Geometry of the unit disc.

N.A.
13/2/07

Notation. C is the complex field; D = {z € C: |z| < 1} is the unit disc;
S = 0D is the unit circle.

Theorem 1 (Schwarz’ Lemma). Let f : D — D be a holomorphic function and
suppose that f(0) = 0. Then

Vz €D [f(2)] < |z] and |£'(0)] < 1. (1)

Moreover, if equality holds in (1) for some z € D or for the inequality involving
1/(0), then v € SVz € D: f(z) = vz.

Proof. Let r € (0,1) and let g,(z) = f(rz)/z, gr : D — C after removing the
singularity in z = 0. g, € H(D) N C(D) and

19-(9)| = | f(re®)| < 1 V6 € R,
hence, by the Maximum Principle!, |g,.(2)| < 1 for all z € D, i.e., for any fixed

w € D,
|f(2)l
2]

<

S|

whenever r > |z| and the first part of (1) follows. The second follows from the
first and the definition of derivative,
oy — 1o o (2)
F0) = ling z
Suppose we have equality in the first inequality for some zg € D and let g = g;.
Then |g(2)] <1 on D and g(z9) = v with |v| = 1. Thus the open mapping fails
for g, hence g is constant, g(z) = g(z0) = v.
Consider now tha case of equality in the second inequality. By Cauchy’s
formula, unless f is constant,

_ / _ 1 f(Z) 1 - 10 do
1= 1£/(0) = 2m'/|z|—r<1z2dz <o [ leen T <.

= or

where the strict inequality comes from |f(z)| < |z|, and we have so reached a
contradiction. m

lExercise. Show that the Maximum Principle for holomorphic functions is a consequence
of the Open Mapping Theorem.



Exercise 2 Let Q C C be a simply connected domain of C and let f,g: D — Q
be conformal (1—1, onto, holomorphic) maps of D onto C. Suppose that f(0) =

g(0) and that ‘;,ggg‘ = Iz,ggg‘. Deduce that f = g.

A Mébius map of C is any map ¢ having the form

az+b

i d a,b,c,d € C, ad — bc # 0.

p(z) =

Exercise 3 Show that any Mébius map is conformal and it sends straight lines
and circles into straight lines and circles.

Show that that the Mdébius maps mapping D onto itself are the ones having

the form
ez +a
=—— 0€R, aeD. 2
o)=L 0eR, a 2)

Observe that ¢(0) = a and ©'(0) = (1 — |a|?)e®.
Theorem 4 (i) The map ¢ in (2) is a conformal map of D onto itself.

(i) @ is the only conformal of D onto itself such that ¢(0) = a and @% =

ei@

(i4i) Let the M8bius group M be the set of the Mobius maps of D having as
product the composition of functions. Then M s a Lie group of dimension
3 and (a,e?) — ¢ = 49 is a 1 — 1 parametrization of M.

Exercise 5 Prove Theorem 4, or find a proof in a book of complex analysis.

We now look for a Riemannian geometry on ID which is invariant under the
action of M. Consider the Riemannian distance

ds? = p?(2)|dz?

on DD, where the positive density p is our unknown?. Invariance under M implies
that, for a € D,

zZ+a zZ+a
pla)ldz| = p<1+az>’d(1+az>

z+a\ 1—|al?
= (e okl

1+az/) |1+az|

Letting z = 0, we have

__pl0)

p(a’)_l_‘a|2'

Conventionally we choose p(0) = 1, and this gives

dz|?

ds? = 7| ) 3
TR )
The metric ds? in (3) is called the hyperbolic metric in D. By the calculation
above it is invariant under M&bius maps 4. Invariance under the general

2Any such metric is conformal to the Euclidean metric on D.



maps ©a,0 = Pa,0 © o0 follows immediately, since g ¢ is a Euclidean rotation
around the origin.

Equipped with this metric, D is homogeneous (we can move from point to
point by isometries) and isotropic (given hyperbolic-unit vectors u and v at
z € D, there is an isometry fixing z and whose differential takes u to v).

Exercise 6 Prove that, if f : D — D is holomorphic, then f is a contraction
for the hyperbolic metric:

d(f(2), f(w)) < d(z,w).
Moreover, if equality holds for some z,w € D, then f € M.
As a consequence of this exercise we have the two-point Pick’s property.

Proposition 7 Given two couple of points z1,2z0 € D and wy,ws € D, there
exists a holomorphic f : D — D such that f(z;) = wj if and only if d(w,ws) <
d(z1,229).

This is an interpolation problem with just two points z; and z5. The general-
ization of it to n points is called the Nevanlinna-Pick problem and it was solved
early in the 20th century. The extension to function spaces other than that of
the bounded holomorphic functions is nowadays a very active area of research
[AMcC].

