The Dirichlet problem.

N.A.

Let Ω be open in \mathbb{C} and $f : \Omega \to \mathbb{C}$. f is holomorphic in Ω if any (hence, all) of the following properties hold:

(i) f has a complex derivative at any point $z \in \Omega$,

$$\exists f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

(ii) u = Re(f) and v = Im(f) satisfy *Cauchy-Riemann's* equations:

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

If we think of $f: \mathbb{R}^2 \to \mathbb{R}^2$ as a function between Euclidean planes, the CR equations say that the Jacobian of f has the particular form

$$Jf(x,y) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
, with $a = u_x$, $b = v_x$.

Note that the set of such matrices is isomorphic, as ring, to \mathbb{C} .

As a consequence of CR's equations we have that $f'(z) = \partial_x f(z)$.

(iii) f satisfies Morera's Theorem. For any regular loop γ contained in Ω we have that

$$\int_{\gamma} f(z) dz = 0.$$

(iv) <u>f</u> satisfies Cauchy's formula. If D is a smoothly bounded region in Ω , $\overline{D} \subset \Omega$ and $z \in D$, then

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{z - \zeta} d\zeta.$$

Here, ∂D is anti-clockwise oriented.

(v) If the closed disce $\overline{D(z_0, r)}$ is contained in Ω , then there is a sequence $\{a_n\}$ of complex numbers, depending on z_0 only, such that

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

The series converges totally uniformly in $\overline{D(z_0, r)}$.

We will sometimes use the following facts.

- (i) Inverse Mapping Theorem. If $f : \Omega \to \mathbb{C}$ is holomorphic and $f'(z_0) \neq 0$, then there are open neighborhoods U of z_0 in Ω and V of $f(z_0)$ in $f(\Omega)$ s.t. $f : U \to V$ is a bijection with holomorphic inverse.
- (ii) Open Mapping Theorem. If $f : \Omega \to \mathbb{C}$ is holomorphic and Ω is connected, then either f is constant or f(U) is open for all U open in Ω .

Let $\Omega \subseteq \mathbb{C}$ be open and let $u \in C^2(\Omega)$. *u* is *harmonic* if $\Delta u = 0$ in Ω .

Proposition 1 Let Ω be open in \mathbb{C} .

- (i) If f = u + iv is holomorphic in Ω and Ω is connected, then u, v are harmonic in Ω . If $f_1 = u + iv_1$ is another function holomorphic in Ω having real part u, then $v v_1$ is constant.
- (ii) If u is harmonic in Ω and Ω is connected and simply connected, then there exists f holomorphic in Ω s.t. Re(f) = u.
- (iii) If u is harmonic in Ω , then $u \in C^{\infty}$.
- (iv) If $f : \Omega_1 \to \Omega_2$ is holomorphic, where Ω_1 and Ω_2 are open, and u is harmonic in Ω_2 , then $u \circ f$ is harmonic in Ω_1 .¹

Proof. (i) The harmonicity of u and v follows from CR's equations. If $f_1 = u+iv_1$ is another holomorphic function with the same real part, $f-f_1 = i(v-v_1)$ can not be open, hence it is constant.

(ii) By Laplace' equation, the form $\omega = -u_y dx + u_x dy$ is closed, then exact, hence there is v such that $v_x = -u_y$ and $v_y = u_x$. f = u + iv satisfies CR's equations.

(iii) The composition of holomorphic functions is holomorphic. \blacksquare

From Cauchy's formula we deduce the Mean Value Property of harmonic functions.

Theorem 2 Let $\overline{D(z_0,r)} \subset \Omega$ and let u be harmonic in Ω . Then,

$$u(z_0) = \int_{-\pi}^{\pi} u(z_0 + re^{i\theta}) \frac{d\theta}{2\pi}.$$
 (1)

Proof. Let f = u + iv be holomorphic in an open, simply connected set containing the disc's closure. Cauchy's formula gives

$$f(z_0) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z_0} d\zeta$$

$$= \frac{1}{2\pi i} \int_{-\pi}^{\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} ire^{i\theta} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(z_0 + re^{i\theta}) d\theta.$$

MVP holds for f, hence for its real and imaginary parts.

