METRIC NORMAL AND DISTANCE FUNCTION IN THE HEISENBERG
GROUP

NICOLA ARCOZZI, FAUSTO FERRARI

ABSTRACT. We introduce a notion which is equivalent in the Heisenberg group H to that of seg-
ment normal to a surface. Then, we study some regularity properties of the function measuring
the Carnot-Carathéodory distance from an Euclidean surface S in H in terms of the regularity

of S.
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1. INTRODUCTION

Let H = H' be R? with the Heisenberg group structure and let d be the associated Carnot-
Charathéodory distance. If f is a real valued function defined on an open subset of H, its
horizontal gradient will be denoted by Vg f, moreover if S is a surface in H which is C' in the
Euclidean sense, and @ is a point on S, we say that Q) is characteristic for S if the space tangent
to S at @, TS, contains all horizontal vectors at (), and donote by Char(S) the set of all
characteristic points of S, (see below and Section 2 for the definition of this and other intrinsic
objects of the analysis in H). If S is a closed subset of H, the distance from a point P to S is

dp(P) = Anf, d(P, Q).

If § = 09 is the boundary of an open set 2 in H, we define the signed distance from S as
follows:

(1) 0s(P) = ds(P) if P ¢ Q.
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In this paper we prove the following result.

Theorem 1.1. Let S be a surface in H which is the boundary of an open set Q and of H — Q.
(i) If S is CY! in the Euclidean sense, then Vgds is a continuous function in an open
neighborhood of S — Char(S) in H.
(ii) If S is C* in the Euclidean sense, k > 2, then Vyds and ds are of class C*~1, in the
Euclidean sense, in an open neighborhood of S — Char(S) in H.

In Section 6 we show in fact a more general result, see Theorem 6.1, involving the notion of
set of positive reach, see Section 5 for the definition.

In Euclidean space this kind of result was proved by Federer, [8], for the nonsigned distance,
and by Krantz and Parks, [12], for the signed distance. The advantage of the signed distance
over the nonsigned one is that it can be regular even on the surface S. For an updated survey
in the Euclidean space, also containing new results, see [7].

Concerning the Heisenberg group and properties of the distance function from a set, we refer
to the paper by Monti and Serra-Cassano [15] where, in particular, they proved that if S is a
closed subset of H, then dg satifies the Eikonal equation a.e.,

|Vmds| = 1.

The proofs of the regularity results in Euclidean space rely on the following fact. If the
hypersurface S is regular enough, then for each point () in S there exists a segment n passing
through @ which is normal to S and, moreover, the distance from any point P on n to S is
realized by the distance between P and (). In order to determine n, it suffices to know the vector
normal to S at (). These considerations extend to the case of a hypersurface in a Riemannian
manifold M, since the correspondence 7y +— 4(0) establishes a 1-to-1 correspondence between
geodesics v such that v(0) = @ is fixed in M and vectors tangent to M at ). This fact has no
clear analogue in sub-Riemannian geometry, since, given a horizontal vector V at @), a point in
H, there are infinitely many geodesics leaving ) and having speed V at ). To overcome this
difficulty, we define the notion of metric normal to a surface in H.

Before proceeding, we fix some notation. In the realization we will work with, the Heisenberg
group is the set of the triples (z,v,t) in R® with the product

(z,y,t) - (2,9, t) = (@ + 2"y + o/, t +1' = 20z — 2'y)).
A left invariant vector field V' on H is horizontal if it is the linear combination of X and Y,
X = Bx + 2y8t, Y = By — 2.’1)6;5.

As usual, we identify a vector V at P with the unique left invariant vector field having value
V at P. Hence, we can talk about horizontal vectors. The linear space of the horizontal vector
fields is denoted by #, while Hp is the linear space of the horizontal vectors in TpH, the space
tangent to H at P. If S is a surface in H and it is smooth in the Euclidean sense, a point C in
S is characteristic if TcS = Hc.

Let @ be a point in S. The metric normal to S at @, NS, is the set of those points P such
that

ds(P) = d(P,Q).
When S is a surface which is smooth enough, then NS reduces to the point @, if Q) is character-
istic, and is a nontrivial geodesic arc through ). In Theorem 4.1 we give a geometric description

of NgS.

Theorem 1.2. Let S be a smooth enough surface (e.g., by the results of Section 5, C11), let Q
be a non-characteristic point on S and let IIgS be the Euclidean plane in H which is tangent to
S at Q, in the Euclidean sense. Let C be the characteristic point on IlgS (if IlgS has none,
below we set d(Q,C) = o). Then, NgS is a nontrivial arc on the geodesic v passing through
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Q such that (i) ¥(0) = NpS is the horizontal vector normal to S at Q; (ii) the mazimal length
over which vy is length minimizing in H is 7d(P, C).

The plane IIgS is that tangent to S in our realization of H. Geodesics in H can be grouped
in equivalence classes of mutually isometric geodesics. Two geodesics 1 and 7 belong to the
same equivalence class if and only if the maximal extention over which each geodesic is lenght
minimizing is the same for v; and s, see Section 2.

This is the way in which the paper is structured. In Section 2, we give some preliminaries on
the Heisenberg group. Section 3 and 4 are devoted to the determination of the metric normal
for a Fuclidean plane in H, hence for a smooth surface. In Section 5 we prove some properties
of the sets of positive reach in H. Section 6 contains statements and proofs of various regularity
results for the distance function. Finally, some properties of the cutlocus of a surface in H are
discussed in Section 7.

In this paper we considered the Heisenberg group with the lowest dimension. This object is
interesting in itself. For instance, it is related with the study of the isoperimetric inequality in
the Euclidean plane [13]. More recently, it was realized that sub-Riemannian structures modelled
on the lowest dimensional Heisenberg group can be used to model the human visual system, see
[5], [6], [19] and the references quoted therein.

In [2] we use the results of this paper to study the horizontal Hessian of the distance function
from a surfaces and some properties of the mean curvature.

2. NOTATION AND PRELIMINARIES

In this section, we collect some basic definitions and known facts about the structure and
the geometry of H. There is a vast literature on sub-Riemannian geometry and Carnot groups.
Justs to quote a few titles, we refer the reader to [4], [9], [10], [13], [16], [17], [18], [21].

The Heisenberg group H = H! is the Euclidean space R® endowed with the noncommutative
product

(z,y,8) - (2", 1) = (@ + o',y + o, t + ' + 2(z"y — zy)).
Sometimes it is convenient to think of the elements of H as (z,f) € C x R. The Carnot-
Charathéodory distance in H is the sub-Riemannian metric that makes pointwise orthonormal
the left invariant vector fields X and Y,

X = 8, + 298y, Y = 0, — 220,

The vector fields X, Y do not commute, [X,Y] = —49;. The distance between two points P
and ) in H is denoted by d(P,@Q). The span of the vector fields X and Y is called horizontal
distribution, and it is denoted by H. The fiber of H at a point P of H is Hp = span{Xp,Yp}.
The inner product in Hp is denoted by (-,-) and the associated norm by | - |.

An important element of H's structure is the dilation group at the origin {0y : X\ # 0},

5)\(Z,t) = (>‘Za AQt)a z=1c+1y

By left translation, a dilation group is defined at each point P of H.

