Geometry of the unit disc.

N.A.

$$
13 / 2 / 07
$$

Notation. \mathbb{C} is the complex field; $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ is the unit disc; $\mathbb{S}=\partial \mathbb{D}$ is the unit circle.

Theorem 1 (Schwarz' Lemma). Let $f: \mathbb{D} \rightarrow \mathbb{D}$ be a holomorphic function and suppose that $f(0)=0$. Then

$$
\begin{equation*}
\forall z \in \mathbb{D}|f(z)| \leq|z| \text { and }\left|f^{\prime}(0)\right| \leq 1 \tag{1}
\end{equation*}
$$

Moreover, if equality holds in (1) for some $z \in \mathbb{D}$ or for the inequality involving $f^{\prime}(0)$, then $\exists v \in \mathbb{S} \forall z \in \mathbb{D}: f(z)=v z$.

Proof. Let $r \in(0,1)$ and let $g_{r}(z)=f(r z) / z, g_{r}: \mathbb{D} \rightarrow \mathbb{C}$ after removing the singularity in $z=0 . g_{r} \in H(\mathbb{D}) \cap C(\bar{D})$ and

$$
\left|g_{r}\left(e^{i \theta}\right)\right|=\left|f\left(r e^{i \theta}\right)\right|<1 \forall \theta \in \mathbb{R}
$$

hence, by the Maximum Principle ${ }^{1},\left|g_{r}(z)\right|<1$ for all $z \in \mathbb{D}$, i.e., for any fixed $w \in \mathbb{D}$,

$$
\frac{|f(z)|}{|z|} \leq \frac{1}{r}
$$

whenever $r>|z|$ and the first part of (1) follows. The second follows from the first and the definition of derivative,

$$
f^{\prime}(0)=\lim _{z \rightarrow 0} \frac{f(z)}{z}
$$

Suppose we have equality in the first inequality for some $z_{0} \in \mathbb{D}$ and let $g=g_{1}$. Then $|g(z)| \leq 1$ on \mathbb{D} and $g\left(z_{0}\right)=v$ with $|v|=1$. Thus the open mapping fails for g, hence g is constant, $g(z)=g\left(z_{0}\right)=v$.

Consider now tha case of equality in the second inequality. By Cauchy's formula, unless f is constant,

$$
1=\left|f^{\prime}(0)\right|=\left|\frac{1}{2 \pi i} \int_{|z|=r<1} \frac{f(z)}{z^{2}} d z\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| \frac{d \theta}{r}<1,
$$

where the strict inequality comes from $|f(z)|<|z|$, and we have so reached a contradiction.

[^0]Exercise 2 Let $\Omega \subset \mathbb{C}$ be a simply connected domain of \mathbb{C} and let $f, g: \mathbb{D} \rightarrow \Omega$ be conformal ($1-1$, onto, holomorphic) maps of \mathbb{D} onto \mathbb{C}. Suppose that $f(0)=$ $g(0)$ and that $\frac{f^{\prime}(0)}{\left|f^{\prime}(0)\right|}=\frac{g^{\prime}(0)}{\left|g^{\prime}(0)\right|}$. Deduce that $f=g$.

A Möbius map of \mathbb{C} is any map φ having the form

$$
\varphi(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C}, a d-b c \neq 0
$$

Exercise 3 Show that any Möbius map is conformal and it sends straight lines and circles into straight lines and circles.

Show that that the Möbius maps mapping \mathbb{D} onto itself are the ones having the form

$$
\begin{equation*}
\varphi(z)=\frac{e^{i \theta} z+a}{1+\bar{a} e^{i \theta} z}, \quad \theta \in \mathbb{R}, a \in \mathbb{D} \tag{2}
\end{equation*}
$$

Observe that $\varphi(0)=a$ and $\varphi^{\prime}(0)=\left(1-|a|^{2}\right) e^{i \theta}$.
Theorem 4 (i) The map φ in (2) is a conformal map of \mathbb{D} onto itself.
(ii) φ is the only conformal of \mathbb{D} onto itself such that $\varphi(0)=a$ and $\frac{\varphi^{\prime}(0)}{\left|\varphi^{\prime}(0)\right|}=$ $e^{i \theta}$.
(iii) Let the Möbius group \mathcal{M} be the set of the Möbius maps of \mathbb{D} having as product the composition of functions. Then \mathcal{M} is a Lie group of dimension 3 and $\left(a, e^{i \theta}\right) \mapsto \varphi=\varphi_{a, \theta}$ is a $1-1$ parametrization of \mathcal{M}.

