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Notation: D = {z ∈ C : |z| < 1} is the unit disc in C. Its boundary is
the unit circle S = {z ∈ C : |z| = 1}. H(D) is the space of the holomorpihc
functions on D; h(D) is the space of the harmonic functions on D. The spaces
`2(N), `2(Z) are the `2-spaces of C-valued sequences with indices in N, Z, re-
spectively:

a = {an}, b = {bn} : 〈a,b〉`2 =
∑

n

anbn.

The basic structure is induced by the inclusion N ↪→ Z:

`2(Z) = `2(N)⊕ `2(Z− N); `2(Z− N)
π−←− `2(Z)

π+−→ `2(N).

For E ⊆ Z, let χE(n) =

{
1, if n ∈ E

0, if n /∈ E
. Then, π+a = χN · a (pointwise multi-

plication), and π−a = χZ−N · a.

Definition 1 Let m = {mn : n ∈ Z} be a sequence in C and let

Mm : a 7→ma = {mnan}

be the corresponding multiplication operator. We say that m is a multiplier of
`2(Z) when Mm is a bounded operator on `2(Z).

Exercise 2 Show that m is a multiplier if and only if m ∈ `∞(Z) and that
|||Mm|||(`2,`2) = ‖m‖`∞ .

Definition 3 Let a = {an : n ∈ Z} be a sequence in C. The z-transform of a
is the formal series

Z[a](z) =
∑
n≥0

anzn +
∑
n>0

a−nzn =
∑
n∈Z

anr|n|einθ,

where z = reiθ ∈ D.

Remark 4 (i) If a ∈ `∞(Z), then the series defining Z[a] converges locally
totally (hence, locally uniformly) in D and Z[a] is harmonic in D.

(ii) If a ∈ `∞(N), then Z[a] is holomorphic in D.
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Definition 5 The analytic Hardy space H2(D) (what we will simply call the
Hardy space) is the image of `2(N) under Z:

H2(D) =
{
Z[a] : a ∈ `2(N)

}
.

The harmonic Hardy space is

h2(D) =
{
Z[a] : a ∈ `2(Z)

}
.

The product structure of `2(Z) transfers to h2(D) is an obvious way, and so does
the Hilbert inner product.

Recall that the series
f(z) =

∑
n≥0

anzn

converges for z ∈ D iff lim supn→∞ |an|1/n ≤ 1.

Lemma 6 Let f ∈ H(D), f(z) =
∑

n≥0 anzn. Then,∫ π

−π

|f(reiθ)|2 dθ

2π
↗
∫ π

−π

|f(eiθ)|2 dθ

2π
as r ↗ 1.

Proof.
∫ π

−π
|f(reiθ)|2 dθ

2π =
∑

n |an|2r2n ↗
∑

n |an|2 = ‖f‖2H2 as r ↗ 1.
Hence,

‖f‖2H2 = sup
r∈[0,1)

∫ π

−π

|f(reiθ)|2 dθ

2π
= lim

r∈[0,1)

∫ π

−π

|f(reiθ)|2 dθ

2π
.

Connection with Fourier series. Consider on S the normalized circular
measure. For E ⊂ S,

|E| =
∫ π

−π

χE(eiθ)
dθ

2π
.

Accordingly, Lp(S) , Lp(S, dθ
2π ).

For f ∈ L1(S) and n ∈ Z, define the nth Fourier coefficient of f to be

Ff(n) = f̂(n) =
∫ π

−π

f(eiθ)e−inθ dθ

2π
.

The Fourier transform f 7→ f̂ is an isometry from L2(S) to `2(Z). The Fourier
inversion formula tells us that f can be synthetized from f̂ :

f(eiθ) =
∑

n

f̂(n)einθ.

Here, the convergence of the series is in L2(S):∥∥∥∥∥∥f(eiθ)−
∑
|n|≤N

f̂(n)einθ

∥∥∥∥∥∥
L2(S, dθ

2π )

N→∞−−−−→ 0

The fact that, for f ∈ L2(S), the series actually converges a.e. is a very deep
theorem by L. Carleson.
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We have now two functions associated with a ∈ `2(Z):

F−1a(eiθ) =
∑

n

aneinθ,

Z[f ](reiθ) =
∑

n

anr|n|einθ.

