊆ m be ideals of positive height. Then the following condi-
tions are equivalent:

1. I ⊆ J{1};

2. j0(J Ap) = j0(I Ap) and j1(J Ap) = j1(I Ap) for all p ∈ Spec A;

3. j0(J Ap) = j0(I Ap) and a(1,1)
0,d−1(I Ap) = a(1,1)

0,d−1(J Ap) for all p ∈ Spec A.

REMARK 14. Condition 3 of the previous theorem is not contained in [10],
Theorem 4.5. Obviously 2 implies 3. To see the converse, one can observe that by
Theorem 7 from j0(J Ap) = j0(I Ap) for all p ∈ Spec A it follows that J is a reduction
of I , hence Jp is a reduction of Ip for all p ∈ Spec A, therefore by Proposition 4 one
has c1(J Ap) = c1(I Ap).

In view of the above consideration it seems to be better to define j1(I ) :=
a(1,1)
0,d−1(I ) instead of j1(I ) := (c1(I ), a(1,1)

0,d−1(I )).

The previous theorem can be considered as a generalization of Flenner-Manaresi’s nu-
merical characterization of reduction ideals (Theorem 7), which can be reformulated
as follows.

THEOREM 10. Let (A,m) be a formally equidimensional local ring and let
J ⊆ I ⊆ m be ideals of A. Then the following conditions are equivalent:

1. I ⊆ J{0} := J , that is, J is a reduction of I ;

2. j0(I Ap) = j0(J Ap) for all p ∈ Spec A;
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3. j0(I Ap) = j0(J Ap) for all ideals p ∈ Asymp(I ) ∪ Asymp(J ).

PROBLEM 2. In the previous theorem only a finite number of localizations has
to be considered, see Remark 12 in (3.5). It is not clear if it is enough to test also
condition 2 of Theorem 9 only for a finite number of prime ideals p ∈ Spec A.

3.7. Generalized Samuel multiplicities and Segre numbers

T. Gaffney and R. Gassler [19] introduced and studied the so-called Segre numbers of
an ideal in the following set-up.

Let (X, 0) ⊆ (Cn, 0) denote a germ of an analytic subset of pure dimension
d, and let I be an ideal in OX,0 which defines a nowhere dense subspace of (X, 0).
Choose a minimal set h1, . . . , hr of generators of I . The polar varieties Pk(I, X) and
Segre cycles %k+1(I, X) are defined inductively for k = 0, . . . , d − 1 as follows (see
[19] and [20], Section 2.1): P0(I, X) := X , and for k ≥ 1 the polar variety Pk(I, X)
is defined to be the closure of V (h̃k |Pk−1(I,X)) \ V (I ), where h̃k is a generic linear
combination of h1, . . . , hr . The word “generic” means in particular that the subspace
Y of Pk−1(I, X) defined by the sheaf of ideals (h̃k)OPk−1(I,X) has to be reduced outside
V (I ) in a sufficiently small neighbourhood of the point 0. The k-th Segre cycle is
defined as the difference of cycles

%k(I, X) := [V (h̃k |Pk−1(I,X))]− [Pk(I, X)] .

We recall that the cycle [V (h̃k |Pk−1(I,X)] is defined as
∑
mW [W ], where the W ’s run

over all irreducible components of the set V (h̃k |Pk−1(I,X)), and the integer mW equals
by definition the length of the local ring (OY,y)(Wy)i

, where (Wy)i is the prime ideal of
a component of the germ of the set W at a point y ∈ W (see [30], p. 9).

The k-th Segre cycle %k(I, X) can also be described by using the blowup of X
along V (I ). Let

X × Pr−1 ⊃ BlI (X)
b→ X ,

E the exceptional divisor and H1, . . . , Hk−1 generic hyperplanes on BlI (X) induced
by generic hyperplanes of Pr−1. Then

%k(I, X) = b∗(H1 · · · Hk−1 · E · BlI X) .

