
The Dirichlet problem.

N.A.

13/2/07

Let Ω be open in C and f : Ω → C. f is holomorphic in Ω if any (hence, all)
of the following properties hold:

(i) f has a complex derivative at any point z ∈ Ω,

∃f ′(z) = lim
h→0

f(z + h)− f(z)
h

.

(ii) u = Re(f) and v = Im(f) satisfy Cauchy-Riemann’s equations:{
ux = vy

uy = −vx

If we think of f : R2 → R2 as a function between Euclidean planes, the
CR equations say that the Jacobian of f has the particular form

Jf(x, y) =
(
a −b
b a

)
, with a = ux, b = vx.

Note that the set of such matrices is isomorphic, as ring, to C.

As a consequence of CR’s equations we have that f ′(z) = ∂xf(z).

(iii) f satisfies Morera’s Theorem.For any regular loop γ contained in Ω we
have that ∫

γ

f(z)dz = 0.

(iv) f satisfies Cauchy’s formula.If D is a smoothly bounded region in Ω,
D ⊂ Ω and z ∈ D, then

f(z) =
1

2πi

∫
∂D

f(ζ)
z − ζ

dζ.

Here, ∂D is anti-clockwise oriented.

(v) If the closed disce D(z0, r) is contained in Ω, then there is a sequence {an}
of complex numbers, depending on z0 only, such that

f(z) =
∞∑
n=0

an(z − z0)n.

The series converges totally uniformly in D(z0, r).
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We will sometimes use the following facts.

(i) Inverse Mapping Theorem.If f : Ω → C is holomorphic and f ′(z0) 6= 0,
then there are open neighborhoods U of z0 in Ω and V of f(z0) in f(Ω)
s.t. f : U → V is a bijection with holomorphic inverse.

(ii) Open Mapping Theorem.If f : Ω → C is holomorphic and Ω is connected,
then either f is constant or f(U) is open for all U open in Ω.

Let Ω ⊆ C be open and let u ∈ C2(Ω). u is harmonic if ∆u = 0 in Ω.

Proposition 1 Let Ω be open in C.

(i) If f = u + iv is holomorphic in Ω and Ω is connected, then u, v are
harmonic in Ω. If f1 = u + iv1 is another function holomorphic in Ω
having real part u, then v − v1 is constant.

(ii) If u is harmonic in Ω and Ω is connected and simply connected, then there
exists f holomorphic in Ω s.t. Re(f) = u.

(iii) If u is harmonic in Ω, then u ∈ C∞.

(iv) If f : Ω1 → Ω2 is holomorphic, where Ω1 and Ω2 are open, and u is
harmonic in Ω2, then u ◦ f is harmonic in Ω1.1

Proof. (i) The harmonicity of u and v follows from CR’s equations. If f1 =
u+iv1 is another holomorphic function with the same real part, f−f1 = i(v−v1)
can not be open, hence it is constant.

(ii) By Laplace’ equation, the form ω = −uydx+ uxdy is closed, then exact,
hence there is v such that vx = −uy and vy = ux. f = u + iv satisfies CR’s
equations.

(iii) The composition of holomorphic functions is holomorphic.
From Cauchy’s formula we deduce the Mean Value Property of harmonic

functions.

Theorem 2 Let D(z0, r) ⊂ Ω and let u be harmonic in Ω. Then,

u(z0) =
∫ π

−π
u(z0 + reiθ)

dθ

2π
. (1)

Proof. Let f = u + iv be holomorphic in an open, simply connected set
containing the disc’s closure. Cauchy’s formula gives

f(z0) =
1

2πi

∫
|ζ−z0|=r

f(ζ)
ζ − z0

dζ

=
1

2πi

∫ π

−π

f(z0 + reiθ)
reiθ

ireiθdθ

=
1
2π

∫ π

−π
f(z0 + reiθ)dθ.

MVP holds for f , hence for its real and imaginary parts.
1This property is peculiarly two-dimensional.
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Exercise 3 Let z ∈ D(0, 1) = D ⊂ Ω and let u be harmonic in Ω. Show that

u(z) =
∫ π

−π
u(eiθ)

1− |z|2

|1− ze−iθ|2
dθ

2π
. (2)

Suggestion: use the fact that the maps φ(z) = z−a
1−az , a ∈ D, are biholomorphims

of D onto itself.