¹This property is peculiarly two-dimensional.

Exercise 3 Let $z \in \overline{D(0,1)} = \overline{\mathbb{D}} \subset \Omega$ and let u be harmonic in Ω . Show that

$$u(z) = \int_{-\pi}^{\pi} u(e^{i\theta}) \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \frac{d\theta}{2\pi}.$$
 (2)

Suggestion: use the fact that the maps $\phi(z) = \frac{z-a}{1-\overline{a}z}$, $a \in \mathbb{D}$, are biholomorphims of \mathbb{D} onto itself.

Theorem 4 (Maximum principle.) Let u be harmonic in a connected set Ω in \mathbb{C} .

- (i) If u has a local maximum in Ω , then u is constant in Ω .
- (ii) If u extends continuously to $\overline{\Omega}^2$ and

$$\lim_{z \to \zeta} u(z) \le 0$$

for all $\zeta \in \partial \Omega$, then $u \leq 0$ in ω .

Proof. (i) Suppose that z_0 is point of local maximum for u. By MVP (Exercise) $u \equiv u(z_0)$ on a disc centered ao z_0 . For any $z \in \Omega$, consider an open, simply connected set D in Ω containing both z and z_0 and let f = u + iv be holomorphic in D. Then, v is constant in a disc centered at z_0 , so f is constant in that disc, hence f is constant in D: $f(z) = f(z_0)$.

(ii) u attains a global maximum in $\overline{\Omega}$ by Weierstrass' Theorem. If the maximum is in Ω , then u is constant in Ω , otheriwise the maximum is attained on $\partial\Omega$. In both cases, $u \leq 0$ in Ω .

An important harmonic function is $h : \mathbb{D} \to \mathbb{R}$,

$$h(z) = \frac{1 - |z|^2}{|1 - z|^2} = Re\left(\frac{1 + z}{1 - z}\right).$$

Observe that $h \ge 0$ in \mathbb{D} and that $h(\zeta) = 0$ for $\zeta \in \partial \mathbb{D} - \{1\}$. The holomorphic function $f(z) = \frac{1+z}{1-z}$ is a holomorphic, 1-1 map of \mathbb{D} onto the right half plane $\{w: Re(w) > 0\}$. In fact,

$$f(e^{i\theta}) = i\cot(\theta/2).$$

For $f \in C(\mathbb{S})$, define $P[f] : \mathbb{D} \to \mathbb{R}$,

$$P[f](z) = \int_{-\pi}^{\pi} f(e^{i\theta}) P_z(e^{i\theta}) \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} f(e^{i\theta}) \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \frac{d\theta}{2\pi}.$$
 (3)

We can view P[f] as a convolution. Define $P_r : \mathbb{S} \to \mathbb{R}$,

$$P_r(e^{i\alpha}) = \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2}.$$

Then, $P[f] = P_r * f$.

We denote by $h^{\infty}(\mathbb{D})$ the space of the bounded harmonic functions on \mathbb{D} .

²In these notes, the closure of a set is considered in the extended plane $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$.

Theorem 5 After setting $P[f]|_{\mathbb{S}} = f$, we have that $f \mapsto P[f]$ is an isometry of $C(\mathbb{S})$ onto $h^{\infty}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$.

In particular, $P[f](z) \to f(e^{i\alpha})$ as $z \to e^{i\alpha}$ in \mathbb{D} . **Proof. Step 1.** P[f] is harmonic in \mathbb{D} . Since $z \mapsto P_z(e^{i\theta})$ is harmonic in \mathbb{D}^3 , the result follows by differentiating under the integral. **Step 2.** $P[f](z) \to f(e^{i\alpha})$ as $z \to e^{i\alpha}$ in \mathbb{D} . Hence, P[f] is continuous in $\overline{\mathbb{D}}$.