The Heisenberg group is also endowed with a rotation group, which is useful in simplifying
some calculations. For 8 € R, let

Rg(Z,t) = (eiaat)

be the rotation by # around the t¢-axis. Composing with left translation, one could define
rotations around any vertical line (z,y) = (a,b). Ry is an isometry of H and its differential
acts on the fiber Hp as a rotation by #. Under the usual identification between the Riemannian
tangent space of H at O, ToH, and the Lie algebra h of H, the differential of Ry can be thought
of as a rotation on span{X,Y}, the first stratum of h. With respect to the basis {X,Y},

= (o) ) )¥
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whenever V' € span{X,Y}. With some abuse of notation, we denote dRy by Ry.

The distance between two points P and () in H is defined as follows. Consider an absolutely
continuous curve v in R?, joining P and Q, which is horizontal. That is, ¥(t) = a(t)X,q) +
b(t)Yy(s) lies in H. (). Its Carnot-Charathéodory length is Im(7),

mmzﬁWﬁwWW%

The Carnot-Charathéodory distance between P and @, d(P,Q), is the infimum of the Carnot-
Charathéodory lengths of such curves. The infimum is actually a minimum, the distance between
P and @ is realized by the length of a geodesic. By translation invariance, all geodesics are left
translations of geodesics passing through the origin. The unit-speed geodesics at the origin [14],
[13] are

z(0) = sin(o(W)) -eslle) 4 cos(a(W))Sin(%a)
2) Yo,6,w(0) =  y(0) = sin(a(W)) 20 — cos(a(W))1=2)

t(o) = 2%3(@)_

Here, W is a unitary vector in Ho and a(W) € [0, 27) is unique with the property Yo 4w (0) =
W. ¢ € R, and the geodesic is length minimizing over any interval of length 27/|¢|. In the case
¢ = 0, the geodesic is a straight line in the plane {t = 0},

z(o) = cos(a(W))o, y(o) = sin(a(W))o,

and we say that the geodesic is straight.
iFrom these equations we deduce the parametric equations of the boundary of the ball B(0, r)

and in particular (z,t) € 0B(0,) if and only if there is ¢ € [—27/r, 27w /r| so that

{|Z‘ — 2sin(¢'r/2)

@
t = 2‘157"*2;1(@‘) .

3)

If P = (z,t) and z # 0, then there exists a unique length minimizing geodesic connecting P
and O. If P = (0,t), t #0, (i.e., if P belongs to the center of H) then there is a one parameter
family of length minimizing geodesics joining P and O, obtained by rotation of a single geodesic
around the t-axis.

Given points P = (z,t) and P’ = (2/,t'), they are joined by a unique length minimizing
geodesic, unless z = 2'.

Let

YPpo = LPY0,p,0

The parameter ¢ is geometric in the following sense: 27/|4| is the length of yp g w and sgn(¢)
is positive if and only if the ¢-coordinate increases with o. Recall that in H the orientation of
the t-axis is an intrinsic notion, unlike the Euclidean space. If vp 4w and ypr ¢ w+ have an arc
in common, then ¢ = +¢', while no such easy relation exists for the parameter W. To change
the orientation of a geodesic, observe that

’YP7¢5W(0-) = ,YP=_¢7_W(_0-)'

Unlike the Euclidean case, a geodesic vy leaving O is not determined by its tangent vector at the
origin, ¥(0) = W = cos(a(W))Xo + sin(a(W))Yo. The extra parameter we need is ¢. Notice
that ¢ is related to the dilation group as follows: d) (v0,4,w) is a reparametrization of the
geodesic 7o 4/x,w- That is, all geodesics v leaving O and having fixed initial velocity ¥(0) = v
in Ho are dilated of each other (with the exception corresponding to ¢ = 0) but, contrary to
the Euclidean case, a geodesic’s dilated is a different geodesic. The case of the straight geodesics
is the limiting one, corresponding to A — 0. In a precise sense, then, the set of non-straight
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geodesics at O is parametrized by the unit circle in Hp and by the dilation group, a feature of
H with no Euclidean counterpart.

Let S be a surface in H which is C' in the Euclidean sense and such that, for some open
in H, S =00 =0(H - ). We need some differential geometric notions about S.

Definition 2.1. Let S be a surface in H as above and let P € S be a non-characteristic point.
The Euclidean tangent space to S at P is denoted by TpS. The direction tangent to S at
P is the 1-dimensional space VpS = TpS N‘Hp. The plane tangent to S at P, IlIpS, is the
FEuclidean plane in H, tangent to S at P in the FEuclidean sense. The direction normal to S
at P s NPS == HPGVPS.

The Pansu exterior normal to S at P, denoted by N];,LS, 15 the unique horizontal vector V
in the direction NpS such that, denoted by v the Fuclidean exterior normal to S at P, (V,v) > 0.
Here, (-,-) is the Euclidean inner product.

The group tangent to S at P [17] is the 2-dimensional vector space GpS = VpS @ T,
where 7 = {(0,0,%¢) : ¢t € R} is the center of H and VpS is the one parameter subgroup of H
generated by VpS. One point we want to make in the present paper is that GpS does not seem
to capture the complexity of the geodesics’ set, while TpS does, in a precise sense.

The following facts are easily established by direct calculation.

Proposition 2.1. Let S be a smooth surface in H, implicitely defined by g(x,y,t) = 0. Let
P € S be non-characteristic. Then,

(4) VpS =span{Yg-X — Xg-Y}, NpS=span{Xg-X +Yg: Y} = span{Vmg}

3. THE METRIC NORMAL TO A PLANE AND A SPHERE
In this section, we compute the metric normal for a plane and a sphere.

Definition 3.1. Let E be a closed subset of H, P € E. The metric normal to E at P is the
set NpS of the points Q € H such that d(Q, E) = d(Q, P).

See also [3], where a pathological occurrence of the metric normal to the unit sphere was used
to study bi-Lipschitz functions in HL.

Lemma 3.1. Let E be a closed subset of H, P € E. Let Q in NpS and v : I — H be a length
minimizing geodesic from @ to P. Then

y(I) C NpS.

Proof. Let A be any point in v, then dg(A) < d(A, P). If there were P’ in S such that d(4, P') <
d(A, P), then by the triangle inequality
d(Q,P') < d(Q,A) +d(P', A) < d(Q,A) +d(P, A) = d(Q, P),
contradicting Q € NpS.
O

Theorem 3.1. Let P be a plane in H and let P € P be non-characteristic. Suppose that P has
a characteristic point C and consider P = 02, where S is one of the half-spaces having Pi as
boundary. Then,

s T
NPP =7 ([_Ed(Pa C)a Ed(Pa C)])
If P is a vertical plane, then NpP is the straight geodesic through P, in the direction NpP.

P.2/d(P,C), N} P

Another way to state this result is the following. The projection onto the ¢ = 0 plane of -y is

the circle ¢ having as diameter the line joining C1, the projection of C, and Pj, the projection
of P.
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Proof of the Proposition 3.1. The case when P is a vertical plane is elementary. Consider the
case when P has a characteristic point.