Theorem 4 (Maximum principle.) Let u be harmonic in a connected set Ω
in C.

(i) If u has a local maximum in Ω, then u is constant in Ω.

(ii) If u extends continuously to Ω2 and

lim
z→ζ

u(z) ≤ 0

for all ζ ∈ ∂Ω, then u ≤ 0 in ω.

Proof. (i) Suppose that z0 is point of local maximum for u. By MVP (Exercise)
u ≡ u(z0) on a disc centered ao z0. For any z ∈ Ω, consider an open, simply
connected set D in Ω containing both z and z0 and let f = u+iv be holomorphic
in D. Then, v is constant in a disc centered at z0, so f is constant in that disc,
hence f is constant in D: f(z) = f(z0).

(ii) u attains a global maximum in Ω by Weierstrass’ Theorem. If the max-
imum is in Ω, then u is constant in Ω, otheriwise the maximum is attained on
∂Ω. In both cases, u ≤ 0 in Ω.

An important harmonic function is h : D → R,

h(z) =
1− |z|2

|1− z|2
= Re

(
1 + z

1− z

)
.

Observe that h ≥ 0 in D and that h(ζ) = 0 for ζ ∈ ∂D− {1}. The holomorphic
function f(z) = 1+z

1−z is a holomorphic, 1− 1 map of D onto the right half plane
{w : Re(w) > 0}. In fact,

f(eiθ) = i cot(θ/2).

For f ∈ C(S), define P [f ] : D → R,

P [f ](z) =
∫ π

−π
f(eiθ)Pz(eiθ)

dθ

2π
=
∫ π

−π
f(eiθ)

1− |z|2

|1− ze−iθ|2
dθ

2π
. (3)

We can view P [f ] as a convolution. Define Pr : S → R,

Pr(eiα) =
1− |z|2

|1− ze−iθ|2
.

Then, P [f ] = Pr ∗ f .
We denote by h∞(D) the space of the bounded harmonic functions on D.

2In these notes, the closure of a set is considered in the extended plane C∗ = C ∪ {∞}.
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Theorem 5 After setting P [f ]|S = f , we have that f 7→ P [f ] is an isometry of
C(S) onto h∞(D) ∩ C(D).

In particular, P [f ](z) → f(eiα) as z → eiα in D.
Proof. Step 1. P [f ] is harmonic in D. Since z 7→ Pz(eiθ) is harmonic in

D3, the result follows by differentiating under the integral.
Step 2. P [f ](z) → f(eiα) as z → eiα in D. Hence, P [f ] is continuous in D.

Lemma 6 (i)
∫ π
−π Pz(e

iθ) dθ2π = 1.

(ii) For some C > 0,
∫ π
−π |Pz(e

iθ)| dθ2π ≤ C for all z ∈ D.

(iii) For all δ > 0 s.t.
∫
|θ−α|≥δ |Preiα(eiθ)| dθ2π → 0 as r → 1.

Proof of the lemma.. (i) implies (ii) because Pz ≥ 0; (i) follows from MVP.
About (iii), if z = reiα, on the interval of integration:

Pz(eiθ) ≈
1− r

(1− r)2 + (θ − α)2
≤ 1− r

(1− r)2 + δ2
→ 0,

uniformly as r → 1.
It suffices to prove the limit when α = 0. Let z = reiβ . Fix ε > 0 and choose

δ > 0 s.t.
∣∣f(eiθ)− f(eiψ)

∣∣ ≤ ε when |θ − ψ| ≤ δ. For |β| ≤ δ,

|P [f ](z)− f(1)| ≤ |P [f ](z)− f(eiβ)|+ |f(eiβ)− f(1)|

=
∣∣∣∣∫ π

−π
Pz(eiθ)[f(eiθ)− f(eiβ)]

dθ

2π

∣∣∣∣+ ε

≤
∫
|θ−β|≥δ

Pz(eiθ)
(
|f(eiθ)|+ |f(eiβ)|

) dθ
2π

+
∫
|θ−β|≤δ

Pz(eiθ)
∣∣f(eiθ)− f(eiβ)

∣∣ dθ
2π

+ ε.