The k-th Segre number is defined as

ek(I, X) := mult0(%k(I, X)) := e(O%k (I,X),0), k = 1, . . . , d.

If s denotes the analytic spread of I , then one can easily see that the sequence
h̃ := (h̃1, . . . , h̃s) is filter-regular with respect to I , hence one can perform the in-
tersection algorithm for the sequence h̃ as in Section 3.6. By the definition of Segre
cycles, one has

mult0(%k(I, X)) = deg vk(h̃,OX,0) for k = 1, . . . , s, and
mult0(%k(I, X)) = 0 for k = s + 1, . . . , d
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(see [6], proof of Theorem 1).

THEOREM 11 ([6], Theorem 2). With the previous notation, the following equal-
ities hold:

ek(I, X) = cd−k(I,OX,0) for k = 1, . . . , d

and cd(I,OX,0) = 0.

The generalized Samuel multiplicities are also related to the degrees of Segre
classes of cones and subvarieties Y ⊂ X . For the theory of Segre classes we refer the
reader to [18], Chapter 4.

The total Segre class s(Y, X) ∈ A∗Y is defined as follows: if Y = X then
s(Y, X) = [X ], otherwise let X̃ = BlY X , C := CY X the normal cone of X along
Y , E = P(C) the exceptional divisor, η : E → Y the projection, and d := dim X =
dim X̃ . The i-fold self intersections Ei = E ∗ · · · ∗ E are well defined classes in
Ad−i (E) and one defines

s(Y, X) :=
∑

i≥1
(−1)i−1η∗(Ei ) .

This means that the total Segre class is constructed by blowing up X along Y , and
pushing down various self-intersections of the exceptional divisor. It depends only on
the normal cone to Y in X . One writes

s(Y, X) = s(CY X) :=
∑

i≥0
si (Y, X) =

∑

i≥0
si (Y, X) ,

where by si one denotes the part of s of dimension i , and by si the part of codimension
i in X . Thus, if X is equidimensional (as we always assume), then si = sdim X−i .

If X and Y are nonsingular, then the normal cone is a bundle, the normal bundle
NY X of X along Y , with Chern classes ci = ci (NY X), and the Segre classes si (NY X)
can be regarded as their formal inverse:

1+ c1 + c2 · · · = (1+ s1 + s2 + · · · )−1 ,

i. e., s0 = 1, s1 = −c1, s2 = c21 − c2 , . . .
Turning back to the general case, that is, X and Y not necessarily nonsingular,

for E = P(C) one has that NE X̃ = OX̃ (E)|E = OC (−1) is the dual of the canonical
line bundle OC on P(C). It follows that

Ei = (−1)i−1c1((OC (1))i−1) ∩ [P(C)] ,

hence
s = s(C) = s(Y, X) =

∑

i≥1
η∗(c1(OC (1))i−1 ∩ [P(C)]) .

If Y ⊂ X ⊆ Pn is an irreducible and reduced subscheme of X and r :=
codimXY > 0, q := dim(X) + 1 − r , then the degree of the Segre class sr (Y, X) =
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sr (CY X) is related to the Samuel multiplicity e(OX,Y ) = eY X of X along Y as follows
(see [18], 4.3):

e(OX,Y )[Y ] = eY X [Y ] = sr (Y, X) = η∗(c1(OC (1))r−1 ∩ [P(C)])
= (−1)r−1η∗(Er−1),

that is,

deg sr (CY X) = deg sq−1(CY X) = e(OX,Y ) · deg Y = cq(I, A) ,

where A is the homogeneous ring of coordinates of X localized at the irrelevant maxi-
mal ideal and I is the ideal of Y in A.

In general, with the convention that
( m
−1
)

:= 0 for m ≥ 0 and
(−1
−1
)

:= 1, one
has the following proposition, which gives the relation between generalized Samuel
multiplicities and degrees of Segre classes of cones.