In the statement of the proposition, everything is invariant under isometries, we can then
left-translate everything so that P is the plane ¢t = 0 and C' = O. Eventually after a mirror
symmetry (z,t) — (z,—t), we can assume that {2 is the unique half-space having bounday P
and containing a half line on the negative t-axis. Let P # O be a point in P. There exists a
point (0,0,7") on the vertical axis, T' > 0, so that a length-minimizing geodesic from (0,0, —7)
to (0,0,T"), say -, intersects P at P. The existence of T' with the stated properties is guaranteed
by a simple continuity argument. By the equation of geodesics we deduce T = %d(O,P)Q.
¥ = vp,s,w is uniquely determined. We need to show that the parameters of v are those in the
theorem’s statement, and that v is a parametrization of the metric normal.

Step 1: v has the right parameter ¢. Note that v points upward, hence, by the geodesic
equation we have ¢ > 0. By symmetry with respect to ¢t = 0, d(P, (0,0,7)) = /¢, one half of
the total length of . Inserting this in the equation for 7, and assuming after a rotation that P
lies on the positive z-axis, we obtain that P = (2/¢,0,0). This shows that d(P,0) = 2/¢.

Step 2. v lies in the metric normal. We show that (0,0, —7) belongs to NpS. Consider
the ball B = B((0,0,-T),d(P,(0,0,—T7))). By maximizing the ¢ coordinate in (3), we see that
Bn{(zt): t> 0} is empty and that BN {(z,t) : ¢ > 0} is the circle ¢ = P N B(0,d(O, P))
on P, having radius d(P,0). If Q € ¢, then d(Q,(0,0,—T)), by rotational symmetry, while
Q@ € P — c implies that d(Q, (0,0,-T)) > d(P,(0,0,-T)).

Since (0,0, —T) belongs to N'pS, by Lemma 3.1 the lower half of 7’s trace belongs to AN'pS.
By symmetry, the upper half does, too.

Step 3. 7 has the right parameter W. Let ¢ = ¢(s) be the projection of v on P. Then,
c(0) = c¢(2r/¢p) =0, c(n/¢) = P and c is a circle having Euclidean diameter OP. As s increases,
c(s) runs the circle clockwise. As to the tangent vectors, ¢(s) is the projection on the plane
P = {t = 0} of the horizontal vector 7(s). After a rotaion, we can suppose that P = (2/¢,0,0)
lies on the positive z-axis. Then, é¢(w/¢) = (0,—1), hence ¥(7w/¢p) = =Y (P). We only have
to show, then, that —Y(P) = N;P. Now, the space tangent to P at P contains just one
horizontal direction (P is non-characteristic), and this direction is that of the z-axis, X. Then,
NpP = span{Y (P)}, hence, since N3P has to point upward, N;P =-Y(P)=-0,+ %at, as
wished.

Step 4. 7 contains the metric normal. Suppose now that @ belongs to both NpP and
NpP. We show that, then, Q lies on the axis z = y = 0 and that P and P’ lie on a Euclidean
circle centered at O in P.

After a group translation, the plane Lg-1P touches a closed Carnot Charathéodory ball B
centered at the origin in Q~'P and Q' P’. This may happen only if Q~'P and Q' P’ both lie
on the circle ¢ of the points in B having highest (or lowest) ¢-coordinate, and ¢ = B N Lg-1P.
Hence, the characteristic point of P lies on the same vertical line as the center of B, and this
property is invariant under left translations. As a consequence, @ lieson z =y = 0 and P, P’
are taken one into the other by a rotation around z =y = 0.

For each point P in P — {O}, consider the geodesic arc

Br =7 (- 5d(P,C), 5d(P,O)))

P.2/d(P,C),NLP

which, by steps 1-3 lies in NpP. As P varies, the union of the sets Sp fills up H — {O}.
Suppose now that @ belongs to NpP — Bp. Clearly, Q # O, and @ belongs to some ﬁpl C

NpP. By the considerations above, then, @) lies on z = y = 0 and P’ is taken to P by a

rotation around z = y = 0. The same rotation brings Spr onto Sp and fixes @), hence Q) € Bp,
a contradiction. O
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By Theorem 3.1 and (2) we have an explicit expression for the metric normal to a plane.

Proposition 3.1. The metric normal to Il = {t = 0} at P = (z,1), z = = + iy, is the support
of the geodesic arc

514 cos %“ +%sin %
. ™
(5) 1p(0) = (u(0), v(0), s(0)) = §(1+cos (7)) —§sin(F) , lof < el
12 (20 | (20
2 \Jol T80 T2

Let w(o) = u(o) + iv(o), then, by (5),
|w| = |2| cos <£>
©) (4 b (22
S = |Z‘ (m + §Sln (m)) .
Notice that for o fixed, (6) gives a parametrizazion of the set of points having distance o from

IT.
The next lemma helps with calculations.

Remark 3.1. If p is the plane t = ax + by + ¢, its characteristic point is
C = (-b/2,a/2,c)

Proof. The tangent space of p at (z,y,t) is spanned by (1,0,a) and (0,1,b). They are both
horizontal iff ¢ = 2y and b = —2x. O

We also need this fact.

Lemma 3.2. Let B = B(A,r) be a ball in H, Q € 0B(A,r) and v be a geodesic from A to
Q. Then, if A" is a point of v, B(A',r — d(A, A")) is contained in B(A,r) and Q belongs to
OB(A",r —d(A,A")).
Moreover, if A' # A, then 0B(A,r) N0B(A",r —d(A, A")) = {Q}.
Proof. Let R be a point in B(A',r — d(A, A")), then
d(R,A) <d(R,A") +d(A",A) =r.
Suppose, now that A # A’ and that Q # Q' € 0B(A',r — d(A, A")). Since Q' ¢ ~, d(A,Q") <

d(A, A"+ d(A", Q") = d(A,Q), and this contradicts Q' € 0B(A,r), proving the last statement
of the lemma. 0

Lemma 3.3. Letr > 0, ¢ € R, | ¢r |< 7w and Q € H. If 7y is a geodesic of parameter ¢ and
endpoints Q and P, P € 0B(Q,r), and B = B(Q,r), then

p(0B) N B = {P}.

Proof. Consider the prolongement of v from @ to @', which we still call -y, where d(P, Q') =
g > r. We can assume that Q' = O is the origin and that the geodesic v points upward from
Q' = O to P. Consider the ball B’ = B(Q', P). Then, P is a point of maximal ¢-coordinate on
B', hence IIpB' is a plane parallel to ¢t = 0 (more precisely, IIp B’ is the plane having equation
t = %), intersecting 0B’ in a Euclideean circle. By Lemma 3.2, B C B’ and P lies on the
boundary of both B and B’. Hence, IIpB = IIpB’ and we obtain the thesis, again by Lemma
3.2. [l

Proposition 3.2. Let B = B(Q,r) be a ball and P a point where its boundary is smooth. Let
vp : I — H be the mazimal lenght minimizing geodesic starting at () and passing through P.
Then

i) Np(0B) = ~p(I).
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ii) An open arc of vp containing P is contained in Np(0B) N Np(Ilp(0B)).

