Distance to curves and surfaces in the Heisenberg group

Nicola Arcozzi
Università di Bologna
3 giugno 2012

- Fausto Ferrari, N.A. Metric normal and distance function in the Heisenberg group, Math.Z. 2007.
- Fausto Ferrari, N.A. The Hessian of the distance from a surface in the Heisenberg group, Ann. Acad. Fenn. 2008.
- Annalisa Baldi, N.A. From Gruschin to Heisenberg via an isoperimetric problem, JMAA 2008.
- N.A., Fausto Ferrari, Francescopaolo Montefalcone CC-distance and metric normal of smooth hypersurfaces in sub-Riemannian Carnot groups, preprint 2009.
- N.A. Distance to a curve in the Heisenberg group, in preparation 2012.
- Fausto Ferrari, N.A. A variational approximation of the perimeter with second order penalization in the Heisenberg group, in preparation 2012.

Heisenberg group and CC geometry

- Group: $\mathbb{H}=\mathbb{R}^{3} \ni(x, y, t)$, $\left(x_{1}, y_{1}, t_{1}\right) \cdot\left(x_{2}, y_{2}, t_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, t_{1}+t_{2}+1 / 2\left(x_{1} y_{2}-y_{1} x_{2}\right)\right)$.
- Lie algebra: $X=\partial_{x}-\frac{y}{2} \partial_{t}, Y=\partial_{y}+\frac{x}{2} \partial_{t}, T=[X, Y]=\partial_{t}$: $\mathfrak{h}=\operatorname{span}\{X, Y, T\}$.
- Stratification: $H=V_{1}=\{X, Y\}, V=V_{2}=\left[V_{1}, V_{2}\right]=\operatorname{span}\{T\}$.
- The CC length of a curve: $\gamma:[a, b] \rightarrow \mathbb{H}, \dot{\gamma}=\alpha X+\beta Y+m T$ is

CC length

length $(\gamma)=\int_{a}^{b} \sqrt{\alpha(\tau)^{2}+\beta(\tau)^{2}+\infty^{2} \cdot m\left(\tau^{2}\right)} d \tau$.

- γ is horizontal if $m \equiv 0$ (iff length $(\gamma)<\infty$, iff $\dot{\gamma} \in H$).
- $d(P, Q)=\inf \{\operatorname{length}(\gamma): \gamma(a)=P, \gamma(b)=Q\}$.
- d is a distance on \mathbb{H}, realized by the length of geodesics.
- $d(O,(x, y, t)) \approx\left(\left(x^{2}+y^{2}\right)^{2}+t^{2}\right)^{1 / 2}$.
- $\gamma=(x, y, t)$ is horizontal iff $d t=\frac{x d y-y d x}{2}$: we can give an interpretation of length in terms of areas.
$\Delta t=\int_{\pi(\gamma)} \frac{\frac{x d y-y d x}{2}}{2}=\iint_{\operatorname{int}(\pi(\gamma))} d x d x=\operatorname{Area}(\operatorname{int}(\pi(\gamma)))$.

Geodesics:

$\operatorname{lugth}(\gamma)=$ Euc-lugth $(\pi(\sigma))$
Geodesic between 0 an $I P$:
Given Area rend OP D
find $(\bar{\gamma})$ in \mathbb{R}^{2} joining (O) and \bar{P}) making un ere A rue with OP shortest with the above:

DIDO's problem.

- They ar horizontel curves projecting to circles;
- They are length minimizing along the length of the cinch.