The series F−1a converges in L2(S) and we also have convergence of (circular
slices of) Z[f ] to the ”boundary values” F−1a:

‖
∑

n

aneinθ −
∑

n

anr|n|einθ‖2L2(S) = ‖
∑

n

an(1− r|n|)einθ‖2L2(S)

=
∑

n

|an|2(1− r|n|)2 ↘ 0 as r ↘ 0,

by dominated convergence applied to series.
The operator P = Z ◦ F−1 is called the Poisson extension operator:

P [f ](reiθ) =
∑

n

f̂(n)r|n|einθ.

So far, we know that P maps L2(S) onto h2(D), isometrically. We use the
symbol H2(S) to denote the boundary values of functions in H2(D).

Problem 7 (Boundary values). Do we have pointwise convergence of the Pois-
son extension to the boudary values? More precisely, is it true that, if f ∈ h2(D),
then P [f ](reiθ)→ f(eiθ) as r → 1, θ − a.e.?

We will see that such is the case further on.

Proposition 8 For a function f ∈ L2(S) and for r ∈ [0, 1), define Pr[f ](eiθ)
def
=

P [f ](reiθ). Then,

(1) Pr is bounded on L2(S).

(2) Prf → f in L2(S) as r → 1.

(3) Pr sends real valued functions to real valued functions.

(4) Pr ◦ Ps = Prs.

Proof. We proved (2) above, (1) and (4) are obvious. (2) will be proved when
we introduce convolutions.

Exercise 9 Property (2) says that Pr → Id in the strong topology. It is not
true that Pr → Id in the operator norm. In fact, convergence in operator norm
is equivalent to the `2 inequality∑

n

|an|2(1− r|n|)2 ≤ C(r)
∑

n

|an|2,

with C(r) → 0 as r → 1. This fails, as one can see by choosing the right
sequence of ak = {ak,n, n ∈ Z}.
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A version of the H2-norm which only depends on the interior values
of f .

Proposition 10 Let f ∈ H(D) be holomorphic in the unit disc. Then,

‖f‖2H2(D) = |f(0)|2 +
∫

D
|f ′(z)|2 log |z|−2 dA(z)

π
, (1)

where dA is the Lebesgue measure on D, dA(x + iy) = dxdy.

Corollary 11

‖f‖2H2(D) ≈ |f(0)|2 +
∫

D
|f ′(z)|2(1− |z|2)dA(z). (2)

Proof. As R→ 1,

= |f(0)|2 +
∫
|z|≤R

|f ′(z)|2 log |z|−2 dA(z)
π

↗ |f(0)|2 +
∫

D
|f ′(z)|2 log |z|−2 dA(z)

π
.

On the other hand, using polar coordinates z = reiθ and the orthogonality of
the imaginary exponentials,

= |f(0)|2 +
∫
|z|≤R

|f ′(z)|2 log |z|−2 dA(z)
π

= |a0|2 +
∑
n≥1

|an|22n2

∫ R

0

r2n−2 log(r−2)rdr

and an integration by parts yelds

2n2

∫ R

0

r2n−2 log(r−2)rdr = tn log
1
t
|R0 +

∫ R

0

tn−1dt↗ 1, as R↗ 1.

Now, use monotone convergence for series.
To prove the Corollary, it is convenient to use a similar argument for the

expression on the R.H.S. of (2) and to make an easy comparison of positive
series.

Exercise 12 Give an alternative proof of Proposition 10 by means of Green’s
theorem. It might be useful to observe that, if f is holomorphic, then ∆|f |2 =
4|f ′|2.

Proposition 10 inserts H2(D) in the scale of the weighted Dirichlet spaces.

Definition 13 For f ∈ H(D) and α > −1, let

‖f‖2D(α) = |f(0)|2 +
∫

D
|f ′(z)|2(1− |z|2)α dA(z)

π
,

and let D(α) be the space of the functions for which ‖f‖D(α) < ∞. D(α) is
the weighted Dirichlet space defined by the weight (1− |z|2)α. D = D(0) is the
classical Dirichlet space and D(1) = H2(D) is the Hardy space.
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Reproducing kernel and reproducing formula.