Proof. We prove (i) first. Let @' be the other endpoint of yp. As a consequence of the triangle
inequality, d(Q', P) = dsp(Q'). Hence by Lemma, 3.1 the arc of yp between P and @' is contained
in Np(0B). Clearly the arc of yp between P and @ is contained in Np(dB), too. Hence
vp C Np(0B).

Suppose now that A € NpdB and A ¢ yp. We assume, first, that A ¢ B. Let 1 be a
length minimizing geodesic between A and @ and let P’ be its intersection with dB. Thus
d(A,P)) > dop(A) = d(A,P) and d(Q,P') = r = d(Q,P"). Hence, d(4,Q) < d(Q,P) +
d(P,A) < d(Q,P") + d(P',A) = d(A,Q), and this is possible only if P belongs to a length
minimizing geodesic between A and ), which prolongs the arc of yp between @ and P. i.e., A
belongs to a length minimizing prolongment of the geodesic between @) and P, but the maximal
such prolongment is yp.

If A € B, a similar argument shows that A € yp. Details are left to the reader.

We now show (ii). By lemma 3.3, there exists a point @' on yp such that the closure of
B' = B(Q',d(Q',P)) meets I[Ip(0B’') = IIp(0B) in P only. Thus, by definition of metric
normal, the arc of yp between P and Q' lies in Np(IIp(9B)). On the other hand, by (i), vp is
contained in Np(0B).

A similar argument shows that there exists an arc of yp external to B which lies in Np(9B)N

Np(Ilp(9B)).

Remark 3.2. Lemma 3.3 implies that part of OB is convex in the Euclidean sense. In other
words that both principal curvatures are non-negative.

O

4. THE METRIC NORMAL FOR A SMOOTH SURFACE

In this section, we discuss the metric normal to smooth surfaces. We consider surfaces satisfy-
ing an inner-and-outer ball condition. Many of the results extend, with obvious modifications, to
surfaces just satisfying an inner ball condition. When no ambiguity is possible, we shall identify
a curve v : I — H with its trace y(I).

Let S be a surface in H which is the boundary of an open set 2 and of H — Q. We say that S
satisfies condition (TB) at P if there are open balls B; C Q and By C H — § containing P on
their boundary.

Theorem 4.1. Let S be a surface in H which is the boundary of an open set Q and of H — Q.

(i) If P belongs to S and S has tangent plane IIpS at P, then NpS is an arc (eventually
degenerate) of a geodesic. Moreover, if NpS is nontrivial, then its intersection with
NpIlpS is a nontrivial geodesic arc containing P.

(i1) Suppose, more, that S satisfies (TB) at P. Then S has tangent plane P and NpS is a
nontrivial geodesic arc having endpoints in Q and H — Q, respectively.

An arc on a curve is degenerate if it reduces to a point. We say that S has tangent plane [IpS
at P if dpy.(Q,11pS) = o(|Q — P|) as @ — P in S. Observe that, by (i), if NpS is nontrivial,
then it can be parametrized by any equation parametrizing NpIlpS.

Proof. (i) If NpS reduces to P alone, there is nothing to prove. Otherwise, let P # Q € NpS,
Q@ € Q and let v be any geodesic from P to @ (actually, there is only one such geodesic).
Then, B(Q,d(P,Q)) C Q and P € dB(Q,d(P,Q)). Now, either 0B(Q,d(P,Q)) is smooth at
P or P is one of the "poles” of dB(Q,d(P,Q)). In the first case, v lies in NpdB(Q,d(P,Q)),
hence, by Proposition 3.2, a non trivial arc of vy lies in NpIlp(0B(Q,d(P,Q))) = NpllpS, since
IIp(0B(Q,d(P,Q))) = IIpS. The equation of +y is then completely determined by that of NpIlp.
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If P is, say, the North Pole of B(Q,d(P,Q)), S, being external to B(Q, d(P,Q)), can not have
tangent plane at P, since there is a proper Euclidean cone external to B(Q,d(P,Q)), which
tangent to the boundary of B(Q,d(P,Q)) at P.

So far, we have proved that v; = NpS N Q and vo = NpS N (H — Q) are geodesic arcs
and that any of them, if nontrivial, shares a nontrivial arc with NpllpS. We show that also
NpS =1 Uy is a length minimizing geodesic. Let @Q; the endpoint of y; other than P and let
[; be the (intrinsic) length of ;. Then, the balls B; = B(Q;,!;) do not intersect and P belongs
to the boundary of both. Let n be any horizontal curve between (1 and (2. Since n has to
meet the boundaries of By and Ba, lg(n) > lm(v1) + lm(y2), hence d(Q1, Q2) = lm(71) + lm(72),
i.e., 71 Uy is a (length minimizing) geodesic arc.

(ii) Since B; and Bs have empty intersection, the point P can not be a pole of either B;
or By. Being 0B; and 0By smooth at P in the FKuclidean sense, 0By, By and S have the
same tangent plane IT = TIpS at P. The centers Q1 and Q2 of By and By belong to NpS, by
definition, hence, by Proposition 3.1, the geodesic y; between @; and P is contained in NpS,
j = 1,2. Hence, NpS, which is a geodesic arc by (i), is non degenerate and does not have P as
endpoint. O

Corollary 4.1. Let S be a surface in H which is the boundary of an open set Q and of H — Q

and let C' be a characteristic point of S. If S has tangent plane at C, then S can not satisfy
(TB) at C.

Proof. If (TB) held at C, N¢S would be nontrivial, hence N¢II¢S would nontrivial, but C' is
characteristic for II¢S, hence NIl S is degenerate, by Theorem 3.1. O

Definition 4.1. Let S be a C! surface in the Euclidean sense in H, which is the boundary of
an open set Q) and of H — Q and let P € S. The oriented metric normal to S at P, N;'S,
is the unique parametrization of NpS such that 6g(N g S(o), P) = o.

This means that N3 S(o) € Q for 0 < 0 and N3 S(o) € H—Q for ¢ > 0. In particular, if
N, ;’ S is nontrivial, then

NES(0) = N S.

Let S be a differentiable surface (in the Euclidean sense) in H which is the boundary of an
open set Q and of H — Q and suppose that, locally, S has equation g = 0, where g : H — R
is differentiable in the Euclidean sense and Vg # 0 pointwise on S. Let P be a point in S. P
is characteristic for S if and only if Vgg(P) = 0. Let P be noncharaceristic for S and let C
be the characteristic point of IIpS. (If [IpS has no characteristic point, i.e., if it has equation
az + by + ¢ = 0, then we say that IIpS has characteristic point at infinity). Then,

pS =A{(z,y,1) : 029(P)(z —z(P)) + 9yg(P)(y — y(P)) + ig(P)(t — t(P)) = 0}.

and

_(9y(P)  ga(P) 9P gs(P)
" 0= (JoPy sy to ) + Wiy )
(8) d(P, C) -9 |VH9| _ |VH9‘

[X,Y]g|  2[0|
If @ = {g < 0} in a neighborhood of P , the Pansu unit normal vector pointing outside S has
equation
Vg (P)
NHs = 22,
P [ Vug(P)]
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By Theorems 4.1 and 3.1, the equation of N If S can be written in terms of ¢’s partial derivatives.
NZS = P-n (left translation by P), where n = (u,v, s) and

u(o) = 5 {Vo(P) (1= cos (B35 ) ) + Xo(P)sin (25735
©)  1(0) = (o) = gy 1~ Xg(P) (1~ cos (124B))) 4 vy (P)sin (122l)e) )