Lemma 6 (i) $\int_{-\pi}^{\pi} P_z(e^{i\theta}) \frac{d\theta}{2\pi} = 1.$

- (ii) For some C > 0, $\int_{-\pi}^{\pi} |P_z(e^{i\theta})| \frac{d\theta}{2\pi} \le C$ for all $z \in \mathbb{D}$.
- (iii) For all $\delta > 0$ s.t. $\int_{|\theta \alpha| \ge \delta} |P_{re^{i\alpha}}(e^{i\theta})| \frac{d\theta}{2\pi} \to 0$ as $r \to 1$.

Proof of the lemma. (i) implies (ii) because $P_z \ge 0$; (i) follows from MVP. About (iii), if $z = re^{i\alpha}$, on the interval of integration:

$$P_z(e^{i\theta}) \approx \frac{1-r}{(1-r)^2 + (\theta - \alpha)^2} \le \frac{1-r}{(1-r)^2 + \delta^2} \to 0,$$

uniformly as $r \to 1$.

It suffices to prove the limit when $\alpha = 0$. Let $z = re^{i\beta}$. Fix $\epsilon > 0$ and choose $\delta > 0$ s.t. $|f(e^{i\theta}) - f(e^{i\psi})| \le \epsilon$ when $|\theta - \psi| \le \delta$. For $|\beta| \le \delta$,

$$\begin{aligned} |P[f](z) - f(1)| &\leq |P[f](z) - f(e^{i\beta})| + |f(e^{i\beta}) - f(1)| \\ &= \left| \int_{-\pi}^{\pi} P_z(e^{i\theta}) [f(e^{i\theta}) - f(e^{i\beta})] \frac{d\theta}{2\pi} \right| + \epsilon \\ &\leq \int_{|\theta - \beta| \ge \delta} P_z(e^{i\theta}) \left(|f(e^{i\theta})| + |f(e^{i\beta})| \right) \frac{d\theta}{2\pi} \\ &+ \int_{|\theta - \beta| \le \delta} P_z(e^{i\theta}) \left| f(e^{i\theta}) - f(e^{i\beta}) \right| \frac{d\theta}{2\pi} + \epsilon. \end{aligned}$$

Choose now r_0 s.t.

$$\int_{|\theta-\beta|\geq\delta} |P_{re^{i\beta}}(e^{i\theta})| \frac{d\theta}{2\pi} \leq \epsilon$$

when $r \ge r_0$. Then, the last expression in the chain of inequalities is

$$\leq \epsilon(2\|f\|_{\infty} + C).$$

Let now $\epsilon \to 0$.

Step 3. The fact that $||P[f]||_{\infty} = ||f||_{\infty}$ easily follows from the maximum principle.

Step 4. $f \mapsto P[f]$ is onto. Let $h \in h^{\infty}(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ and let φ be the boundary function of h. Then, $h-P[\varphi]$ is harmonic in \mathbb{D} , continuous in $\overline{\mathbb{D}}$ and has vanishing boundary values. By the maximum principle, it must be identically zero.

³In fact,

$$P_z(e^{i\theta}) = \frac{1-|z|^2}{|1-e^{-i\theta}z|^2} = Re\left(\frac{1+e^{-i\theta}z}{1-e^{i\theta}z}\right).$$