We can now compute distances and geodesics. We denote by d(z,w) the
hyperbolic distance between z,w € D.
Step 1. Let 7 € [0,1). Then

1+7r

1
d(OJ’) = 5 log <1_T

> = arctanh(r).
The (only) geodesic passing through 0 and r is the intersection of the real line
with D.

Proof. Consider any absolutely continuous curve ¢t — a(t) +i8(t) = v(t)
joining 0 and r over the t-interval [0, 1]. Then,

tength(?) TEOIBE

0
1 .
t

L[,

g, T [o0)
> 782 = arctanh(r),

o 1—s
and we have equality all the way when ~(¢) = t/r. Uniqueness of the geodesic
is easily proved. m

Step 2. Let z,w € D. Then

1 L+ 1= zZ—w
d(z,w) = = log = arctanh — .
2 1— |2=w 1—wz
1-wz

The (only) geodesic passing through z and w is an arc of a circle (or a segment
of a straight line) which is orthogonal to S.
Proof. It follows from Step 1 and conformal invariance of the metric. =



Exercise 8 (i) Let (X,d) be a metric space and let ® : RT — RT be a strictly
increasing, concave function such that ®(0) = 0. Show that 6 = ®(d) is a metric
on X.

(i1) Show that the pseudo-hyperbolic metric § on D, §(z,w) =
fact a metric.

(iii) Show that § satisfies the enhanced triangular inequality

[z=w|

|1—zw|

is in

d(z,t) + 0(t, w)
W) S TS Gne(w):

Hyperbolic balls. Let r € (0,1). The map z € == = ¢(z) fixes the real
geodesic v = RN R, is orientation preserving on v and (hence) has no fixed
points. In fact, ¢ is isometrically equivalent (via a reparametrization of ) to a
translation of size R = d(0,r) in the direction of the negative real half-axis.

Consider the hyperbolic ball By, (€, €) of center £ radius d. After a rotation,we
can assume that & € [0,1). By invariance, ¢(Bp(r,€)) = Bp(0,€). Hence, the
equation defining By, (r,€) is

zZ—7T

T < tanh(e). (4)

We denote by D(zg,0) the Euclidean disc having center zy and radius 4.

Proposition 9 Let ¢y <1< 1. If Q € D is a region such that
D(z0,co(1 = [20])) € Q@ C D(z1,e1(1 — [z1])),

for some zg,2z1 € D, then Q is an approzimate hyperbolic ball.

More precisely, the first inequality implies that there is a hyperbolic ball of
(hyperbolic) radius €(co) which only depends on ¢y (and not on zy) which is
contained in @ and the second inequality implies that the hyperbolic diameter of
Q is bounded by a constant E(cy) which only depends on c;.

Exercise 10 Deduce Proposition 9 from Lemma 11 below.

Lemma 11 (i) All Fuclidean balls whose closure is contained in D are hyper-
bolic balls.
(ii) The hyperbolic ball B(r,tanh(e)) in (4) has the segment

{r—e r+6} (5)

1—er’ 1+er
as one of its diameters, it has Euclidean radius and center, respectively,

e(1—r?) r(1-é€?)
1—7r2e2’ 1—7r2e2’

The distance from B(r,tanh(e)) to 9D is

(I-r)1 —e).

1+re



Proof. (ii) is a calculation. In particular, if ¢(z) = fj‘;, it is easy to see that a

diameter of B(r,tanh(e)) must have the form [¢)~1(r),(r)], and this provides
a computationless proof of (5).

(i) it suffices to show that all intervals [a,b] with —1 < a < b < 1 the form
(5). Let

r—e

rle) = 1—re

We want to solve ¢,(€) = a, ¢.(—€) = b. Observe that ¢! = ¢,, hence
€ = ¢r(a), —e = p,(b). First we find r € (0,1) so that ¢, (a) + ¢,(b) = 0 (this
is always possible if —1 < a,b < 1), then we set ¢ = p,(a). ®

Decomposition of D. The hyperbolic geometry is the intrinsic geometry un-
derlying the Whitney decomposition of .
Introduce polar coordinates z = re?, r € [0,1), @ € [0,27]. Consider the

boxes )
Qmm:{rew:2"+1§1—7‘§2n,96{m m]}’

272n  2r2n
where n € N, 1 <m < 27,
Exercise 12 Show that the Qp m s are approximate hyperbolic balls.