_ |Vug(P)?* [ 48:9(P)o . (40:9(P)o
() = 5g(P))? {\v%gwn — sin (meg(Pn)}

Observe that NS points upwards if 8;g(P) > 0 and downwards if 9,9(P) < 0. If 8,9(P) = 0,
then IIpS has characteristic point C' at infinity, d(P,C) = oo and (9) becomes

([ Xg(P) o Yg(P) -
(o) = <|ng<P)| Vg (D] ’°>

These equations show that, for some smooth function ®,

N;S(O-) = (I)(O', P, VHg(P)a [X’Y]g(P))a

(10)

i.e., in order to write N 11' S, the knowledge of Vyg alone is not sufficient. On the other hand,
we do not need all of the horizontal second order derivatives, but just [X,Y]. The continuity of
Vg and [X,Y]g is equivalent to the requirement that g is C! in the Euclidean sense.

We think that this is a sufficient justification for our choice of considering surfaces which
are C! in the Euclidean sense, at least outside their characteristic set. C' regularity should be
henceforth considered as an intrinsic requirement which is intermediate between C']%I and C]%H.

5. SETS OF POSITIVE REACH

Definition 5.1. Let S be a surface in H which is the boundary of an open set Q and of H — Q
and let Sy an open subset of S. We say that S satisfies condition (UTB) (uniform tangent ball)
on Sy if for each point Py € Sy we can find r > 0 and h > 0 such that, for all P in B(Py,r),
condition (TB) holds at P with balls By and Bs of radius h.

Theorem 5.1. Let S be a surface in H, S = 0Q and S = 0(H — Q), where Q is open in H. If
S is CY! in the Euclidean sense and if Char(S) is the set of S’s characteristic points, then S
satisfies (UTB) on S — Char(S).

Proof. Federer showed that a C*! Euclidean surface S satisfies (UTB) on the whole of S with
Euclidean balls instead of Heisenberg balls.

Let P be a non characteristic point on S, let IIpS be the Euclidean plane tangent to S at
P and let v be the metric normal to IIpS at P pointing inside Q2. Let s > 0 be a number
smaller than the length of v and consider the point Cs on v having distance s from P. Let 7,
be the left translation carrying Cs in O and let S’, P’ o', Q' be the images of S, P and v, Q,
respectively. By continuity and by the assumption that S is C?, there is r > 0 such that, for
each s < 6(r), there exists a Euclidean ball Bj,, .(Ds,r) of radius r contained in ' and having
P! on its boundary.

We will show that there exists a Heisenberg ball B(R,n) centered in point R of v/, contained
in BS, .(Ds,r) and having P’ on its boundary. The ball ;' B(R,n) = B(r; 'R,n) is contained
in Q and has P on its boundary. Exchanging Q with H — Q, we see that (TB) holds at P. Since
our procedure is stable as P varies in S — Char(S), (UTB) holds on S — Char(S).

Since P’ is non characteristic, a subarc of 7' starting at P’ is contained in Bj,, .(Ds,r), but
for the point P’. It suffices to prove the following claim: Bj,, .(Ds, ) contains a Heisenberg ball
having P’ on its boundary. We need an estimate for the Euclidean curvatures of the Heisenberg
ball with center at the origin.
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Lemma 5.1. Let B(0,s) be the Heisenberg ball centered in 0 with radius s. For every point
P € 9B(0,s), P = P(z,y,t), (z,y) # (0,0), then there exists a positive number so(P) such that
the principal Fuclidean curvatures in P are respectively, as s — 0:

1
s\/1+11—6¢2

3
B = 2500+ o()
where o(1) = 0 as s — 0, uniformly w.r.t. |p| < C, for any fized C > 0.
Proof. jFrom (5) and a = % we get the following parametrization of the Carnot ball of radius
s:

kY = (1+0(1))

and

T = scosf™e
1y = §sin L
52 2a—sin(2a)
t=5% R aa—
(0%

We can calculate the Euclidean curvatures k¥, k& of the Carnot ball obtaining respectively
a)y/f(@)? + (59'(e))?

and
@) /(@) + (39(a))?
where f(@) = s222 and g(a) = 2%. As a consequence we get
kE GI( )
' @)/F'()? + (sG'(@))?
and
kE' ]‘ GI( ) !/
* T @) Ry @)
where F(a) = %22 and G(a) = 2‘127“(20‘) On the other hand as a — 0 for fixed ¢,
F'(a):—g-i-%a + ( )
! _ g _ Z 2 3
G(oz)—3 £ + o(a?),
and
(@) = -3 + 150 + of0?)
3 10
G"(a) = —%a + o(a?).
Hence 1
kY = ———==(1+0(1))
sy/1+ 42
and

kY = 4%3(1 + o(1)).



12 NICOLA ARCOZZI, FAUSTO FERRARI

We now complete the proof of Theorem 5.1. If s is small enough, by Lemma, 5.1 there exists
an open neighborhood V of P’ such that B(0,s) NV is contained in Bpy.(D;,r). Consider now
all Heisenberg balls B(R,n) with R € 4. By Lemma 3.2, B(R,n) C B(0,s). Asn — 0, B(R,n)
shrinks to P’, hence B(R,n) is contained in B(0,s) NV C Bpgy(Ds,r) for n small enough.
Clearly, B(R,n) contains P’ on its boundary. This proves the claim, hence Theorem 5.1.

O

Following Federer, [8] we introduce the notion of reach.

Definition 5.2. Let 2 be an open subset of H with boundary S. We denote by Unp(S) the set
of the points P in H such that there exists a unique point Q) in S which is nearest to P,

d(P,S) = d(P, Q).

We say that Q = £(P) is the projection of P onto S.
Let U be an open subset of S. S has locally positive reach on U if for all Q in U an open
neighborhood of @ in H is contained in Unp(S).

The notion of positive reach is related to (UTB) via an exponential-like map.

Definition 5.3. Let S be a surface in H which is the boundary of an open set Q and of H — Q
and suppose that S is C' in the FEuclidean sense. Let

C={(P,s): P€S, secdomNgS)} CS xR
where dom(NpS) is the domain of NpS. The exponential map associated with S is the map
expg : C = H, expg(P,s) = N S(s).

We call this map ezponential because it associates to a geodesic 7y leaving S from P and
minimizing the distance from S, which we might identify with P itself, and to a number ¢, the
point y(t), the same way in which the exponential map in Riemannian geometry associates to a
geodesic v leaving a point ) and a number ¢, the point ().

Theorem 5.2. Let S be a surface in H which is the boundary of an open set Q and of H — Q
and suppose that S is C' in the Euclidean sense.

Then, expg is a homeomorphism of int(C) onto an open subset of int(Unp(S)) and S N
int(Unp(S)) = S Nexpg(intC).

Proof. Let U C S x R be the interior of C.