Let $D = D(z_0, \rho) = \{z : |z - z_0| < \rho\}$ be a disc in \mathbb{C} . After a rescaling, the Poisson extension of a function f which is continuous on $\partial D(z_0, \rho)$ is (z = $z_0 + re^{i\alpha}$)

$$P_{z}[f] = \int_{-\pi}^{\pi} P_{z}^{D}(e^{i\theta}) f(z_{0} + re^{i\theta}) \frac{d\theta}{2\pi},$$
$$P_{z}(e^{i\theta}) = \frac{\rho^{2} - |z - z_{0}|^{2}}{|a - ze^{-i\theta}|^{2}}.$$

where

$$P_z(e^{i\theta}) = \frac{\rho^2 - |z - z_0|^2}{|\rho - ze^{-i\theta}|^2}.$$

Exercise 7 (The Dirichlet problem in the right half plane.) Let $\mathbb{R}^2_+ =$ $\{z \in \mathbb{C}: Re(z) > 0\}$ be the right half plane and $i\mathbb{R}$, the imaginary axis, be its boundary in \mathbb{C} .

(i) Show that (a) the function $h(x+iy) = \frac{1}{\pi} \frac{x}{x^2+y^2}$ is harmonic in \mathbb{R}^2_+ (e.g., look for holomorphic f s.t. Re(f) = h; (b) $h \ge 0$ and for x > 0,

$$\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x}{x^2 + y^2} dy = 1;$$

(c) if $\delta > 0$ is fixed, then

$$\lim_{x \to 0} \frac{1}{\pi} \int_{\{|t| \ge \delta\}} \frac{x}{x^2 + y^2} dy = 0.$$

(ii) Let $f : \mathbb{R} \to \mathbb{R}$ be a function in $C(\mathbb{R}) \cap L^1(\mathbb{R})$. Define its Poisson integral

$$P[f]: \mathbb{R}^2_+ \to \mathbb{R}$$

 $to \ be$

$$P[f](x+iy) = \frac{1}{\pi} \int_{-\infty}^{+\infty} f(y-t) \frac{x}{x^2 + y^2} dy.$$

Show that (a) P[f] is harmonic in \mathbb{R}^2_+ ; (b) $\lim_{x\to\infty} P[f](x+iy) = 0$; (c) $\lim_{x \to 0} P[f](x + iy) = f(y) \text{ for } y \in \mathbb{R}; (d) ||f||_{\infty} = ||P[f]||_{\infty}.$

(iii) If u is any function which is harmonic in \mathbb{R}^2_+ , continuous on $\overline{\mathbb{R}^2_+}$ and such that $\lim_{z\to\infty} u(z) = 0$, then $u = P[u|_{i\mathbb{R}}]$.

Recall that $C_0(\mathbb{R})$ is the space of continuous functions vanishing outside a compact interval. You have proved the following theorem.

Theorem 8 The map $f \mapsto P[f]$ is an isometry of $C_0(\mathbb{R})$ onto $h^{\infty}(\mathbb{R}^2_+) \cap$ $C_0(\overline{\mathbb{R}^2_+}).$

Recall the definition of Poisson extension:

$$P[f](z) = \int_{-\pi}^{\pi} f(e^{i\theta}) P_z(e^{i\theta}) \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} f(e^{i\theta}) \frac{1 - |z|^2}{|1 - ze^{-i\theta}|^2} \frac{d\theta}{2\pi}.$$
 (4)

We can also consider the Poisson extension of a function $f \in L^p(\mathbb{S}), 1 \leq p \leq \infty$. In fact, (4) is defined even for a Borel, bounded measure μ :

$$P[\mu](z) = \int_{-\pi}^{\pi} P_z(e^{i\theta}) \frac{d\mu(\theta)}{2\pi}.$$
(5)

For a function u which is measurable on circles centered at the origin in \mathbb{C} , and for 0 , let

$$M_p(u,r) = \left[\int_{-\pi}^{\pi} |u(re^{i\theta})|^p \frac{d\theta}{2\pi}\right]^{1/p}.$$

