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Heisenberg group and CC geometry

Group: H = R3 3 (x , y , t),
(x1, y1, t1) · (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 1/2(x1y2− y1x2)).

Lie algebra: X = ∂x − y
2∂t , Y = ∂y + x

2∂t , T = [X ,Y ] = ∂t :
h = span{X ,Y ,T}.
Stratification: H = V1 = {X ,Y }, V = V2 = [V1,V2] = span{T}.
The CC length of a curve: γ : [a, b]→ H, γ̇ = αX + βY + mT is

CC length

length(γ) =
∫ b

a

√
α(τ)2 + β(τ)2 +∞2 ·m(τ 2)dτ.

γ is horizontal if m ≡ 0 (iff length(γ) <∞, iff γ̇ ∈ H).

d(P,Q) = inf {length(γ) : γ(a) = P, γ(b) = Q} .
d is a distance on H, realized by the length of geodesics.

d(O, (x , y , t)) ≈
(
(x2 + y 2)2 + t2

)1/2
.

γ = (x , y , t) is horizontal iff dt = xdy−ydx
2 : we can give an

interpretation of length in terms of areas.
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∆t =
∫
π(γ)

xdy−ydx
2 =

∫∫
int(π(γ)) dxdx = Area(int(π(γ))).
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Geodesics

For each horizontal v at P there are ∞1 geodesics η leaving P such
that η̇(0) = v .

For each ε > 0 there is a geodesic leaving O which is length
minimizing for a time < ε.

If η(0) = P, η̇(0) = v and η projects to a circle having radius r > 0
we write η = ηP,v ,1/r .

Metric → Hausdorff measures Ha (a > 0) and dimensions dimH.

dimH(H) = 4 and dH4 = dxdydt is the Haar measure of H.

dimH(t − axis) = 2 and dH2
t−axis = dt is the Haar measure of the

t-axis.

dimH(x − axis) = 1 and dH1
x−axis = dx is the Haar measure of the

x-axis.

dimH(x , t − plane) = 3 and dH3
x,t−plane = dxdt is the Haar measure

of the x , t-plane.

dimH(x , y − plane) = 3 and dH3
x,y−plane =

√
x2 + y 2dxdy .

Explanation: λ · (x , y , t) = (λx , λy , λ2t) defines the right dilations
(length-areas, stratification...).
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Surfaces in H

S a smooth orientable surface in H; HP = span{XP ,YP}; TPS : the plane
tangent to S at P.

C ∈ S is characteristic iff HC = TCS .

Characteristic points form a small set
(dimH(Characteristic set(S)) ≤ 2).

Simply connected compact S ’s have characteristic points.

If P /∈ Characteristic set(S) then dim(HP ∩ TPS) = 1, hence

S \ Characteristic set(S) is foliated by horizontal curves.

HP 	 (HP ∩ TPS) is the direction normal to S at P.

If < ·, · > makes X ,Y into a orthonormal system for H,
HP 	 (HP ∩ TPS) = span{νP} with < νP , νP >= 1.

±νP is the horizontal vector normal to S at its noncharacteristic
point P.

Choose νP together with an orientation of S .
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Surfaces in H
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Distance to a surface

S : a smooth surface in H, S = ∂Ω, Ω open and bounded, ν inward
horizontal normal.

dS(P) : inf{d(P,Q) : Q ∈ S}.
Problem I: smoothness properties of dS?

Problem II: given Q in S , what can we say about the set
NQS = {P ∈ H : dS(P) = d(P,Q)}?
NQS is the metric normal to S at Q.
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The quest for the metric normal
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Metric normal to a smooth surface

Theorem (A., F. Ferrari)

S a C 1 surface in H and Q ∈ S . Then

NQS ⊆ ηQ,νQS,2/d(Q,C(ΠQS)) is a subarc containing Q.

If S is C 1,1 and Q in noncharacteristic, the Q in the interior of the arc.
If Q is characteristic, then NQS = {Q}.

The imaginary curvature of S at Q is κS(Q) = 2/d(Q,C (ΠQS)): the
curvature of the geodesic metrically normal to S at Q.
The cut-locus of S contains the endpoints of the geodesics’ arcs NQS
as Q varies on S .
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Metric exponential

ExpS : S × R→ H, (Q, τ) 7→ (NSQ) (τ) = P.

dS(P) = |τ |.