The map expg is 1 — 1 on U. Suppose expg(P,s) = expg(P’,s') = Q. By definition of metric
normal, s = dg(Q) = s’. Suppose s > 0, the case s < 0 being similar. Since U is open, NpS can
be extended to an interval [0, s + €] for some positive €. Let Q' = NpS(s +¢). Thus, if P # P,

d(@',8) <d(Q',P') <d(Q,Q) +d(Q,P') =d(Q',P) =d(Q'. 5),
contradiction . The strict inequality depends on the fact that ' can not lie on the prolongement
of a geodesic between P’ and (). As a consequence, we have that expg(U) C Unp(S).

The map expg is continuous on C, since S is C' in the Euclidean sense and, by (9), 7
continuously depends on s, P, Vig(P) and [X,Y]g(P).

The map expg maps C onto H, hence, a fortiori, maps C onto H. Let ) € H, let P be a point
on S such that d(Q, P) = d(Q, S) and let 6s(Q) = s. Then (P, s) € C and expg(P, s) = Q.

Consider now

G :Unp(S) = S xR, G(Q) = (£s(Q),s(Q))-
By 6.3, G is a continuous function. Since expg |y is a homeomorphism, G o expg |y = Id.
Hence, U and expg(U) are homeomorphic, U is locally identifiable with a subset of R®, hence, by
Brouwer’s theorem, see [20], on the invariance of domain, expg(U) C Unp(S) is an open subset

of H, contained in Unp(S). This shows that expg is a homeomorphism of ¢/ onto an open subset
of int(Unp(S)).
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We still have to show that S N int(Unp(S)) = expg(U). Let Uy = {P € S: (P,0) € U}.
U, is open in S. Clearly, Uy C S Nint(Unp(S)). We show that S Nint(Unp(S)) C U;. Let
Py € SNint(Unp(S)) and let V be an open neighborhood of Py in int(Unp(S)). Then, G(V) C C,
but G is the inverse function of expg, hence G(V) = expg'(V), which is open in C. Hence,
G(V) C U and, since G(P) = (P,0) when P € S, this shows that the open subset VN S of S is
contained in U;.

(|

Theorem 5.3. Let S be a surface in H, S = 0Q and S = (H — Q), where Q is open in H, and
let S1 be an open subset of S. If S is C in the Euclidean sense, then S satisfies (UTB) on Sy
if and only if it satisfies (PR) on S;.

Proof. One easily verifies that S satisfies (PR) on S; if and only if S; C int(Unp(S)). On the
other hand, S satisfies (UTB) on S; if and only if S; x {0} C U = intC. The theorem now
follows from Theorem 5.2. O

(From Theorems 5.1 and 5.3 we obtain the following.

Corollary 5.1. Let S be a surface in H, S = 0Q and S = O(H — Q), where Q is open in H and
suppose that S is C1! in the Euclidean sense. Then, ) satisfies (PR) on S — Char(S).

6. REGULARITY OF THE DISTANCE FUNCTION

The main result of this section is the following theorem.

Theorem 6.1. Let S be a surface in H which is the boundary of an open set Q and of H — Q.
(i) If S is Ct, and S satisfies (UTB) on S — Char(S), then Vmds is a continuous function
in an open neighborhood of S — Char(S) in H. In particular, the conclusion holds if S is C*!
in the Fuclidean sense.
(ii) If S is C* in the Euclidean sense, k > 2, then Vyds and ds are of class C*~1, in the
Euclidean sense, in an open neighborhood of S — Char(S) in H.

Theorem 1.1 follows now from Theorems 5.1 and 6.1.
The proof of Theorem 6.1 will come after we prove a number of lemmata.

Lemma 6.1. Let f be a Lipschitz function in the open set W, g a continuous function in W
and V any linear combination of X and Y. If Vf = g where Vf = g exists. ThenVf =g in W
hence f is CY(W).

Proof. Following Federer, [8] Lemma 4.7, without loss of generality we can assume V = X. Let
P be any point in W, and r > 0 so that B(P,2r) C W. By Rademacher’s theorem in [18] and
Fubini’s theorem, for a.e. @ € B(P,r), whenever | 7 |<r

f(@-(7,0,0)) / Xf(Q-(s,0,0))ds Z/OTg(Q-(s,O,O))ds.

By the continuity of f and g it follows that

FP-(r0.0) — (P) = | "g(P - (5,0,0))ds.
Differentiating with respect to 7 we get X f(P) = g(P). O
Lemma 6.2. Let P in Unp(S)\ S, such that g is differentiable at P. Then
(11) Visbs(P) = Nifp (05(P)).
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Proof. Let 4p be the geodesic connecting P with £(P), parametrized to have 4(0) = P, and
(1) = &(P), where d(P,&(P)) = dg(P) is the speed of v. The geodesic « is a reparametrization
of an arc of Ngzp)S,

Mions) =7 (1= 557

ds(¥(t)) = d(¥(1),£(P)) = (1 = t)ds(P).

By lemma 3.1,

Hence
~ds(P) = L lizods(3(0)) = (30), Vads(P)).

On the other hand, by Cauchy-Schwarz and the Eikonal equation (rather, the easy inequality
[Vrds(P)| <1)

(7(0), Vids (P)) > ~[3(0)] - [Vuds (P)| > —ds(P).
As a consequence inequalities are actual equalities and this implies
ds(P)Vuds = —¥(0),
which is equivalent to (11). O
Lemma 6.3. Let E be a closed subset of H. The map P +— &(P) is continuous on Unp(E).
The proof of Federer, ([8] Theorem 4.8 (4)) extends to the Heisenberg case without changes.

Lemma 6.4. Let S be an Euclidean C' surface. The map P NSEP)(ég(P)) is a continuous
section of the horizontal fiber restricted to Unp(S).

Proof. The key observation is that N;( P)(ds(P)) is obtained by N§+( P)(O) = N7 S by rotation.
Let @ be the angle

g 2s(P)
d(¢(pP),C)’
where C'is the characteristic point of II¢p)S (6 = 0 when d(£(P),C) = 0). Then,
(12) Neipy(65(P)) = (R)s,p N ) (0)-

Here, (Rg). is rotation by 6 in 7 and (Ry). pV is the evaluation at P of the horizontal vector
field (Ry).V. In complex notation

(Rp)«(aX +bY) = € (aX + ibY).

In the right hand side of (12), we denote by N;EP)(O) both the horizontal vector at £(P) and its

extension to a left invariant (horizontal) vector field. Equation (12) is an immediate consequence
of the geodesic equation (2).

In view of Lemma 6.3 and the assumption that S is C! in the Euclidean sense, hence that
NEEP)(O) and d(¢(P),C) are continuous functions of £(P) € S, (12) implies that Ngzp)(ég(P))
continuously depends on P. O

Theorem 6.2. Let S be a surface in H, S = 0Q and S = (H — Q), where Q is open in H, and
suppose that S is C1 in the Euclidean sense. Then, Vids is a continuous function the int(Unp).

Proof. 1t follows from Lemmata 6.1, 6.2 and 6.4. O

Proof of Theorem 6.1-(i). From Theorem 6.2 and Theorem 5.3 immediately follows (i). More-
over the last part of the conclusion follows from Corollary 5.1. O
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Before giving the proof of Theorem 6.1-(ii) we need some preparation.

