C.d.L. in Chimica e Tecnologie per l'Ambiente e i Materiali, curriculum Ambiente, Energia, Rifiuti 17. 12. 2008

1. Calcolare

(a)
$$\sum_{k=2}^{n} \left(-\frac{1}{2}\right)^k$$
, (b) $\sum_{k=1}^{100} \left(-\frac{1}{2}\right)^k$.

- 2. Dati i tre punti A = (0, -1, 2), B = (-3, 2, 1) e C = (4, 0, 2), calcolare
 - (a) il prodotto vettoriale $\overrightarrow{AB} \times \overrightarrow{AC}$;
 - (b) l'area del triangolo di vertici A, B, C;
 - (c) l'equazione cartesiana del piano passante per i punti A, B, C.
 - (d) la distanza dell'origine dal piano passante per i punti A, B, C.
- 3. Scrivere il numero complesso $3e^{2+i3}+7e^{2-i3}$ nella forma a+ib. (Non occorre calcolare numericamente a e b, il risultato può contenere espressioni come e^2 , $\cos(3)$ ecc.)
- 4. Trovare le derivate di

(a)
$$U(t) = (pt+q)^5$$
, (b) $y = e^{-x} \cdot \cos x$, (c) $T(u) = au - \frac{b}{u^2}$, (d) $y = \log_{10} x^2$.

5. Calcolare (a)
$$\int \frac{3t^3 + 1}{t} dt$$
, (b) $\int x \log_{10} x dx$, (c) $\int \cos(4x + \pi) dx$.

- 6. Data la funzione $f(x) = 1 + \frac{x}{3} + \frac{3}{x}$, $x \neq 0$,
 - (a) trovare i minimi e i massimi relativi e assoluti;
 - (b) determinare gli asintoti;
 - (c) disegnare il grafico;
 - (d) calcolare l'equazione della retta tangente al grafico nel punto $(6, \frac{7}{2})$;
 - (e) calcolare il polinomio di Taylor di grado 2 e di punto iniziale 3;
 - (f) facoltativo: calcolare l'area della regione limitata dal grafico, dall'asse x e dalle rette di equazioni x = -e e x = -1.
- 7. Si ricordi che il pH di una soluzione acquosa è stato definito da Sørensen come $pH = -\log_{10}[H_3O^+]$, dove $[H_3O^+]$ indica la concentrazione (in mol/l = M) di H_3O^+ .
 - (a) Calcolare il $p{\rm H}$ di una soluzione $3,0\cdot 10^{-3}M$ di HCl.
 - (b) Il pH di una soluzione è 9,67. Calcolare la concentrazione di $[H_3O^+]$.
 - (c) Qual è l'errore (relativo) percentuale che risulta su $[H_3O^+]$, se il pH può essere misurato con una accuratezza di $\pm 0,01$? (Suggerimento: Si usi $\ln 10 \approx 2,3$ e il differenziale.)