Definition 14 Let H be a Hilbert space of holomorphic functions defined in an
open region Ω in C. H has reproducing kernel {Kz}z∈Ω if for all z ∈ Ω there
exists Kz ∈ H such that the reproducing formula holds:

f(z) = 〈f,Kz〉H, ∀f ∈ H.

If a reproducing kernel exists, H is called a RKHS (reproducing jkernel Hilbert
space).

Definition 15 Suppose that z ∈ Ω and that the functional ”evaluation at z”,
H ηz−→ C, ηz(f) = f(z), is bounded on H. Then, we say that H has bounded
point evaluation at z.

Theorem 16 H is a reproducing kernel Hilbert space iff it has bounded point
evaluation at all z ∈ Ω.

Proof. (=⇒) |ηz(f)| = |f(z)| = |〈f,Kz〉|H ≤ ‖f‖H‖Kz‖H.
(⇐=) Since ηz ∈ H∗, by Riesz’ Representation Theorem there exists Kz ∈
H ∀f ∈ H : f(z) = ηz(f) = 〈f,Kz〉|H.

Some properties of reproducing kernels. Let K(z, w) = Kz(w). Then:

(i) K(w, z) = K(z, w) = 〈Kw,Kz〉H.

(ii) K(z, z) = ‖Kz‖2H.

(iii) ‖ηz‖H∗ = ‖Kz‖H.

(iv) If {φn}n is any o.n.b. for H, then

K(z, w) =
∑

n

φn(z)φn(w).

Here convergence is in H-norm for each fixed z.

Theorem 17 The reproducing kernel for H2(D) is

K(z, w) =
1

1− zw
.

Hence, we have the reproducing formula:

f(z) = f(0) +
∫

D

f ′(w)w
(1− zw)2

log |w|−2 dA(w)
π

.

Proof. Let f(z) =
∑

n≥0 anzn. Then,

f(z) =
∑
n≥0

anzn = 〈f,Kz〉H2 ,

with
Kz(w) =

∑
n≥0

znwn =
1

1− zw
.
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The second assertion follows by inserting the reproducing kernel in the (polar-
ized1 version of) the expression (1) for the H2-norm.

Problem 18 (L. Carleson; Shapiro and Shields). Let S = {zk : k ∈ N} ⊂ D
be a sequence and define the operator

TSf =
{
〈f,

ηz

‖ηz‖H2
〉H2

}
=
{

f(z)
‖ηz‖H2

}
.

By the bounbed evaluation property of H2(D), we have that TS : H2(D) →
`∞(S) is bounded. The sequence S is interpolating for H2(D) if the operator
TS boundedly maps H2(D) onto `2(S).

The problem is giving a geometric characterization of the interpolating se-
quences for H2(D).

The into part (boundedness from H2(D) to `2(S)) of the definition of interpo-
lating sequences can be so reformulated. Consider the positive measure µ = µS

on D given by

µS =
∑
zj∈S

δzj

‖ηz‖2H2

.

Then, TS is bounded from H2(D) to `2(S) if and only if∫
D
|f |2dµ ≤ C(µ)2‖f‖2H2(D). (3)

We say that a measure satisfying (3) is a Carleson measure for H2(D).

Problem 19 (L. Carleson). Give a geometric characterization of the Carleson
measures for H2(D).

Exercise 20 Recall that the Dirichlet space is defined by the norm

‖f‖2D = |f(0)|2 +
∫

D
|f ′(z)|2 dA(z)

π
.

(i) Express the norm ‖f‖D in terms of the Fourier coefficients of f(z) =∑
n≥0 anzn.

(ii) Find the reproducing kernel for D. (As a byproduct, this shows that D
has bounded point evaluation).

(iii) Write down a reproducing formula for D.

Multipliers. Let h ∈ H(D). h ∈ M(H2(D)) is a multiplier of H2(D) if the
multiplication operatorMh : f 7→ hf is bounded on H2(D).

Definition 21 The Hardy space H∞(D) is the space of the bounded holomor-
phic functions on D, endowed with the sup-norm.