We call the @ m qubes. They are essentially disjoint. To make them into a
disjoint partition of D we can modify them, e.g., by setting

~ ) —1
anm{r619:2”+1<1r§2",9€[m mn )}

2m2n ’ 2w2n

We now introduce a graph G = (T, ~) whose vertices are the qubes g € T (T
is the set of vertices), and such that there is an edge joining g,h € G (g ~ h) if
the closures of the qubes g and h have nonempty intersection. We can make G
into a metric space in the usual way. If g,h € T, a path of length n v between
g and h is a sequence tg = ¢,t1,...,t, = h such that t;_1 ~ t;. The distance
de(g,h) between g and h is the minimum n such that a path of length n joins
h and g. For each z € D, let [z] be the qube in G such that z € [z]. The
map z — [z] is not even continuous (it can’t: G is totally disconnected!). The
following proposition says that this map establishes a rough isometry between
(D,ds) and (G, dg).

Theorem 13 There are positive constants C1,Cy such that
Ci(da([2], [w]) +1) < da([z], [w]) +1 < Ca(d(z, w) + 1).

In other words, (DD, ds) and (G, d¢g) are biLipschitz equivalent at scale d = 1.

Proof. We prove the first inequality first. Let [z] = [20], [21], - -, [2n] = [W]
be a path I' between [z] and [w] in G. The path might be a single point [zg]
if z and w both belong to [z9]. To I' we associate a piecewise smooth curve 7
between z and w. Let v[(, €] be the hyperbolic geodesic between ¢, € D. Then
v = v[z0,21] U y[21,22] U ... ¥[2n-1,2n]. I T reduces to a single point, then
length(y) < C. Generally, length(y[zj-1],[2;]) < C, since z;_1 and z; belong
to neighboring boxes, hence

d(z,w) < length(y) < C - lengthg(T) + C.



Passing to the inf over I' on the right, we obtain the desired inequality.

To prove the converse, let v : [0,1] — D be a path between z and w. Let K
be a constant large enough to have that d(¢,&) > K = [{] # [¢]. Let zo = z,
t =0 ¢ R and let z; = y(t;), where

tj = inf {t > tj,1 : d(’y(t),’y(tjfl)) > K},

where the quantity on the right is set to be 1if V¢ > t;_1 : d(y(t),v(tj-1)) < K.
Now, we can find N points (N being a universal constant) such that there is
path T'; in G having length at most N which joins [z;_1] and [z;]. Assume
t1 < 1 and let T" be the union of all these paths. Then,

da([2], [w]) < lengtha(T') < C - length(y).

We are left with the possibility that ¢; = 1. In this case dg(z,w) < C. Overall,
after taking the infimum over all possible v, we have the second inequality in
the thesis. m

Rough isometries were introduced by M. Kanai [Ka] and they have become
a standard tool in the global analysis of manifolds.

The hyperbolic geometry of D is the right geometric setting for thinking of
positive harmonic functions.

Theorem 14 (Harnack’s inequality.) Let h : D — R* be a positive har-
monic function. If z,w € D, then

|log h(z) — log h(w)| < log = 2d(z,w). (6)

The inequality is sharp, in the sense that for any choice of z,w there is h such
that equality holds in (6).

Proof. By conformal invariance of harmonicity and of the pseudo-distance
— ‘ we can suppose that z = 0 and that w =r € [0,1). Fix R, r < R < 1.

1-Zw |’

By Poisson integrals,

g o R2—1r2 4o
h = h(Re®) ———— —
) /_ﬂ (Fe )|R619 —r|?2m
R? -2 [T 0. d0
< —— | R~
- (R—r)? /,,T (Fe )27r
R—r
= h(0).
R—1r 0)
Let R — 1. )
We have equality when h(z) = % is (essentially) the Poisson kernel. m
In particular,
1 h(z)
— < <4 7
4r = h(w) — " (7)

when z,w belong to a hyperbolic ball of radius r.



Exercise 15 Show that the hyperbolic distance in Ri is given by

dz|?
ds? = 192
y 4x?

Deduce a formula for the distance of two point z,w € Ri and the sharp form
of Harnack’s inequality.

A proof of Harnack’s inequality via Schwarz’ Lemma.Here is a short
proof of Harnack’s inequality. Let HT be the right half plane Re(w) > 0.
Schwarz’ Lemma for a holomorphic function f =u+iv:D — H™T is

Wi el
2u — 1—1z]?

(®)

The Cauchy-Riemann equations give |f'| = [Vu|, hence, choosing a geodesic in
D as path of integration between z; and zs,

dp(z1,22) > /22 1 _dTlP
_ [ricr
o 2u(2)
/z2 [Vu(2)| - |dz|
o 2u(2)
/22 |Vu(z) - dz|

- d2u(z)
/z1 2u(2)

1
B [log u(z2) — logu(z1)|,

Y

which is Harnack’s inbequality.