Let S be a surface in H, which is the boundary of an open set 2 and of H — €, and suppose
that S is C? in the Euclidean sense. Suppose that in neighborhood & C S of a point Py the
surface is free of characteristic points and it can be parametrized as

U={(u,v, flu,v)) : (u,v) € A},
where A C R? is open and f is C%. Let F: AxR — H,

(13) F(u,v,s) = expg((u,v, f(u,v)), s)-

The function F' is an expression of expg in local coordinates, which easier to work with. It has
an intrinsic geometric meaning, since the projection proj : H — R?, proj(z,t) = z, pushes the
Carnot-Carathéodory metric of H onto the Euclidean metric of R2. Without loss of generality,
assume that, if P € U, then N'pS points upward. In the sequel, we write X f = —0, f + 2v and
Yf = —0,f — 2u. In other words, if g(u,v,t) =t — f(u,v), (u,v,t) € H, then Xf = Xg and
Yf=Yg.

Lemma 6.5. Let S be a C? surface in H, S = 09 and S = O(H — Q), where Q is open in H.
Suppose that, as above, f: A = R, A C R?, gives a C? parametrization of a characteristic point
free open portion U of S. Let F be the function defined in (13) and let P = F(u,v,0) € S.
Then, the matriz representing JF(u,v,0) with respect to the basis {0y, 0y, 05} of R2 x R, and
{X,Y,0,} of H=TR? is

Xf

1 0 a1

(14) 0 1 R
“Xf -Yf 0

Corollary 6.1. With the assumptions of Lemma 6.5, suppose that C' is the charactyeristic point
of lIpS. Then,

(15) det JF (u,v,0) = 2d(P,C) # 0.

Proof of Lemma 6.5. The map F' can be written explicitely, since we know the expression of the
normal metric and

(16) F(u,v,r) = N(u,v,f(u,v))S(T)'
We are going to use the coordinates

(x,y,t) = F(u,v,‘r) = (u,v, f(u,'u)) ° (xlaylatl)

where (z',y,t') = yu,(7) and 7y, is the metric normal’s left translate by P!, whose expression
is given in (9):

z = %(stinomLYf(l —cosa))
y = Z(Y]:sina—Xf(l —cosa))
= %(a—sina),

where o = |Vf—;f|' Since

z=u+1
y=v+y
t= f(u,v) +t +2(vz' — uy')
we have
Ty =1+ 2,
Yu = y&
ty = fulu,v) — 2y +t), + 2(vz!, — uyl,),
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Ty = T
Yo =1+ yql;
ty = folu,v) + 2y +t) + 2(vzl — uyl)

and

Tr =1
Yr =Yr
t; = +tL + 2(vel — uyl).

We compute the derivatives of each coordinate,
4!, = (Xflusina+ (Y f)u(1l —cosa) + ay X fcosa + a,Y fsina
(Xflusina+ (Y f)u(1l — cosa)

4T 4T

X X
- cosan‘ o X FOX )+ 2Y SV ) _SMTf' G X XD+ 2V (V).
and so (z7,) ;=0 = 0. Analogously
4z, = (X f)psina+ (Y f)y(1 — cosa)
_ (cosozXf‘ V4f ; +sman‘ V4f |3)(Xf(Xf)u FY (Y ),
and (g0 = 0
Az, = Xfcosa| V —y +stma| V;If\

and (a"{r)\T:O = %;

1y, = (Y usina — (Xf)u(l - cosa)

_ &H%fp(cosan—sinaXf)(Xf(Xf)u+Yf(Yf)u),

dyh, = (Yf)ysina - (Xf)o(l - cosa)

_ ﬁﬂ%fp(cosalff —sinaX f) (XF(Xf)o+ Y FVF)0),
and (yy)r=0 = 0;
1y, = &i{%fp(cosan —sinaX /),
and (y}) r=0 = 9y
8t, = 2(Xf(Xf)u+Yf(Yf)u)(a—sina)— | v4 7 (XF(XF)u+YF(YF)u)(l —cosa),
and (t,,)r=0 = 0;
S, = 2(XSCEN,+Y (V1)) (o sine) + o (XFCED,+ Y (V1)) (1= cona).

and (t;);— = 0, and, eventually
8. = 4|Vmf]|(1l--cosa),
and
t.=0.

Hence
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Ty = 1+i(Xf)usina+i(Yf)u(l—cosa)
Xf Ar 1. Xf 4r
ZCOSQTW(QXf(Xf)u +2Y (Y f)u) — ZSIHGTW(QXf(Xf)u +2Y f(Y f)u)

and (7y)/r=0 = 1;

Ty = Ty,
and (z,) 1= = 0

Ty =T}
and (z7) ;=0 = |§Hff|§

Yu = Yo

and (yu)|T:0 =0;

1+ i(Yf)U sina — i(Xf)v(l — cos )
1 4r
1T%ar P

Yo
cosaY f —sinaX f)(Xf(Xf)o + Y (Y F)o),
and (yv)|7:0 =1

Yr = ylra

Y
and (y7)|720ﬁ

1 . T
tu = fu + Z(Xf(Xf)u + Yf(Yf)u)(a - Slna) - W(Xf(Xf)u + Yf(Yf)u)(l - COSO‘)
+ 2vzxl, —2uyl, — 2y,
with (ty)jr=0 = fu-
1
t, = 3 | Vaf | (1 —cosa) + 2(vz. — uyl),
o, X[ Yf
and (t7)|7-:0 = ZUW — ZUW
Moreover
1 . 1 4r
tv = fv + Z(Xf(Xf)v +Yf(Yf)v)(a - Slna) - §| VIEIIf | (Xf(Xf)v +Yf(Yf)v)(1 - COSO‘)
+ 2vz, — 2uy, + 27
and (ty)jr=o = fu. As a consequence
Xf
sy ¢ Y
(17) J<u1,7> =10 1 =7
7=0 20X f=2uY f
Changing the basis in the target space from 0y, 9y, 0; to X,Y, 0;, we obtain (14). O

Corollary 6.1 follows immediately,

(18) detJF (u,v,0) =| Vi f | .
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Proof of Theorem 6.1-(%). Suppose that S = {(z,y,t) : g(z,y,t) =0}, with g € C*, k > 2. Let
Py be a noncharacteristic point on S such that 9,g(Py) # 0. Then, in a neighborhood of Py,
we can assume that g(z,y,t) =t — f(z,y), with f as in Lemma 6.5, f € C*. Observe that F
is of class C*~! in the Euclidean sense, since in its definition all the Euclidean derivatives of f
appear. Now, if Q@ = F(u,v,7), then 7 = 65(Q). By Lemma 6.5, Corollary 6.1 and the Inverse
Function Theorem in R?, §g is a C*~! function in a neighborhood of Py. Since dg satisfies (11),
8g is C*~1, by Lemma 6.4 we have that Vgdg is C*¥~! as well.