Ball of no Mines R in $\mid t$ t-axis: CuT-Locus of 0

Geodesics

- For each horizontal v at P there are ∞^{1} geodesics η leaving P such that $\dot{\eta}(0)=v$.
- For each $\epsilon>0$ there is a geodesic leaving O which is length minimizing for a time $<\epsilon$.
- If $\eta(0)=P, \dot{\eta}(0)=v$ and η projects to a circle having radius $r>0$ we write $\eta=\eta_{P, v, 1 / r}$.
Metric \rightarrow Hausdorff measures $\mathcal{H}^{a}(a>0)$ and dimensions $\operatorname{dim}_{\mathcal{H}}$.
- $\operatorname{dim}_{\mathcal{H}}(\mathbb{H})=4$ and $d \mathbb{H}^{4}=d x d y d t$ is the Haar measure of \mathbb{H}.
- $\operatorname{dim}_{\mathcal{H}}(t-$ axis $)=2$ and $d \mathbb{H}_{t-\text { axis }}^{2}=d t$ is the Haar measure of the t-axis.
- $\operatorname{dim}_{\mathcal{H}}(x-$ axis $)=1$ and $d \mathbb{H}_{x-\text { axis }}^{1}=d x$ is the Haar measure of the x-axis.
- $\operatorname{dim}_{\mathcal{H}}(x, t-$ plane $)=3$ and $d \mathbb{H}_{x, t-\text { plane }}^{3}=d x d t$ is the Haar measure of the x, t-plane.
- $\operatorname{dim}_{\mathcal{H}}(x, y-$ plane $)=3$ and $d \mathbb{H}_{x, y \text {-plane }}^{3}=\sqrt{x^{2}+y^{2}} d x d y$.
- Explanation: $\lambda \cdot(x, y, t)=\left(\lambda x, \lambda y, \lambda^{2} t\right)$ defines the right dilations (length-areas, stratification...).
S a smooth orientable surface in $\mathbb{H} ; H_{P}=\operatorname{span}\left\{X_{P}, Y_{P}\right\} ; T_{P} S$: the plane tangent to S at P.
- $C \in S$ is characteristic iff $H_{C}=T_{C} S$.
- Characteristic points form a small set $\left(\operatorname{dim}_{\mathcal{H}}(\right.$ Characteristic $\left.\operatorname{set}(S)) \leq 2\right)$.
- Simply connected compact S 's have characteristic points.
- If $P \notin$ Characteristic $\operatorname{set}(S)$ then $\operatorname{dim}\left(H_{P} \cap T_{P} S\right)=1$, hence
- $S \backslash$ Characteristic set (S) is foliated by horizontal curves.
- $H_{P} \ominus\left(H_{P} \cap T_{P} S\right)$ is the direction normal to S at P.
- If $\langle\cdot, \cdot\rangle$ makes X, Y into a orthonormal system for H, $H_{P} \ominus\left(H_{P} \cap T_{P} S\right)=\operatorname{span}\left\{\nu_{P}\right\}$ with $\left\langle\nu_{P}, \nu_{P}\right\rangle=1$.
- $\pm \nu_{P}$ is the horizontal vector normal to S at its noncharacteristic point P.
- Choose ν_{P} together with an orientation of S.

Surfaces in \mathbb{H}

S is wake by dorizontel curves but for its (small) chonecturistic set

Distance to a surface

- S : a smooth surface in $\mathbb{H}, S=\partial \Omega, \Omega$ open and bounded, ν inward horizontal normal.
- $d_{S}(P): \inf \{d(P, Q): Q \in S\}$.
- Problem I: smoothness properties of d_{s} ?
- Problem II: given Q in S, what can we say about the set $\mathcal{N}_{Q} S=\left\{P \in \mathbb{H}: d_{S}(P)=d(P, Q)\right\}$?
- $\mathcal{N}_{Q} S$ is the metric normal to S at Q.

The quest for the metric normal

- Sub-Riemennien geometry:

How to we find
the night cervetanc?

$$
x, y \text {-plow in } H H
$$

Metric normal to a smooth surface

Theorem (A., F. Ferrari)

S a C^{1} surface in \mathbb{H} and $Q \in S$. Then

$$
\mathcal{N}_{Q} S \subseteq \eta_{Q, \nu_{Q} S, 2 / d\left(Q, C\left(\Pi_{Q} S\right)\right)} \text { is a subarc containing } Q \text {. }
$$

If S is $C^{1,1}$ and Q in noncharacteristic, the Q in the interior of the arc. If Q is characteristic, then $\mathcal{N}_{Q} S=\{Q\}$.