1Here is the expression:

〈f, g〉H2(D) = f(0)g(0) +

Z
D

f ′(z)g′(z) log |z|−2 dA(z)

π
.
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Theorem 22 The bounded holomorphic functions exhaust the multiplier space,
M(H2(D)) = H∞(D). Moreover,

|||Mh|||H2(D) = ‖h‖H∞(D).

Proof. H∞ ⊆M(H2). In fact,

‖Mhf‖2H2
r→1←−

∫ π

−π

|h(reiθ)|2 · |f(reiθ)|2 dθ

2π

≤ ‖h‖2H∞
∫ π

−π

|f(reiθ)|2 dθ

2π
r→1−→ ‖h‖2H∞‖f‖2H2

In particular, |||Mh|||H2 ≤ ‖h‖H∞ .
In the other direction,

H2 Mh−→ H2 ηz−→ C

is bounded, then

|f(z)h(z)| = |(ηz ◦Mh)f | ≤ ‖ηz‖H2∗ |||Mh||| · ‖f‖H2 ,

then

‖ηz‖H2∗ |h(z)| = sup
f∈H2

∣∣∣∣f(z)h(z)
‖f‖H2

∣∣∣∣
≤ ‖ηz‖H2∗ |||Mh|||,

hence ‖h‖H∞ ≤ |||Mh|||H2 .2

Exercise 23 Deduce from the proof of Theorem 22 the following. If H is a
Hilbert space of analytic functions on D with bounded point evaluation, then
|||Mh|||H = ‖h‖H∞(D).

Problem 24 (L. Carleson). Find all sequences S = {zj : j ≥ 0} in D such
that the functional h 7→ {h(zj) : j ≥ 0} maps H∞(D) onto `∞(S).

Problem 25 (Nevanlinna-Pick). Characterize all sequences z = {zj}nj=1 ⊂ D
(points) and w = {wj}nj=1 ⊂ D (values) such that there exists h ∈ H∞(D) with
‖h‖H∞ ≤ 1 and h(zj) = wj, j = 1, . . . , n.

Multiplications and translations. For f, g ∈ L1(S), define the convolution
of f and g:

f ∗ g(eiτ ) =
∫ π

−π

f(ei(τ−θ))g(eiθ)
dθ

2π
.

Then f ∗ g ∈ L1(S) and f̂ ∗ g = f̂ · ĝ. Hence, the convolution operator Cg : f 7→
g ∗ f translates into a multiplication operator on the Fourier side. The converse
is much more problematic (it is false, as long as we talk about functions).

2A problem would arise if ‖ηz‖H2∗ = 0, i.e. if all functions of H2 had a common zero at
z. Since 1 ∈ H2, this is not the case.
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Definition 26 A translation3 on S is a map of the form Tτ : eiθ 7→ ei(θ−τ).
Let L : L2(S)→ L2(S) is an operator which commutes with translations if

L ◦ Tτ = Tτ ◦ L, ∀τ ∈ R.

Theorem 27 Let L : L2(S)→ L2(S) be a bounded operator. Then, L commutes
with translations if and only if there exists a sequence l = {ln}n∈Z ∈ `∞, such
that

L̂f(n) = lnf̂(n).

Moreover, |||L|||L2(S) = ‖l‖`∞ .

Sometimes, we write ln = L̂(n).
Proof. (=⇒) Consider the characters γn(eiθ) = einθ, n ∈ Z. We start by

proving that they diagonalize L,

Lγn(eiθ) = lnγn(eiθ),

for suitable constants ln.
Clearly, Tτγn(eiθ) = γn(eiθ)e−inτ . Since L commutes with translations,

Lγn(ei(θ−τ ) = (Tτ ◦ L)γn(eiθ) =
(L ◦ Tτ )γn(eiθ) = L(e−inτγn)(eiθ) = e−inτLγn(eiθ)

It would be tempting now to set τ = θ to obtain Lγn(τ) = γn(τ)Lγn(1) and to
let ln = Lγn(1). Unfortunately the equality above is in the L2 sense, so we can
not really evaluate our functions at points. We pick however the relation