Choose now r0 s.t. ∫
|θ−β|≥δ

|Preiβ (eiθ)| dθ
2π

≤ ε

when r ≥ r0. Then, the last expression in the chain of inequalities is

≤ ε(2‖f‖∞ + C).

Let now ε→ 0.
Step 3. The fact that ‖P [f ]‖∞ = ‖f‖∞ easily follows from the maximum

principle.
Step 4. f 7→ P [f ] is onto. Let h ∈ h∞(D)∩C(D) and let ϕ be the boundary

function of h. Then, h−P [ϕ] is harmonic in D, continuous in D and has vanishing
boundary values. By the maximum principle, it must be identically zero.

3In fact,

Pz(eiθ) =
1− |z|2

|1− e−iθz|2
= Re

„
1 + e−iθz

1− eiθz

«
.

4



Let D = D(z0, ρ) = {z : |z − z0| < ρ} be a disc in C. After a rescaling,
the Poisson extension of a function f which is continuous on ∂D(z0, ρ) is (z =
z0 + reiα)

Pz[f ] =
∫ π

−π
PDz (eiθ)f(z0 + reiθ)

dθ

2π
,

where

Pz(eiθ) =
ρ2 − |z − z0|2

|ρ− ze−iθ|2
.

Exercise 7 (The Dirichlet problem in the right half plane.) Let R2
+ =

{z ∈ C : Re(z) > 0} be the right half plane and iR, the imaginary axis, be its
boundary in C.

(i) Show that (a) the function h(x + iy) = 1
π

x
x2+y2 is harmonic in R2

+ (e.g.,
look for holomorphic f s.t. Re(f) = h); (b) h ≥ 0 and for x > 0,

1
π

∫ +∞

−∞

x

x2 + y2
dy = 1;

(c) if δ > 0 is fixed, then

lim
x→0

1
π

∫
{|t|≥δ}

x

x2 + y2
dy = 0.

(ii) Let f : R → R be a function in C(R) ∩ L1(R).Define its Poisson integral

P [f ] : R2
+ → R

to be

P [f ](x+ iy) =
1
π

∫ +∞

−∞
f(y − t)

x

x2 + y2
dy.

Show that (a) P [f ] is harmonic in R2
+; (b) limx→∞ P [f ](x+ iy) = 0; (c)

limx→0 P [f ](x+ iy) = f(y) for y ∈ R; (d) ‖f‖∞ = ‖P [f ]‖∞.

(iii) If u is any function which is harmonic in R2
+, continuous on R2

+ and such
that limz→∞ u(z) = 0, then u = P [u|iR].

Recall that C0(R) is the space of continuous functions vanishing outside a com-
pact interval. You have proved the following theorem.

Theorem 8 The map f 7→ P [f ] is an isometry of C0(R) onto h∞(R2
+) ∩

C0(R2
+).

Recall the definition of Poisson extension:

P [f ](z) =
∫ π

−π
f(eiθ)Pz(eiθ)

dθ

2π
=
∫ π

−π
f(eiθ)

1− |z|2

|1− ze−iθ|2
dθ

2π
. (4)

We can also consider the Poisson extension of a function f ∈ Lp(S), 1 ≤ p ≤ ∞.
In fact, (4) is defined even for a Borel, bounded measure µ:

P [µ](z) =
∫ π

−π
Pz(eiθ)

dµ(θ)
2π

. (5)
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For a function u which is measurable on circles centered at the origin in C, and
for 0 < p <∞, let

Mp(u, r) =
[∫ π

−π
|u(reiθ)|p dθ

2π
.

]1/p
.

Also, let
M∞(u, r) = sup

θ∈[−π,π]

|u(reiθ)|.

Lemma 9 Let f ∈ Lp(S), 1 ≤ p ≤ ∞, and let µ be a bounded, Borel measure
on S. Then, r 7→Mp(P [f ], r) increases with r and

sup
r<1

Mp(P [f ], r) = lim
r→1

Mp(P [f ], r) ≤ ‖f‖Lp .