The imaginary curvature of S at Q is $\kappa_{S}(Q)=2 / d\left(Q, C\left(\Pi_{Q} S\right)\right)$: the curvature of the geodesic metrically normal to S at Q. The cut-locus of S contains the endpoints of the geodesics' arcs $\mathcal{N}_{Q} S$ as Q varies on S.

Metric exponential

$\mathcal{E x p}_{S}: S \times \mathbb{R} \rightarrow \mathbb{H},(Q, \tau) \mapsto\left(\mathcal{N}_{S} Q\right)(\tau)=P$.

- $d_{S}(P)=|\tau|$.
- Signed distance from $S: \delta_{S}(P)=\tau:= \begin{cases}d_{S}(P) & \text { if } P \in \Omega \\ -d_{S}(P) & \text { if } P \notin \Omega\end{cases}$

Theorem (A., F. Ferrari)

- There \mathcal{U} open in $(S \backslash\{$ characteristic set $\}) \times \mathbb{R}$ such that $\mathcal{E x p}_{S}: \mathcal{U} \rightarrow \mathbb{H}$ is a diffeomorphism (if S is $C^{1,1}$).
- If $P \rightarrow\left[\mathcal{E x p}_{S}\right]^{-1}(P)=(Q, \tau), \tau=\delta_{S}(P)$ and $\nabla_{H} \delta_{S} \in \mathcal{C}(\mathcal{U})$.
$\nabla_{H} f=X f \cdot X+Y f \cdot Y$ is the horizontal gradient.
- The mean curvature of S at Q is $h_{S}(Q)=\Delta_{h} \delta_{S}(Q)$, where $\Delta_{h}=X X+Y Y$.
- The horizontal Hessian of $f \mathbb{H} \rightarrow \mathbb{R}$ is $\operatorname{Hess}_{h} f=\left(\begin{array}{ll}X X f & Y X f \\ X Y f & Y Y f\end{array}\right)$.
- Consider the matrices $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

Theorem (A., F. Ferrari)

$\operatorname{Hess}_{h} \delta_{S}=\lambda_{S} \otimes \lambda_{S} \cdot\left(h_{S} I+\kappa_{S} J\right)$.

Distance to a curve

- $\gamma: I=(a, b) \rightarrow \mathbb{H}, \dot{\gamma}=\alpha X+\beta Y+m T$
- $d_{\gamma}(P)=\inf \{d(P, Q): Q \in \gamma(I)\}$.
- Problem I: smoothness properties of d_{γ} ?
- Problem II: given Q in $\gamma(I)$, what can we say about the set $\mathcal{N}_{Q} \gamma=\left\{P \in \mathbb{H}: d_{\gamma}(P)=d(P, Q)\right\}$?

Straight lines.

Suppose γ is a straight line (i.e. a coset of a one-parameter subgroup of HI).
Horizontal and non-horizontal lines behave much differently.

- ℓ_{m} : straight line through O with $\dot{\ell}=X+m T$.
- For P_{1}, P_{2} in $\mathbb{H}: \ell_{m} \cdot P_{1}$ and $\ell_{m} \cdot P_{2}$ are metrically parallel: $d\left(Q_{1}, \ell_{m} \cdot P_{2}\right)$ is independent of $Q_{1} \in \ell_{m} \cdot P_{1}$.
- Quotient metric on $\mathbb{H} / \ell_{m}:\left(\ell_{m} \cdot P_{1}, \ell_{m} \cdot P_{1}\right) \mapsto d\left(\ell_{m} \cdot P_{1}, \ell_{m} \cdot P_{1}\right)$.

