Prova scritta complessiva di Analisi Matematica II

Ingegneria Edile-Architettura, 2009/10

10 settembre 2010

Per essere ammessi prova orale occorre ottenere almeno 15 pt.

Segnare qui un giorno in cui non si vuole sostenere la prova orale:.....

(1) Sia $\Omega \subset \mathbb{R}^3$,

$$\Omega = \{(x, y, z): x^2 + y^2 \le 1, \ 0 \le x + z \le 1\}$$

e sia $F = (P, Q, R) \in C^1(\Omega, \mathbb{R}^3)$.

- (0) [2 pt.] Disegnare Ω .
- (i) [4 pt.] Scrivere una parametrizzazione di $\partial\Omega$ e stabilire se essa sia compatibile o meno con l'orientamento dato dalla normale esterna.
- (ii) [4 pt.] Scrivere la formula che dà il flusso di F attraverso $\partial\Omega$ (orientato secondo la normale esterna) in termini della parametrizzazione trovata in (i).
- (iii) [4 pt] Calcolare il flusso di F_0 attraverso $\partial\Omega$ quando

$$F_0(x, y, z) = (xz, yz, z^2).$$

[Suggerimento: cercate delle coordinate comode.]

.

(2) [4 pt.] Trovare l'integrale generale dell'equazione differenziale

$$y''(x) - 4y'(x) = e^{2x} + e^{-2x} + 3x$$

(3) Sia
$$f: \mathbb{R}^2 \to \mathbb{R}$$
,
$$f(x,y) = (x^2 - y^2)e^{-x^2 - y^2}$$

- 3 pt. Trovare i punti critici di f.
- 3 pt. Classificare i punti critici di f.
- 1 pt. Trovare lo sviluppo di Taylor al II ordine di f in (2,0).
- 1 pt. Determinare l'equazione del piano tangente Π al grafico di f nel punto di coordinate (2,0) e l'equazione di due rette che giacciono su Π , passanti per il punto di Π avente coordinate (2,0).
- 1 pt. Determinare l'equazione dello *spazio tangente* V al grafico di f nel punto di coordinate (2,0) e una base per esso.

(4) [3 pt.] Sia
$$f \in C^1(\mathbb{R}, \mathbb{R})$$
 e poniamo

$$h: \mathbb{R}^2 \to \mathbb{R}^3$$
, $h(x,y) = (f(xy), f(x)f(y), xf(y) - yf(x))$

Calcolare $Jh(x_0, y_0)$.