Proof. By definition, Pr[f ] = P [f ](r·) = Pr ∗ f . If 0 < r1 < r2 < 1, then
Pr1 [f ] = Pr1/r2 ∗Pr2 [f ], hence, using Young’s inequality first, then the L1 norm
of Pr, and again Young’s inequality,

Mp(P [f ], r1) = ‖Pr1 [f ]‖Lp(S) = ‖Pr1/r2 ∗ Pr2 [f ]‖Lp(S)

≤ ‖Pr1/r2‖L1(S)‖Pr2 [f ]‖Lp(S)

≤ ‖Pr2 [f ]‖Lp(S) = Mp(P [f ], r2)
≤ ‖f‖Lp .

Harmonic Hp spaces. Let 1 ≤ p ≤ ∞. Let u be harmonic in D. We say that
u belongs to the harmonic Hardy space hp(D) if

‖u‖hp(D) = sup
r<1

Mp(u, r) <∞.

Observe first that if p < q, then hq ⊆ hp, since, by Jensen’s (or Hölder’s)
inequality,

Mp(r, u) ≤Mq(r, u).

By Lemma 9, if f ∈ Lp(S), then P [f ] ∈ hp(D).

Corollary 10 Let u : D → C be a harmonic function. Then Mp(u, r) increases
with r.

Proof. Let 0 < r1 < r2 < 1 and fix r2 < R < 1. Let uR(z) = u(rz), a function
which is harmonic in D and continuous in D. By Theorem 5, uR is the Poisson
integral of its boundary values, uR = P [uR|S]. Then, by Lemma 9,

Mp(u,Rr1) = Mp(uR, r1) ≤Mp(uR, r2) = Mp(u,Rr2).

Given 0 < ρ1 < ρ2 < 1, we can always find R, r1 and r2 as above, such that
ρj = Rrj .

Theorem 11 If 1 < p ≤ ∞, then the Poisson extension operator f 7→ P [f ]
maps Lp(S) isometrically onto hp(D), and it maps M(S) isometrically onto
h1(D).

Moreover, limr→1 P [f ](r·) = f holds in Lp(S)-norm if 1 ≤ p < ∞ or if
f ∈ C(S) and p = ∞. If f ∈ M(S) or f ∈ L∞(S), then limr→1 P [f ](r·) = f
holds in the weak∗ topology.

6



Proof. Let fr = P [f ](r·).
Step (i). If f ∈ Lp(S), then fr → f in Lp(S).

Lemma 12 Let Tt be translation by t in S: Ttf(eis) = f(ei(s−t)). If 1 ≤ p <∞,
then

lim
h→0

Thf = f in Lp(S).

Proof of the Lemma.. By translation invariance of the measure on S, Tt is
an isometry of Lp, for all 1 ≤ p <∞.

Fix ε > 0 and choose g ∈ C(S) s.t. ‖f − g‖Lp ≤ ε.

‖Thf − f‖Lp ≤ ‖Th(f − g)‖Lp + ‖Thg − g‖Lp + ‖f − g‖Lp

≤ 2ε+ ‖Thg − g‖Lp .

By uniform continuity of g, |Thg(eit)− g(eit)| ≤ ε if |h| ≤ δ(ε) is small enough.
Integrating, ‖Thg − g‖Lp ≤ ε and this finishes the proof.

Exercise 13 Lemma 12 fails for L∞(S), but it holds on C(S). Moreover, it
holds for f ∈ L∞(S) if and only if f is a.e. equal to a continuous function.

We now write, for δ > 0 to be fixed,

fr(eit)− f(eit) =

(∫
|y|≤δ

+
∫
|y|≥δ

)
Pr(eiy)(f(ei(t−y))− f(eit))dy = I + II.

Now,

|I| =

∣∣∣∣∣
∫
|y|≤δ

Pr(eiy)(Tyf(eit)− f(eit))dy

∣∣∣∣∣
≤

∫
|y|≤δ

Pr(eiy)|Tyf(eit)− f(eit)|dy.