Also, let

$$M_{\infty}(u,r) = \sup_{\theta \in [-\pi,\pi]} |u(re^{i\theta})|.$$

Lemma 9 Let $f \in L^p(\mathbb{S})$, $1 \le p \le \infty$, and let μ be a bounded, Borel measure on \mathbb{S} . Then, $r \mapsto M_p(P[f], r)$ increases with r and

$$\sup_{r < 1} M_p(P[f], r) = \lim_{r \to 1} M_p(P[f], r) \le \|f\|_{L^p}$$

Proof. By definition, $P_r[f] = P[f](r \cdot) = P_r * f$. If $0 < r_1 < r_2 < 1$, then $P_{r_1}[f] = P_{r_1/r_2} * P_{r_2}[f]$, hence, using Young's inequality first, then the L^1 norm of P_r , and again Young's inequality,

$$\begin{aligned} M_p(P[f], r_1) &= & \|P_{r_1}[f]\|_{L^p(\mathbb{S})} = \|P_{r_1/r_2} * P_{r_2}[f]\|_{L^p(\mathbb{S})} \\ &\leq & \|P_{r_1/r_2}\|_{L^1(\mathbb{S})}\|P_{r_2}[f]\|_{L^p(\mathbb{S})} \\ &\leq & \|P_{r_2}[f]\|_{L^p(\mathbb{S})} = M_p(P[f], r_2) \\ &\leq & \|f\|_{L^p}. \end{aligned}$$

Harmonic H^p spaces. Let $1 \le p \le \infty$. Let u be harmonic in \mathbb{D} . We say that u belongs to the harmonic Hardy space $h^p(\mathbb{D})$ if

$$||u||_{h^p(\mathbb{D})} = \sup_{r<1} M_p(u,r) < \infty.$$

Observe first that if p < q, then $h^q \subseteq h^p$, since, by Jensen's (or Hölder's) inequality,

$$M_p(r, u) \le M_q(r, u).$$

By Lemma 9, if $f \in L^p(\mathbb{S})$, then $P[f] \in h^p(\mathbb{D})$.

Corollary 10 Let $u : \mathbb{D} \to \mathbb{C}$ be a harmonic function. Then $M_p(u, r)$ increases with r.

Proof. Let $0 < r_1 < r_2 < 1$ and fix $r_2 < R < 1$. Let $u_R(z) = u(rz)$, a function which is harmonic in \mathbb{D} and continuous in $\overline{\mathbb{D}}$. By Theorem 5, u_R is the Poisson integral of its boundary values, $u_R = P[u_R|_{\mathbb{S}}]$. Then, by Lemma 9,

$$M_p(u, Rr_1) = M_p(u_R, r_1) \le M_p(u_R, r_2) = M_p(u, Rr_2).$$

Given $0 < \rho_1 < \rho_2 < 1$, we can always find R, r_1 and r_2 as above, such that $\rho_j = Rr_j$.

Theorem 11 If $1 , then the Poisson extension operator <math>f \mapsto P[f]$ maps $L^p(\mathbb{S})$ isometrically onto $h^p(\mathbb{D})$, and it maps $M(\mathbb{S})$ isometrically onto $h^1(\mathbb{D})$.

Moreover, $\lim_{r\to 1} P[f](r\cdot) = f$ holds in $L^p(\mathbb{S})$ -norm if $1 \leq p < \infty$ or if $f \in C(\mathbb{S})$ and $p = \infty$. If $f \in M(\mathbb{S})$ or $f \in L^{\infty}(\mathbb{S})$, then $\lim_{r\to 1} P[f](r\cdot) = f$ holds in the weak^{*} topology.

Proof. Let $f_r = P[f](r \cdot)$. **Step (i).** If $f \in L^p(\mathbb{S})$, then $f_r \to f$ in $L^p(\mathbb{S})$.

Lemma 12 Let T_t be translation by t in \mathbb{S} : $T_t f(e^{is}) = f(e^{i(s-t)})$. If $1 \le p < \infty$, then

$$\lim_{h \to 0} T_h f = f \text{ in } L^p(\mathbb{S})$$

Proof of the Lemma. By translation invariance of the measure on \mathbb{S} , T_t is an isometry of L^p , for all $1 \leq p < \infty$.