PROPOSITION 5 ([4], Corollary 4.3). Under the hypothesis of Proposition 2, if
Z = ∅ then d = dim A = dim J +1, q = dim(J ∩!)+1 and, for k = −1, . . . , d−1,

ck+1(I, A) =
q−1∑

i=k

(
d − k − 2
d − i − 2

)
deg si (CJ∩! J )

and

deg sk(CJ∩! J ) = deg sd−k−1(CJ∩! J ) =
k∑

i=0

(
k − 1
i − 1

)
(−1)k−i cd−i (I, A) .

REMARK 15. More general, if X is an equidimensional algebraic scheme over
the base field K , L a line bundle of degree δ on X , σ1, . . . , σt ∈ H0(X,L) and Y :=
V (σ1) ∩ · · · ∩ V (σt ), then

(3) ck+1 =
q−1∑

i=k

(
d − k − 2
d − i − 2

)
δi−k deg si (Y, X)

and

(4) deg sk(Y, X) = deg sd−k−1(Y, X) =
k∑

i=0

(
k − 1
i − 1

)
(−δ)k−i cd−i ,

k = 0, . . . , d − 1.

We want to illustrate the usefulness of the generalized Samuel multiplicities
for the calculation of the degrees of Segre classes using computer algebra systems,
discussing an example which can be easily checked by hand. The same method can be
applied to much more complicated examples which cannot be calculated by hand.
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EXAMPLE 5 ([11], Example 5.3). Let us consider the flat family X in A3 de-
fined over the affine line T by the ideal (x, z) ∩ (y, z) ∩ (x − y, z − t x). Note that X
is the union of three lines X1, X2 and X3 passing through the origin P (and lying in a
plane if t = 0). Our aim is to calculate the degrees of the Segre classes of X diagonally
embedded in X × X .

The normal cone CX (X × X) = Spec K [x, y, z, u, v, w]/J can be calculated
by a computer, getting

J = (t2xy − z2, z(t x − z), z(t y − z), t yw + t zv − 2zw, t xw + t zu − 2zw,

t2xv + t2yu − 2zw,w(t2uv − tuw − tvw + w2)) .

Observe that J is a bigraded ideal with respect to the variables x, y, z and u, v, w
respectively. Let A be the ring of coordinates of X × X localized at (x, y, z, u, v, w)
and I = (x − u, y − v, z − w)A the ideal of the diagonal in A. Then the bidegrees
of J are the generalized Samuel multiplicities c(I, A) of I in A and, by a computer
calculation, c(I, A) = (6, 3, 0, 0). By the previous proposition one gets the degrees of
the Segre classes:

deg s0(X, X × X) = 0, deg s1(X, X × X) = 3 = deg X.

The same results hold if t = 0.
We observe that, since X is the union of three lines, using the bilinearity of the

intersection cycle v(X, X) (see for example [16], Section 2.1), we have v(X, X) =
[X1] + [X2] + [X3] + 6[P] (which holds also in the case t = 0). From this it follows
immediately that c(I, A) = (6, 3, 0, 0) and hence one obtains the degrees of the Segre
classes as above.

3.8. Generalized Samuel multiplicities and Whitney stratifications

We recall the following definitions.

DEFINITION 3. Let X ⊆ Pn be a d-dimensional complex projective variety,
and let Y ⊂ X be a non-singular subvariety. We say that the pair (Xreg,Y ) satisfies
the Whitney conditions at a point x0 ∈ Y if for each sequence (xi ) of points of Xreg
and each sequence (yi ) of points of Y both converging to x0 and such that the limits
limxi→x0 Txi X and limxi ,yi→x0 xi yi exist in the Grassmannians G(d, n) and G(1, n)
respectively, one has:

(a) lim
xi→x0

Txi X ⊃ Tx0Y ,

(b) lim
xi→x0

Txi X ⊃ lim
xi ,yi→x0

xi yi .