We now consider the set Sy of those points (zg,yo,t0) in S where 0;g9(xo,y0,%0) = 0. We
consider two cases. Suppose that (zg,yo,%0) has a neighborhood U in S such that the metric
normal at any point of U/ is a Euclidean straight line, which is normal in the Euclidean sense to
S. Hence, in an open neighborhood of (zg, yo, %), ds is the Euclidean distance, and the required
smoothness of jg and Vp follows.

The second case is that where (xg, y9, to) is the limit of points (z,y,t) of S where d;g(z,y,t) #
0. Since Vg(zo,y0,t0) # 0, we can assume that, for (z,y,t) in a neighborhhod U of (zy, yo, to),
Oyg(z,y,t) # 0. By the Implicit Function Theorem, restricting ¢/ if necessary, we can assume
that g(z,y,t) = 0 if and only if y = h(xz,t), where h is defined in an open neighborhood of
(wo,t9) in R?. We consider a function H : R?> x R — H, defined in an open neighborhood of
(-TOa to, 0)7
(19) H('Ta 2 T) = V(x,h(m,t),t)S(T)

Observe that H is a smooth map, in the Euclidean sense, at points where 0;g = 0 as well, by
(9) and (10). Now,
|det JH| = |hy - JF|

and the latter, when 7 = 0, is equal to

N
2lhe|d(P,C) = |k
| t‘ ( ) | t| |3tg|
Since
0= gyht + gt
we have that Vgl
Hg
= |Vmh|
|0yg]
hence we have an expression analogous to (18),
(20) detJH (z,h(z,t),t) =| Vmh(z,t) | .

where Xh = X (h(z,t) —y) = hy + 2hhy and Yh = Y (h(z,t) —y) = —1 — 2zhs. On vertical

points P, in particular,

|det JH(P)| = v/h2+1> 0.
Now, the proof that ds and Vgds have the required smoothness proceeds as in the previous
cases. O

As a byproduct, we have the proof of a special case of a theorem of Monti and Serra-Cassano
[15].

Corollary 6.2. Let S = 0Q be the boundary of an open C? subset of H and let dg be the distance
function for S. Then, dg satisfies the eikonal equation

(21) |Vmds| =1,
on the surface S. Moreover if Q = {g < 0}, where g is a smooth function, then
\Y
Vidg = Hg

Vgl
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i From Lemma 6.5 and the analiticity of the geodesics’ equations (2) it follows that dg is
analytic in a neighborhood of S — Char(S) if S itself is analytic.

7. CUTLOCUS

Next, we give an elementary description of the set of the metric normals’ endpoints.

Let S = 99 be the boundary of an open, connected set in H and assume that S is at least
C?. For P € 8, let Q be endpoint in Q other than P of the metric normal NpS (when NpS
reduces to the point P, we set Q = P). The cut-locus in Q of S (the skeleton of Q) is the set
K of such points ) as P varies over S.

Below, NpS refers to the portion of the metric normal at P which lies inside Q.

Here are some properties of Kg.

Lemma 7.1. Let P € S be non characteristic. If NpS is not a straight line, then it is a proper
subarc of a mazimal length minimizing geodesic starting at P.

Proof. Without loss of generality, assume that P = O. Let NpS = 7jg), where  is a maximal
length-minimizing geodesic starting at P and having length ¢ > b. If b = a, then y(b) = @
belongs to the t-axis, hence Ryy satisfies ig(Rpy) = lm(y) = d(P,Q) = d(Q,S), i.e., for all
0, Ry lies on NpS. This implies that Ry¥(0) is perpendicular to TpS, for all 8, which is
absurd. O

Lemma 7.2. Let C be a characteristic point of S. Then, N¢S = {C}.

Proof. Suppose that @ € NgS = {C} is different from C. Then, S does not intersect B(Q, d(Q, C))
and meets its closure in C'. Hence, S is not smooth at C. O

Proposition 7.1. The cut locus Kg of S has the following properties.
(i) Ks has empty interior.
(ii) Kgs contains the characteristic points of S and each characteristic point of S is an ac-
cumulation point of Kg — S.

Proof. The assertion in (i) is a consequence of the following.

Lemma 7.3. Let Q € Kg and let y be a geodesic from Q to S such that d(Q,S) = lm(y). Then
v —{Q} is free of points of Kg.
Proof. of the lemma. Let P be the endpoint of v in S. Let R be point of Kg on 7y, other than Q.
By definition of Kg, there exists a maximal geodesic 1 through R, having length a > d(R, S),
such that n(0) = P’ € S, R = n(b), where b = d(R,S) > a, and for b < ¢ < a, d(n(c),S) < ¢
(otherwise R would not be the endpoint of Np/S). Clearly, d(R, P') = d(R, P).

By the triangle inequality, then

d(Q,8) < d(Q, P') < d(Q,R) + d(R, P') = d(Q, R) + d(R, P) = d(Q, P) = d(Q, 5)

but this is possible only if R lies on the geodesic between @ and P’, and so @ € 7, contradicting
the fact that n’s length does not realize the distance of its points from S past R. This proves
the lemma. 0

The first assertion in (ii) was proved in Lemma 7.2. Let now C be a characteristic point
of S and let P, be a sequence of noncharacteristic points of S tending to C. (Such sequence
exists because the horizontal distribution is not closed under Lie brackets and by Frobenius
Theorem). The formula for the geodesic normal in Theorem 4.1 implies that the length of
Np, S is no more that d(P,,C,), where C), is the characteristic point of T, S. By continuity,
d(P,,C,) — d(C,C) = 0 as n — oco. Let R, € Kg be the endpoint other than P, of Np,S.
Then,

d(R,,C) <d(Ry, P,) +d(P,,C) <d(R,,Cy) +d(P,,C) — 0

and this proves (ii). O
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Proposition 7.2. Let R € H — Kg. Then there is a unique geodesic vy from R to S such that
lgy = d(R, S). i.e., there exists a unique P € S such that R € NpS.

Proof. Suppose there are two such geodesics, v and +/, having the other endpoint, resp. P and
P!, on S. We can not have P = P’', otherwise, with a reasoning similar to that of Lemma 7.1,
one shows that P is characteristic, hence v reduces to a point and R € S.

Suppose first that 7 is not a straight line. Let Q € Kg be the endpoint of Np C v other
than P. If 7' dos not lie in the (possibly non length-minimizing) prolongment of -y, then, as in
the proof of Proposition 7.1, we have that d(P',Q) < d(P,Q) = d(Q, S), a contradiction. The
other possibility is that 4/ and v have in common the arc between @ and R. This leads to a
contradiction, too, since it would imply

d(Q,P') = d(P',R) — d(Q, R) < d(P,R) + d(Q, R) = d(P, Q)

, hence @ could not belong to Np.

If vy = [P,R] and o' = [P', R] are straight lines, either they lie on the prolongment of each
other (but this is not possible, otherwise R € Kg), or they have different directions. In the
second case, there exists a point ) such that R € [@Q, P] and d(Q, S) = lu([P,Q]) (otherwise R
would be the endpoint of Np, then R € Kg) and, as above, we would have d(Q, P') < d(P,Q),
contradicting the fact that Q € Np. O

A detailed study of the cut-locus Kg and of its properties will be the object of further research.
For the case when S is analytic, [1] contains a detailed study of the cut locus, which is defined,
however, in different way.
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