By Minkowsky’s inequality in its integral form,

‖I‖Lp ≤
∫
|y|≤δ

Pr(eiy)‖Tyf − f‖Lpdy ≤ ε,

if δ is chosen small enough to have ‖Tyf − f‖Lp ≤ ε when |y| ≤ δ.
In order to estimate the secon term, let P δr = Prχ[−δ,δ]c . Then,

|II| ≤ |f(eit)|‖P δr ‖L1 + |f | ∗ P δr ,

and by Young’s inequality,

‖II‖Lp ≤ 2‖f‖Lp‖P δr ‖L1 → 0 as r → 1

for each δ > 0 fixed, by properties of the Poisson kernel.
When p = ∞ and f ∈ C(S), the convergence result was proved when dis-

cussing the Dirichlet problem.
Step (ii). The correspondence f 7→ P [f ] isometrically maps Lp(S) onto hp(S)
(if 1 < p ≤ ∞) and M(S) onto h1(S).

7



Consider the case 1 < p <∞ first. Let u ∈ hp(D) and consider the functions
ur = u(r·). As Mp(u, r) increases with r, we have that {ur} is bounded in
Lp. By the Banach-Alaoglu Theorem, there is a subsequence urj

which weak-∗

converges to some f ∈ Lp. Since Pr is a C∞ function,

P [f ](reit) = f ∗ Pr(eit) =
∫ π

−π
f(eiθ)Pr(ei(t−θ))

dθ

2π

= lim
j→∞

∫ π

−π
urj

(eiθ)Pr(ei(t−θ))
dθ

2π
= lim

j→∞
urj

∗ Pr(eit) = lim
j→∞

u(rrjeit)

= u(reit).

About norms, by Step (i),

‖u‖hp = lim
j→∞

‖urj‖Lp = lim
j→∞

‖frj‖Lp = ‖f‖Lp .

Recall that above fr = P [f ](r·), by definition. A similar argument works for
u ∈ h1, since L1(S) ⊂ M(S) = C(S)∗, the inclusion being isometric, by Riesz’
Representation Theorem. Here are some details. Let u ∈ h1. By Banach-
Alaoglu, there is a sequence urj

converging to some µ ∈ M(S) in the weak∗

topology. The same argument as above implies that u = P [µ].4

To prove that µ 7→ P [µ] is an isometry, observe first that, by a property of
weak∗ convergence,

‖µ‖M(S) ≤ lim inf
j→∞

‖urj‖L1 = ‖u‖h1 .

In the other direction, by Young’s inequality for measures5, we have

‖u‖h1 = lim
j→∞

‖urj
‖L1 = lim

j→∞
‖µrj

‖L1

= lim
j→∞

‖µ ∗ Prj
‖L1

≤ lim
j→∞

‖µ‖M(S)‖Prj‖L1

≤ ‖µ‖M(S).

We are left with p = ∞. If ∈ L∞(S), then ‖‖P [f ]‖L∞ ≤ ‖f‖L∞(S). To prove
that the map f 7→ P [f ] is in fact an isometry of L∞ onto h∞, use the argument
above and the fact that L∞ = (L1)∗.
Step (iii). We are left with the statements about weak∗ convergence. Con-
sider the case of µ ∈ M(S). Let g ∈ C(S). By symmetry (hence, formal
self-adjointness) of Pr,∫ π

−π
g(eiθ)P [µ](reiθ)

dθ

2π
=
∫ π

−π
P [g](reit)

dµ(t)
2π

→
∫ π

−π
g(eit)

dµ(t)
2π

as r → 1,

since P [g](r·) → g uniformly as r → 1. Thus, P [µ](r·) → µ weak∗ as r → 1.

4Exercise.
5

‖µ ∗ f‖L1 ≤ ‖f‖L1‖µ‖M(S).
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A similar argument with the appropriate duality pairing works for the case
of f ∈ L∞. It is easy to see that one has convergence in norm if and only if
f ∈ C(S).

A reference for the material of this chapter is [Ricci]. To see what happens
when one replaces D by Rn, see [Stein1]. A wide generalization of the above is
beautifully explained in [Stein2].
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