Lγn(ei(θ−τ ) = e−inτLγn(eiθ)

and we Fourier transform it:

L̂γn(m) = einτ

∫ π

−π

Lγn(θ − τ)e−imθ dθ

2π

= ei(n−m)τ

∫ π

−π

Lγn(θ − τ)e−im(θ−τ) dθ

2π

= ei(n−m)τ L̂γn(m),

where translation invariance of the measure dθ
2π was used to pass to the last

line. Since equality holds for all τ ∈ R, L̂γn(m) = 0 whenever n 6= m. i.e.,
Lγn(eiθ) = L̂γn(n)γn(eiθ). Since the right hand side of the last equality is a
continuous function, we can evaluate at points: Lγn(1) = L̂γn(n) = ln. Also,

|ln| = |L̂γn(n)| ≤ |||L||| · ‖γn‖H2 = |||L|||,

so we have the estimate ‖l‖`∞ ≤ |||L|||.
Using this special case and passing to the Fourier side, we see that

L̂f(n) = lnf̂(n) and |||L|||L2(S) ≥ ‖l‖`∞

(⇐=) It is easy and it is left as an exercise.
3In fact, a rotation!
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As an example, let consider Pr, the ”sliced” Poisson kernel. We have com-
puted P̂r(n) = r|n|, so we can reconstruct the convolution kernel:

Pr[f ](eiθ) = Pr ∗ f(eiθ),

where the inverse Fourier formula gives

Pr(eiθ) =
∑
n∈Z

r|n|eiθ =
1− r2

|1− reiθ|
.

In particular, we have that

(1) Pr > 0, hence Pr sends real valued (positive) functions to real valued
(positive) functions. In particular, this finishes the proof of Proposition 8.

(2)
∫ π

−π
Pr(eiθ) dθ

2π = 1 (integrate the series term-by-term).

(3) limr→1 Pr(eiθ)→ 0 uniformly in ε ≤ |θ| ≤ π, for all ε > 0.

We also have translations in Z. Translation invariant operators on `2(Z) are
Fourier transformed in multiplication operators on L2(S).

Exercise 28 For a, b ∈ `1(Z), define

a ∗ b(n) =
∑
m∈Z

an−mbm.

(i) Show that a ∗ b ∈ `1(Z).

(ii) Show that a ∈ `1(Z) and b ∈ `p(Z) =⇒ a∗b ∈ `p(Z) (Young’s inequality).

(iii) For a ∈ `1(Z), let
â(eit) =

∑
n

ane−int.

Show that â ∈ C(S).

(iv) For a ∈ `2(Z), the definition of â gives a series which convergnes in L2(S)
to a function f ∈ L2(S), f(eit) =

∑
n a−ne−int.

(v) Show that, if b ∈ `1(Z), then Cb : a 7→ b∗a is a linear operator commuting
with translations, for which Ĉba = b̂ · â, where b̂ ∈ L∞(S).

(vi) Show that L : `2(Z) → `2(Z) is a bounded operator which commutes with
translations iff L̂a(eit) = m(eit)â(eit) for some m ∈ L∞(S).

Some useful and interesting operators. We consider some operators de-
fined on L2(S) and commuting with translation, either in S. Let L be such an
operator. To L we associate its Fourier transform L̂ = F ∈ `∞(Z), L̂(n) = ln,
and its Poisson extension P [L] = Z[FL],

P [L](reiθ) =
∑

n

lnr|n|einθ.
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For a function or an operator L and for r ∈ [0, 1), we can define Pr[L](eiθ) def=
P [L](reiθ), similarly to waht we did for a function in L2. Then, the function
Pr[L] is real analytic on S for all 0 ≤ r < 1, provided lim supn→∞ |ln|1/n ≤ 1,
and so

(L ◦ Pr)(f)(eiθ) = Pr[L](f)(eiθ) = (Pr[L]) ∗ f(eiθ),

as soon as f ∈ L2(S).

Proposition 29 If f ∈ L2(S), then

‖Pr[L] ∗ f − Lf‖L2(S) ↘ 0, as r ↗ 1.

The proof is identical to that of the analogous statement for the Poisson kernel.