Exercise 5 Prove Theorem 4, or find a proof in a book of complex analysis.
We now look for a Riemannian geometry on \mathbb{D} which is invariant under the action of \mathcal{M}. Consider the Riemannian distance

$$
d s^{2}=\rho^{2}(z)|d z|^{2}
$$

on \mathbb{D}, where the positive density ρ is our unknown ${ }^{2}$. Invariance under \mathcal{M} implies that, for $a \in \mathbb{D}$,

$$
\begin{aligned}
\rho(z)|d z| & =\rho\left(\frac{z+a}{1+\bar{a} z}\right)\left|d\left(\frac{z+a}{1+\bar{a} z}\right)\right| \\
& =\rho\left(\frac{z+a}{1+\bar{a} z}\right) \frac{1-|a|^{2}}{|1+\bar{a} z|}|d z| .
\end{aligned}
$$

Letting $z=0$, we have

$$
\rho(a)=\frac{\rho(0)}{1-|a|^{2}}
$$

Conventionally we choose $\rho(0)=1$, and this gives

$$
\begin{equation*}
d s^{2}=\frac{|d z|^{2}}{\left(1-|z|^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

The metric $d s^{2}$ in (3) is called the hyperbolic metric in \mathbb{D}. By the calculation above it is invariant under Möbius maps $\varphi_{a, 0}$. Invariance under the general

[^1]maps $\varphi_{a, \theta}=\varphi_{a, 0} \circ \varphi_{0, \theta}$ follows immediately, since $\varphi_{0, \theta}$ is a Euclidean rotation around the origin.

Equipped with this metric, \mathbb{D} is homogeneous (we can move from point to point by isometries) and isotropic (given hyperbolic-unit vectors u and v at $z \in \mathbb{D}$, there is an isometry fixing z and whose differential takes u to v).
Exercise 6 Prove that, if $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic, then f is a contraction for the hyperbolic metric:

$$
d(f(z), f(w)) \leq d(z, w)
$$

Moreover, if equality holds for some $z, w \in \mathbb{D}$, then $f \in \mathcal{M}$.
As a consequence of this exercise we have the two-point Pick's property.
Proposition 7 Given two couple of points $z_{1}, z_{2} \in \mathbb{D}$ and $w_{1}, w_{2} \in \mathbb{D}$, there exists a holomorphic $f: \mathbb{D} \rightarrow \mathbb{D}$ such that $f\left(z_{j}\right)=w_{j}$ if and only if $d\left(w_{1}, w_{2}\right) \leq$ $d\left(z_{1}, z_{2}\right)$.

This is an interpolation problem with just two points z_{1} and z_{2}. The generalization of it to n points is called the Nevanlinna-Pick problem and it was solved early in the 20th century. The extension to function spaces other than that of the bounded holomorphic functions is nowadays a very active area of research [AMcC].

We can now compute distances and geodesics. We denote by $d(z, w)$ the hyperbolic distance between $z, w \in \mathbb{D}$.
Step 1. Let $r \in[0,1)$. Then

$$
d(0, r)=\frac{1}{2} \log \left(\frac{1+r}{1-r}\right)=\operatorname{arctanh}(r)
$$

The (only) geodesic passing through 0 and r is the intersection of the real line with \mathbb{D}.

Proof. Consider any absolutely continuous curve $t \mapsto \alpha(t)+i \beta(t)=\gamma(t)$ joining 0 and r over the t-interval $[0,1]$. Then,

$$
\begin{aligned}
\operatorname{length}(\gamma) & =\int_{0}^{1} \sqrt{\frac{|\dot{\gamma}(t)|^{2}}{\left(1-|\gamma(t)|^{2}\right)^{2}}} d t \\
& \geq \int_{0}^{1} \frac{|\dot{\alpha}(t)|}{1-|\alpha(t)|^{2}} d t \\
& \geq \int_{0}^{r} \frac{d s}{1-s^{2}}=\operatorname{arctanh}(r)
\end{aligned}
$$

and we have equality all the way when $\gamma(t)=t / r$. Uniqueness of the geodesic is easily proved.
Step 2. Let $z, w \in \mathbb{D}$. Then

$$
d(z, w)=\frac{1}{2} \log \left(\frac{1+\left|\frac{z-w}{1-\bar{w} z}\right|}{1-\left|\frac{z-w}{1-\bar{w} z}\right|}\right)=\operatorname{arctanh}\left(\left|\frac{z-w}{1-\bar{w} z}\right|\right)
$$

The (only) geodesic passing through z and w is an arc of a circle (or a segment of a straight line) which is orthogonal to \mathbb{S}.