Actually, one can prove that Schwarz’ Lemma is equivalent to an enhanced
version of Harnack’s inequality. Let star with Schwarz’ Lemma for f = u + iv
from D into HT. Pushing forward to H* the hyperbolic metric in I, we find
that

P o
d+ (wy,we) = = log .
2 _ w‘
wa+wy
Schwarz’ Lemma says that
dp(z1,22) > dy+(f(21), f(22))- 9)
Let
D= |2t"=2
1-— zZ9221

Standard manipulation shows that (9) implies




[u(z1) — u(z2)]? + [v(z1) — v(z2)]?
[u(z1) + w(22)]? + [v(z1) —v(z2)]*

After rearranging, this inequality becomes:

D? 1
[uz1) + u(z2)]? — 5 lu(z) — (=) (10)

[o(e1) = 0(e2)? < T2
Now, replacing the LHS of (10) by 0, we obtain an inequality which is exactly
equivalent to Harnack’s inequality, hence we can view (10) as a sharper version
of Harnack’s. Observe that here we have a pointwise estimate for v, the function
conjugate to u.

On the other hand, if we let z; = re®i in (10), divide both sides of the
inequality by (6; — 02)? and let 63 — 61, we obtain (8), which is equivalent to
Schwarz’ Lemma.

A more suggestive form of (10) can be obtained by adding [u(z1) — u(22)]?
to both sides of the inequality:

4|Z1 — 22|2

[f(z1) = f(z)|* < AP0 - |w|2)u(21)u(22).

Exercise 16 Show that there is C > 0 such that, whenever h is a function
harmonic in D and such that 0 < h <1 in D, then the inequality

1
o (e ) = €6 )
holds for all z,w € D.

Hint (1).Consider the function f which conformally maps D onto S = {W :

0<Imw<1}:
1 1 1
wzf(z)zﬂlog( +Z—|—>.

1—2 2
Then, use Schwarz’ Lemma as above.
Hint. (2).Let z € D be a point such that h(z) < € and w € D such that
1 — h(w) < 6. Fix a hyperbolic diameter D such that 1t < 2 if d(¢,¢) < R.
Let C = (B, Ba, ..., By) be a chain of such balls (B; N B;11 # (), with z € By
and w € B,,. Show that Cn > log %. (This second argument has the advantage
that it can be transfered to the higher dimensional case).
The Bloch and the Dirichlet spaces. The holomorphic maps of D into itself
contract the hyperbolic metric. It is natural to ask which holomorphic maps
from D to C are Lipschitz w.r.t. the hyperbolic metric in D and the Euclidean
metric in C.

Theorem 17 The following properties are equivalent for a holomorphic func-
tion from D to C:

(i) There exists L > 0 s.t. |f(z) — f(w)] < L-d(z,w).
(i) We have that
sup (1 - [22)f ()] = lIflls < oo.

Moreover, || f||g is the smallest value of L for which (i) holds.



If (i) or (ii) hold, we say that f belongs to the Bloch space B.
Proof. Here is a sketch (exercise: fill in the details). To prove that (i)
implies (ii), use the fact that
lim d(z,w) _ .
w— 2z |Z—’w‘ 1—|Z‘2

To show the opposite implication, integrate

oy < Iflls
O

along all curves joining z and w. =
We can interprete (1 — |2|?)|f’(2)| as the the ratio between the hyperbolic
radius of an infinitesimal ball 8 in D and the Euclidean radius of its image, the
ball f(3). More specifically,
|[f(w) = f(2)]

lim sup ———>==1Iim inf
=00 d(w,z)=r r r—0 w:d(w,z)=r

= (1= IS ()]
(11)

Exercise 18 Prove (11). Hint:Show it for z = 0, then "move the statement
around” D by means of M6bius maps.

[f(w) = f(2)]

Let dA(z) = dzdy be the Lebesgue measure on D. Let f be holomorphic in D.
The Dirichlet semi-norm of f is

15 = ([ f'<z>|2dA<z>>1/2. (12)

Observe that the seminorm defined in (12) is conformally invariant: || f]|5 =
|f o ¥|l% whenever ¢ is an automorphism?® of D. In fact,

5 1/2
o= (fln- o)
(2)

and (1—|z]?)|f/(2)] is, as we saw before, conformally invariant, while (ldjw is
conformally invariant, being the measure associated with the hyperbolic metric.
The space D of the funcions f for which || f||% is called the Dirichlet space. To
make the seminorm into a norm, we let

Ifllo = [1£1 + £ (0)].

An extension of the Dirichlet space is given by the (diagonal) analytic Besov
spaces By, 1 < p < oo:

P 1/p
15, = ([l -l erg 2 ).

Clearly, [|fll, = [f o ¢, and D = Bs.
The analytic Besov spaces are the holomorphic counterparts of the Sobolev
spaces.

3i.e., a Mobius map: introduce the terminoloogy at the appropriate place.
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