Exercise 30 We have norm convergence of Pr[L] to L iff

lim
r→1

sup
n∈Z
|ln(1− r|n|)2| = 0.

Projection operators. Recall the projection operator L2(S)
π+→ H2(S),

where H2(S) is the space of the boundary values (in the L2 sense, so far) of
functions in H2(D). The multiplier of π+ is π̂+ = χN and so the Poisson
extension of π+ is

P [π+](z) = Z[χN](z) =
∑
n∈N

zn =
1

1− z
.

Let 1 be the constant unit function and let < 1 > the subspace of the constant
functions in H2(S). We also consider the space H2

0 (S) = H2(S)	 < 1 > and
the corresponding projection π0

+ : L2(S)→ H2
0 (S). We have then

P [π0
+](z) =

z

1− z
, P [π−](z) =

z

1− z
.

Hilbert transform (or conjugate function operator). The Hilbert transform
H : L2(S)→ L2(S) is the operator having as multiplier

Ĥ(n) =
1
i
sign(n).

Here, sign(0) = 0, by convention.

Theorem 31 The operator H is the only operator from L2(S) to itself such
that:

(i) H commutes with translations;

(ii) H maps R-valued functions into R-valued functions;

(iii) P [Hf ](0) = 0 for all f ∈ L2(S);

(iv) P [f ] + iP [Hf ] ∈ H2(D) for all f in L2(S).
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Property (iv) is the motivation for introducing H.
Proof. Let for the moment H be an operator satisfying (i)-(iv). By (i), H

has multiplier. By (iv), when n < 0, 0 = f̂ + iĤf̂ , hence Ĥ(n) = i. By (iii),
0 = Ĥ(0):

0 = P [Ĥf ](reiθ) =
∑

n

f̂(n)Ĥ(n)r|n|einθ, let r = 0.

Let f be R-valued. By (iv), g = −i(P [f ] + iP [Hf ]) = P [Hf ] − iP [f ] and
h = H(P [f ] + iP [Hf ]) = P [Hf ] + iP [H2f ] are holomorphic functions (we
use the commutativity of operators which commute with translations) and, by
(ii) and since P preserves the class of R-valued functions, g and h have the
same real part. By the open mapping theorem, g− h is an imaginary constant:
h(z)−g(z) = h(0)−g(0) = iP [f ](0). In particular, if f ∈ H2(S) and P [f ](0) = 0,
then −iP [f ] = P [Hf ]. Apply this to P [f ](z) = zn, n ≥ 1, to obtain that
Ĥ(n) = −i if n ≥ 1.

We have the formula

P [H](z) = −i
∑
n>0

zn + i
∑
n>0

zn = i

(
z

1− z
− z

1− z

)
=

2Imz

|1− z|2
.

Note that P [H](eiθ) = cot(θ/2). If we could pass in the limit as r → 1, we
would have the defintion of H as convolution operator:

Hf(eiτ ) =
∫ π

−π

f(ei(τ−θ)) cot
(

θ

2

)
dθ

2π
.

Unfortunately, the integral diverges in θ = 0. We might then try with a principal
value integral:

Hf(eiτ ) = lim
ε→0

∫ π

−π

χ|θ≥ε|(θ)f(ei(τ−θ)) cot
(

θ

2

)
dθ

2π
. (4)

It turns out that the operator defined by (4) maps L2(S) into itself, and more,
and that it coincides with the Hilbert transform defined earlier. It is the proto-
type of all singualr integral operators.

Remark 32 (i) Direct calculation or the meaning of the operators show that

H = i(π− − π0
+), P = P [π+] + P [π−].

(ii) P = P [Id] and P [H] are related by the fact that P [f ] + iP [Hf ] ∈ Hol(D):

(P [f ] + iP [Hf ])(z) =
1 + z

1− z
∈ Hol(D).

In particular, Id + iH = 2π+ − π<1>.

Shift operator. Consider the operator f
Mz→ zf , which is bounded on

h2(D). Its restriction to H2(D) is called the shift operator. On the Fourier side,
it is in fact just translation by 1 in Z:

Mz

(∑
n

anzn

)
=
∑

n

an−1z
n,

where a−1 = 0 by definition.
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