ESERCIZI SULLA DERIVATA DI COMPOSIZIONI

Nicola Arcozzi, Analisi Matematica L-A

October 21, 2003

- (1) Siano $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni derivabili su tutto \mathbb{R} . Supponiamo che, per ogni x reale, $g(x) = \sin(f(x))$, e che $f(e) = \pi/2$, $f'(e) = \pi$. Quale delle seguenti affermazioni è certamente vera?
 - (i) $g'(\pi/2) = 0$;
 - (ii) $g'(\pi/2) = \cos(e)\pi$;
- (iii) g'(e) = 0;
- (iv) $g'(e) = \cos(e)\pi$;
- (v) $q'(e) = \pi/2$.
- (2) Siano $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni derivabili su tutto \mathbb{R} . Supponiamo che, per ogni x reale, $g(x) = f(x^2 + e^x)$, e che f'(e+1) = k. Quale delle seguenti affermazioni è certamente vera?
 - (i) q'(e+1) = k;
 - (ii) g'(e+1) = k(2+e);
- (iii) g'(1) = k;
- (iv) g'(1) = k(2+e);
- (v) q'(1) = 2 + e.

- (3) Siano $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni derivabili su tutto \mathbb{R} . Supponiamo che, per ogni x reale, $g(x) = \cos\left(e^{f(x)}\right)$, e che f(1) = 2, $f'(1) = \pi$. Quale delle seguenti affermazioni è certamente vera?
 - (i) $g'(1) = -\sin(e^2)e^2$;
 - (ii) $g'(1) = -\pi \sin(e^2)e^2$;
- (iii) $g'(e^2) = -\sin(e^2)e^2$;
- (iv) $g'(e^2) = -\pi \sin(e^2)e^2$;
- (v) $g'(e^2) = -\pi \cos(1)$.
- (4) Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione tale che, per ogni x reale, $f(2x + \sin(x)) = 3x$. (L'esistenza di una tale funzione non è affatto ovvia). Quale delle seguenti affermazioni è certamente vera? (Aiuta guardare cosa succede in x = 0).
 - (i) Se f è derivabile in 0, allora f'(0) = 3;
 - (ii) Se f è derivabile in 0, allora f'(0) = 1;
- (iii) Se f è derivabile in 0, allora f'(0) = 3/2;
- (iv) Certamente, f non è derivabile in 0.
- (5) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione tale che, per ogni x reale, $f(x^3 3x^2 + 3x + 1) = e^x$. (L'esistenza di una tale funzione non è affatto ovvia). Quale delle seguenti affermazioni è certamente vera? (Aiuta guardare cosa succede in x = 1).
 - (i) Se f è derivabile in 2, allora f'(2) = e;
 - (ii) Se f è derivabile in 2, allora f'(2) = 0;
- (iii) Se f è derivabile in 2, allora f'(2) = 1;
- (iv) Certamente, f non è derivabile in 2.

Soluzioni. (1) (iii); (2) (iv); (3) (ii); (4) (ii); (5) (iv).