ESERCIZI SULLA DERIVABILITÀ

Nicola Arcozzi, Analisi Matematica L-A

November 26, 2003

- (1) Sia f una funzione continua in [-1,0] e derivabile in (-1,0). Quali delle seguenti affermazioni sono necessariamente vere?
 - (a) Esiste $c \in [-1, 0]$ tale che f'(c) = 0.
 - (b) Esiste $c \in (-1, 0)$ tale che f'(c) = 0.
 - (c) Esiste $c \in (-1,0]$ tale che f(0) f(-1) = f'(c).
 - (d) Esiste $c \in [-1,0)$ tale che f(-1) f(0) = f'(c)
 - (e) f ha minimo in [-1, 0].
 - (f) Se f(-1/2) = f(0) = -1, allora esiste $c \in [-1, 0]$ tale che f'(c) = 0.
- (g) Se f(-1/2) = f(0) = -1, allora esiste $c \in (-1/2, 0)$ tale che f'(c) = 0.
 - (h) Esiste $c \in (-1,0)$ tale che 2(f(-1/2) f(-1)) = f'(c).
 - (i) Esiste $c \in (-1,0)$ tale che 2(f(-1) f(-1/2)) = f'(c).
- (j) Se f ha massimo in x = -1 e f è derivabile in x = -1, allora f'(-1) = 0.
 - (k) Se f ha massimo in x = -1/2, allora f'(-1/2) = 0.
- (l) Se f'(x)=0 per ogni $x\in (-1,0),$ allora f(x)=f(0) per ogni $x\in (-1,0).$
 - (m) f è continua in [-1,0].
 - (n) Se f è strettamente crescente, allora f'(-1/2) > 0.
 - (o) Se f è strettamente decrescente, allora $f'(-1/2) \leq 0$.
 - (p) Se f è strettamente crescente su (-1, -1/2), allora f'(-1/2) = 0.
 - (q) Se f è strettamente crescente su (-1, -1/2), allora $f'(-1/2) \ge 0$.
- (r) Se f è strettamente crescente su (-1, -1/2) e strettamente decrescente su (-1/2, 0), allora f'(-1/2) = 0.
- (s) Se f'(x) = 0 solo per x = -1/2, allora x = -1/2 è necessariamente un punto di massimo relativo o di minimo relativo.
- (2) Sia f una funzione continua in [0,2] e derivabile in $(0,1) \cup (1,2)$. Quali delle seguenti affermazioni sono necessariamente vere?
 - (a) Esiste $c \in (0, 2)$ tale che f(2) f(0) = 2f'(c).
 - (b) Esiste $c \in (0,2)$ tale che f(0) f(2) = 2f'(c).
 - (c) Non esiste $c \in (0, 2)$ tale che f(2) f(0) = 2f'(c).
 - (d) Esiste $c \in (1,2)$ tale che f(1) f(0) = f'(c).

- (e) Se f ha massimo per x = 1, allora f'(1) = 0.
- (e') Se f ha massimo per x = 1 e f è derivabile in x = 1, allora f'(1) = 0.
- (f) Se $f'(x) \ge 0$ su (0,1) e $f'(x) \le 0$ su (1,2), allora f ha massimo per x = 1.
- (g) Se $f'(x) \ge 0$ su (1/2,1) e $f'(x) \le 0$ su (1,2), allora f ha massimo per x=1.
- (h) Se $f'(x) \ge 0$ su (1/2,1) e $f'(x) \le 0$ su (1,2), allora f ha massimo relativo per x=1.
- (i) Se $f'(x) \geq 0$ su (0,1) e $f'(x) \leq 0$ su (1,2), allora f ha un minimo relativo per x=2.
- (3) Sia $f:[0,2] \to \mathbb{R}$ una funzione continua in $[0,1) \cup (1,2]$ e derivabile in $(0,1) \cup (1,2)$. Quali delle seguenti affermazioni sono necessariamente vere?
 - (a) Esiste $c \in (1, 2)$ tale che f(1) f(0) = f'(c).
 - (b) Se f ha massimo per x = 1, allora f'(1) = 0.
 - (c) Se f ha massimo per x = 1 e f è derivabile in x = 1, allora f'(1) = 0.
- (d) Se $f'(x) \ge 0$ su (0,1) e $f'(x) \le 0$ su (1,2), allora f ha massimo per x=1.
- (e) Se $f'(x) \ge 0$ su (0,1) e $f'(x) \le 0$ su (1,2), allora f ha un minimo relativo per x=2.
 - (f) Se $f'(x) \ge 0$ per ogni x in $(0,1) \cup (1,2)$, allora f è crescente su [0,2].
- (g) Se $f'(x) \ge 0$ per ogni x in $(0,1) \cup (1,2)$ e se $\lim_{x\to 1^-} f(x) \le \lim_{x\to 1^+} f(x) =$, allora f è crescente su [0,2].
- (h) Se $f'(x) \ge 0$ per ogni x in $(0,1) \cup (1,2)$ e se $\lim_{x\to 1^-} f(x) \le f(1) \le \lim_{x\to 1^+} f(x) =$, allora f è crescente su [0,2].
- **Soluzioni.** (1) c, e, f, g, h, k, l, m, o, q, r; (2) e', f, h, i; (3) c, e, h.