Signed distance from S : δS(P) = τ :=

{
dS(P) if P ∈ Ω

−dS(P) if P /∈ Ω

Theorem (A., F. Ferrari)

There U open in (S \ {characteristic set})× R such that
ExpS : U → H is a diffeomorphism (if S is C 1,1).

If P → [ExpS ]−1 (P) = (Q, τ), τ = δS(P) and ∇HδS ∈ C (U).

∇H f = Xf · X + Yf · Y is the horizontal gradient.
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The horizontal Hessian of δS

The mean curvature of S at Q is hS(Q) = ∆hδS(Q), where
∆h = XX + YY .

The horizontal Hessian of f H→ R is Hesshf =

(
XXf YXf
XYf YYf

)
.

Consider the matrices I =

(
1 0
0 1

)
and J =

(
0 −1
1 0

)
.

Theorem (A., F. Ferrari)

HesshδS = λS ⊗ λS · (hS I + κSJ) .
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Distance to a curve

γ : I = (a, b)→ H, γ̇ = αX + βY + mT

dγ(P) = inf{d(P,Q) : Q ∈ γ(I )}.
Problem I: smoothness properties of dγ?

Problem II: given Q in γ(I ), what can we say about the set
NQγ = {P ∈ H : dγ(P) = d(P,Q)}?

Straight lines.

Suppose γ is a straight line (i.e. a coset of a one-parameter subgroup of
H).
Horizontal and non-horizontal lines behave much differently.

`m: straight line through O with ˙̀ = X + mT .

For P1, P2 in H: `m · P1 and `m · P2 are metrically parallel:
d(Q1, `m · P2) is independent of Q1 ∈ `m · P1.

Quotient metric on H/`m: (`m · P1, `m · P1) 7→ d(`m · P1, `m · P1).
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Projecting Heisenberg onto Gruschin

Theorem (A., A. Baldi)

1 (H/`m, d) is isometric to the Gruschin plane (R2, ds2),

ds2 = du2 dv2

u2 .

2 `m prjects to a point of the critical line u = 0 iff it is horizontal
(iff m = 0).
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Distance to a straight line

Corollary

If `m is not horizontal, then d`m is smooth in a neighborhood of `m.

If `m is horizontal, then d`m is not smooth in any neighborhood of
`m.

This leaves open the problem of understanding N`mQ: the surface
metrically normal to `m at Q.
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The quest for the surface metrically normal to a curve:
non-horizontal case.

γ : I = (a, b)→ H, γ̇ = αX + βY + mT , m 6= 0 pointwise, α2 + β2 ≡ 1.

η = ηQ,b, b ∈ T.
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Regularity of the distance function.

The above construction allows one to construct a metric exponential map

Exponential

Expγ : γ(I )× T× R+ → H, Expγ(Q, b, τ) = ηQ,b(τ).

Theorem

The map Expγ is invertible near γ(I ) and dγ(Expγ(Q, b, τ)) = τ for
small τ .

dγ is smooth (C 1 if γ is C 2) near γ(I ).

The case of horizontal curves is quite the opposite.

Theorem

If γ is a horizontal curve, then for all Q in γ(I ) and ε > 0 there is P such
that d(Q,P) < ε, but dγ is not differentiable (in the Euclidean case) at
P.
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An application of the positive result.

Theorem

Let S = ∂Ω be a compact C 2 surface in H and fix ε > 0. Then there
exists a C 2 surface Sε = partialΩε without characteristic points such
that:

H4(Ωε∆Ω) < ε;∣∣H3(Sε)−H3(S)
∣∣ < ε.
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An application of the negative result’s proof.

Theorem

Let E ⊂ H be a closed subset and let Cut-locus(E ) be its cut-locus.
Then for all open metric balls B in H, B ∩ Cut-locus(E ) is not an arc of
a horizontal curve.

Since the cut-locus can not either have isolated points, we have the
following guess.

Conjecture

For each metric open ball B in H intersecting the cut-locus of E it must
be H2 (B ∩ Cut-locus(E )) ≥ 0.
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Comments

Initial motivation: extending a result of Fonseca e Mantegazza from
Rn to H (Bruno Franchi’s question).

Some of the above is proved for more general Carnot groups in joint
work with Ferrari e Montefalcone.

A more general study of the cut-locus might be interesting.

Ferrari e Valdinoci have interesting applications of some of the
above to some nonlinear PDE’s.

Most results await sharp regularity versions of themselves.
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Happy birthday Gianni!
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