Fix $\epsilon > 0$ and choose $g \in C(\mathbb{S})$ s.t. $||f - g||_{L^p} \le \epsilon$.

$$\begin{aligned} \|T_h f - f\|_{L^p} &\leq \|T_h (f - g)\|_{L^p} + \|T_h g - g\|_{L^p} + \|f - g\|_{L^p} \\ &\leq 2\epsilon + \|T_h g - g\|_{L^p}. \end{aligned}$$

By uniform continuity of g, $|T_h g(e^{it}) - g(e^{it})| \le \epsilon$ if $|h| \le \delta(\epsilon)$ is small enough. Integrating, $||T_h g - g||_{L^p} \le \epsilon$ and this finishes the proof.

Exercise 13 Lemma 12 fails for $L^{\infty}(\mathbb{S})$, but it holds on $C(\mathbb{S})$. Moreover, it holds for $f \in L^{\infty}(\mathbb{S})$ if and only if f is a.e. equal to a continuous function.

We now write, for $\delta > 0$ to be fixed,

$$f_r(e^{it}) - f(e^{it}) = \left(\int_{|y| \le \delta} + \int_{|y| \ge \delta}\right) P_r(e^{iy}) (f(e^{i(t-y)}) - f(e^{it})) dy = I + II.$$

Now,

$$\begin{aligned} |I| &= \left| \int_{|y| \le \delta} P_r(e^{iy}) (T_y f(e^{it}) - f(e^{it})) dy \right| \\ &\le \left| \int_{|y| \le \delta} P_r(e^{iy}) |T_y f(e^{it}) - f(e^{it})| dy. \end{aligned}$$

By Minkowsky's inequality in its integral form,

$$||I||_{L^p} \le \int_{|y|\le\delta} P_r(e^{iy}) ||T_yf - f||_{L^p} dy \le \epsilon,$$

if δ is chosen small enough to have $||T_y f - f||_{L^p} \leq \epsilon$ when $|y| \leq \delta$. In order to estimate the secon term, let $P_r^{\delta} = P_r \chi_{[-\delta,\delta]^c}$. Then,

$$|II| \le |f(e^{it})| ||P_r^{\delta}||_{L^1} + |f| * P_r^{\delta},$$

and by Young's inequality,

$$||II||_{L^p} \le 2||f||_{L^p} ||P_r^{\delta}||_{L^1} \to 0 \text{ as } r \to 1$$

for each $\delta > 0$ fixed, by properties of the Poisson kernel.

When $p = \infty$ and $f \in C(S)$, the convergence result was proved when discussing the Dirichlet problem.

Step (ii). The correspondence $f \mapsto P[f]$ isometrically maps $L^p(\mathbb{S})$ onto $h^p(\mathbb{S})$ (if $1) and <math>M(\mathbb{S})$ onto $h^1(\mathbb{S})$.

Consider the case $1 first. Let <math>u \in h^p(\mathbb{D})$ and consider the functions $u_r = u(r \cdot)$. As $M_p(u, r)$ increases with r, we have that $\{u_r\}$ is bounded in L^p . By the Banach-Alaoglu Theorem, there is a subsequence u_{r_j} which weak-* converges to some $f \in L^p$. Since P_r is a C^∞ function,

$$P[f](re^{it}) = f * P_r(e^{it}) = \int_{-\pi}^{\pi} f(e^{i\theta}) P_r(e^{i(t-\theta)}) \frac{d\theta}{2\pi}$$
$$= \lim_{j \to \infty} \int_{-\pi}^{\pi} u_{r_j}(e^{i\theta}) P_r(e^{i(t-\theta)}) \frac{d\theta}{2\pi}$$
$$= \lim_{j \to \infty} u_{r_j} * P_r(e^{it}) = \lim_{j \to \infty} u(rr_j e^{it})$$
$$= u(re^{it}).$$