We remark that (b) implies (a).

DEFINITION 4. AWhitney stratification of X (d = dim X) is given by a filtra-
tion of X by closed subsets Fi

X = F0 ⊇ F1 ⊇ · · · ⊇ Fd+1 = ∅
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such that

(i) Fi \ Fi+1 is either empty or is a non-singular quasi-projective variety of pure
codimension i (the connected components of Fi \ Fi+1 are called the strata of the
stratification);

(ii) whenever S j and Sk are connected components of Fi \ Fi+1 and Fl \ Fl+1 re-
spectively, with S j ⊂ Sk, then the pair (Sk, S j ) satisfies the Whitney conditions
(a) and (b).

DEFINITION 5 (Polar varieties). Let L(k) be an (n − d + k − 2)-dimensional
linear subspace of Pn, 1 ≤ k ≤ d = dim X. The k-th polar variety (or polar locus) of
X associated with L(k) is

P(L(k), X) := closure of {x ∈ Xreg | dim(Tx X ∩ L(k)) ≥ k − 1}.

For k = 0 we set P(L(0), X) := X.

If L(k) is generic, we write Pk(X) = P(L(k), X) since it is well known that
P(L(k), X) is empty or equidimensional of codimension k in X and its degree does not
depend on L(k). If

L(0) ⊂ L(1) ⊂ . . . ⊂ L(d)

is a generic flag, then we have

X = P0(X) ⊃ P1(X) ⊃ . . . ⊃ Pd(X) .

The polar varieties defined here are different from the polar varieties of Gaffney-
Gassler defined in Section 3.7.

Let x ∈ X . Teissier showed that the sequence of multiplicities

m0 = ex (P0(X)), . . . ,md−1 = ex (Pd−1(X))

does not depend upon the choice of the general flag. Moreover he proved the following
result.

THEOREM 12 (Teissier [45]). The pair (Xreg,Y ) satisfies the Whitney condi-
tions in x0 if and only if the sequence of polar multiplicities

m0 = ey(X),m1 = ey(P1(X)), . . . ,md−1 = ey(Pd−1(X))

is locally constant in Y around x0.

DEFINITION 6 (The stratifying function g). Let X ⊆ Pn be a d-dimensional
complex projective variety and let x a point of X.

Let A := OX×X,(x,x) and let I be the diagonal ideal in A. We define

g(x) := e(GI (A)) =
d∑

i=0
ci (I, A) .
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Note that dim A = 2d, that cd+1 = · · · = c2d = 0 and that

(c0(I, A), c1(I, A), . . . , cd(I, A))

is a refinement of the multiplicity cd(I, A) = ex X = e(OX,x ) of X at x .

Figure 1: The g-stratification of the surface x4 + y4 = xyz.

THEOREM 13 ([5], Theorem 4.2). Let X ⊂ Pn be a (reduced) surface and
x ∈ X be a closed point. Then

X j := {x ∈ X | g(x) ≥ j}, j = 0, 1, . . .

are closed subschemes of X or empty, and the connected components of

Sg( j) := g−1( j) = X j \ X j+1

are the strata of a Whitney stratification of X (the coarsest one if n = 3).

EXAMPLE 6. Consider the surface X in C3 (or in P3) defined by the equation
x4 + y4 − xyz = 0, whose singular locus is the z-axis (see Figure 1). We want to
determine the coarsest Whitney stratification. Using [1] we obtain for the generalized
Samuel multiplicities (c2, c1, c0) and the polar multiplicities (m0,m1) (both ordered
by codimension) the following values:

Locus (c2, c1, c0) g (m0,m1)

X \ Sing X (1, 0, 0) 1 (1, 0)

z-axis (2, 2, 0) 4 (2, 0)

origin (3, 6, 0) 9 (3, 4)

Hence the Whitney stratification is given by

surface ⊃ z-axis ⊃ origin.
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