Projecting Heisenberg onto Gruschin

Theorem (A., A. Baldi)

(1) $\left(\mathbb{H} / \ell_{m}, d\right)$ is isometric to the Gruschin plane $\left(\mathbb{R}^{2}, d s^{2}\right)$, $d s^{2}=d u^{2} \frac{d v^{2}}{u^{2}}$
(2) ℓ_{m} prjects to a point of the critical line $u=0$ iff it is horizontal (iff $m=0$).

Distance to a straight line

Corollary

- If ℓ_{m} is not horizontal, then $d_{\ell_{m}}$ is smooth in a neighborhood of ℓ_{m}.
- If ℓ_{m} is horizontal, then $d_{\ell_{m}}$ is not smooth in any neighborhood of ℓ_{m}.

This leaves open the problem of understanding $\mathcal{N}_{\ell_{m}} Q$: the surface metrically normal to ℓ_{m} at Q.

The quest for the surface metrically normal to a curve: non-horizontal case.
$\gamma: I=(a, b) \rightarrow \mathbb{H}, \dot{\gamma}=\alpha X+\beta Y+m T, m \neq 0$ pointwise, $\alpha^{2}+\beta^{2} \equiv 1$.

$\eta=\eta_{Q, b}, b \in \mathbb{T}$.

Regularity of the distance function.

The above construction allows one to construct a metric exponential map

Exponential

$\mathcal{E x p}_{\gamma}: \gamma(I) \times \mathbb{T} \times \mathbb{R}^{+} \rightarrow \mathbb{H}, \mathcal{E}^{\operatorname{Xp}}(Q, b, \tau)=\eta_{Q, b}(\tau)$.

Theorem

- The map $\mathcal{E} \times p_{\gamma}$ is invertible near $\gamma(I)$ and $d_{\gamma}\left(\mathcal{E} \times p_{\gamma}(Q, b, \tau)\right)=\tau$ for small τ.
- d_{γ} is smooth (C^{1} if γ is C^{2}) near $\gamma(I)$.

The case of horizontal curves is quite the opposite.

Theorem

If γ is a horizontal curve, then for all Q in $\gamma(I)$ and $\epsilon>0$ there is P such that $d(Q, P)<\epsilon$, but d_{γ} is not differentiable (in the Euclidean case) at P.

An application of the positive result.

Theorem

Let $S=\partial \Omega$ be a compact C^{2} surface in \mathbb{H} and fix $\epsilon>0$. Then there exists a C^{2} surface $S_{\epsilon}=p a r t i a l \Omega_{\epsilon}$ without characteristic points such that:

- $\mathcal{H}^{4}\left(\Omega_{\epsilon} \Delta \Omega\right)<\epsilon$;
- $\left|\mathcal{H}^{3}\left(S_{\epsilon}\right)-\mathcal{H}^{3}(S)\right|<\epsilon$.

An application of the negative result's proof.

Theorem

Let $E \subset \mathbb{H}$ be a closed subset and let Cut-locus(E) be its cut-locus.
Then for all open metric balls B in $\mathbb{H}, B \cap \operatorname{Cut}$-locus (E) is not an arc of a horizontal curve.

Since the cut-locus can not either have isolated points, we have the following guess.

Conjecture

For each metric open ball B in \mathbb{H} intersecting the cut-locus of E it must be $\mathcal{H}^{2}(B \cap \operatorname{Cut}-\operatorname{locus}(E)) \geq 0$.

Comments

- Initial motivation: extending a result of Fonseca e Mantegazza from \mathbb{R}^{n} to \mathbb{H} (Bruno Franchi's question).
- Some of the above is proved for more general Carnot groups in joint work with Ferrari e Montefalcone.
- A more general study of the cut-locus might be interesting.
- Ferrari e Valdinoci have interesting applications of some of the above to some nonlinear PDE's.
- Most results await sharp regularity versions of themselves.

Happy birthday Gianni!