About norms, by Step (i),

$$||u||_{h^p} = \lim_{j \to \infty} ||u_{r_j}||_{L^p} = \lim_{j \to \infty} ||f_{r_j}||_{L^p} = ||f||_{L^p}.$$

Recall that above $f_r = P[f](r\cdot)$, by definition. A similar argument works for $u \in h^1$, since $L^1(\mathbb{S}) \subset M(\mathbb{S}) = C(\mathbb{S})^*$, the inclusion being isometric, by Riesz' Representation Theorem. Here are some details. Let $u \in h^1$. By Banach-Alaoglu, there is a sequence u_{r_j} converging to some $\mu \in M(\mathbb{S})$ in the weak* topology. The same argument as above implies that $u = P[\mu]$.⁴

To prove that $\mu \mapsto P[\mu]$ is an isometry, observe first that, by a property of weak^{*} convergence,

$$\|\mu\|_{M(\mathbb{S})} \leq \liminf_{j \to \infty} \|u_{r_j}\|_{L^1} = \|u\|_{h^1}$$

In the other direction, by Young's inequality for measures⁵, we have

$$\begin{aligned} \|u\|_{h_{1}} &= \lim_{j \to \infty} \|u_{r_{j}}\|_{L^{1}} = \lim_{j \to \infty} \|\mu_{r_{j}}\|_{L^{1}} \\ &= \lim_{j \to \infty} \|\mu * P_{r_{j}}\|_{L^{1}} \\ &\leq \lim_{j \to \infty} \|\mu\|_{M(\mathbb{S})} \|P_{r_{j}}\|_{L^{1}} \\ &\leq \|\mu\|_{M(\mathbb{S})}. \end{aligned}$$

We are left with $p = \infty$. If $\in L^{\infty}(\mathbb{S})$, then $|||P[f]||_{L^{\infty}} \leq ||f||_{L^{\infty}(\mathbb{S})}$. To prove that the map $f \mapsto P[f]$ is in fact an isometry of L^{∞} onto h^{∞} , use the argument above and the fact that $L^{\infty} = (L^1)^*$.

Step (iii). We are left with the statements about weak^{*} convergence. Consider the case of $\mu \in M(\mathbb{S})$. Let $g \in C(\mathbb{S})$. By symmetry (hence, formal self-adjointness) of P_r ,

$$\int_{-\pi}^{\pi} g(e^{i\theta}) P[\mu](re^{i\theta}) \frac{d\theta}{2\pi} = \int_{-\pi}^{\pi} P[g](re^{it}) \frac{d\mu(t)}{2\pi} \to \int_{-\pi}^{\pi} g(e^{it}) \frac{d\mu(t)}{2\pi} \text{ as } r \to 1,$$

since $P[g](r \cdot) \to g$ uniformly as $r \to 1$. Thus, $P[\mu](r \cdot) \to \mu$ weak^{*} as $r \to 1$.

$$\|\mu * f\|_{L^1} \le \|f\|_{L^1} \|\mu\|_{M(\mathbb{S})}.$$

 $^{{}^4}_5$ Exercise.

A similar argument with the appropriate duality pairing works for the case of $f \in L^{\infty}$. It is easy to see that one has convergence in norm if and only if $f \in C(\mathbb{S})$.

A reference for the material of this chapter is [Ricci]. To see what happens when one replaces \mathbb{D} by \mathbb{R}^n , see [Stein1]. A wide generalization of the above is beautifully explained in [Stein2].

References

- [Ricci] Fulvio Ricci, *Hardy spaces in one complex variable*.Lecture notes, http://homepage.sns.it/fricci/corsi.html.
- [Stein1] Stein, Elias M. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970 xiv+290 pp.
- [Stein2] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. With the assistance of Timothy S. Murphy.Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. xiv+695 pp.