Proof. It follows from Step 1 and conformal invariance of the metric.

Exercise 8 (i) Let (X, d) be a metric space and let $\Phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a strictly increasing, concave function such that $\Phi(0)=0$. Show that $\delta=\Phi(d)$ is a metric on X.
(ii) Show that the pseudo-hyperbolic metric δ on $\mathbb{D}, \delta(z, w)=\frac{|z-w|}{|1-z \bar{w}|}$ is in fact a metric.
(iii) Show that δ satisfies the enhanced triangular inequality

$$
\delta(z, w) \leq \frac{\delta(z, t)+\delta(t, w)}{1+\delta(z, t) \delta(t, w)}
$$

Hyperbolic balls. Let $r \in(0,1)$. The map $z \in \frac{z-r}{1-r z}=\varphi(z)$ fixes the real geodesic $\gamma=\mathbb{R} \cap \mathbb{R}$, is orientation preserving on γ and (hence) has no fixed points. In fact, φ is isometrically equivalent (via a reparametrization of γ) to a translation of size $R=d(0, r)$ in the direction of the negative real half-axis.

Consider the hyperbolic ball $B_{h}(\xi, \epsilon)$ of center ξ radius d. After a rotation,we can assume that $\xi \in[0,1)$. By invariance, $\varphi\left(B_{h}(r, \epsilon)\right)=B_{h}(0, \epsilon)$. Hence, the equation defining $B_{h}(r, \epsilon)$ is

$$
\begin{equation*}
\left|\frac{z-r}{1-r z}\right| \leq \tanh (\epsilon) \tag{4}
\end{equation*}
$$

We denote by $D\left(z_{0}, \delta\right)$ the Euclidean disc having center z_{0} and radius δ.
Proposition 9 Let $c_{0}<_{1}<1$. If $Q \in \mathbb{D}$ is a region such that

$$
D\left(z_{0}, c_{0}\left(1-\left|z_{0}\right|\right)\right) \subset Q \subset D\left(z_{1}, c_{1}\left(1-\left|z_{1}\right|\right)\right)
$$

for some $z_{0}, z_{1} \in \mathbb{D}$, then Q is an approximate hyperbolic ball.
More precisely, the first inequality implies that there is a hyperbolic ball of (hyperbolic) radius $\epsilon\left(c_{0}\right)$ which only depends on c_{0} (and not on z_{0}) which is contained in Q and the second inequality implies that the hyperbolic diameter of Q is bounded by a constant $E\left(c_{1}\right)$ which only depends on c_{1}.

Exercise 10 Deduce Proposition 9 from Lemma 11 below.
Lemma 11 (i) All Euclidean balls whose closure is contained in \mathbb{D} are hyperbolic balls.
(ii) The hyperbolic ball $B(r, \tanh (\epsilon))$ in (4) has the segment

$$
\begin{equation*}
\left[\frac{r-\epsilon}{1-\epsilon r}, \frac{r+\epsilon}{1+\epsilon r}\right] \tag{5}
\end{equation*}
$$

as one of its diameters, it has Euclidean radius and center, respectively,

$$
\frac{\epsilon\left(1-r^{2}\right)}{1-r^{2} \epsilon^{2}}, \frac{r\left(1-\epsilon^{2}\right)}{1-r^{2} \epsilon^{2}}
$$

The distance from $B(r, \tanh (\epsilon))$ to $\partial \mathbb{D}$ is

$$
\frac{(1-r)(1-\epsilon)}{1+r \epsilon} .
$$

Proof. (ii) is a calculation. In particular, if $\psi(z)=\frac{z+\epsilon}{1+\epsilon z}$, it is easy to see that a diameter of $B(r, \tanh (\epsilon))$ must have the form $\left[\psi^{-1}(r), \psi(r)\right]$, and this provides a computationless proof of (5).
(i) it suffices to show that all intervals $[a, b]$ with $-1<a<b<1$ the form (5). Let

$$
\varphi_{r}(\epsilon)=\frac{r-\epsilon}{1-r \epsilon} .
$$

We want to solve $\varphi_{r}(\epsilon)=a, \varphi_{r}(-\epsilon)=b$. Observe that $\varphi_{r}^{-1}=\varphi_{r}$, hence $\epsilon=\varphi_{r}(a),-\epsilon=\varphi_{r}(b)$. First we find $r \in(0,1)$ so that $\varphi_{r}(a)+\varphi_{r}(b)=0$ (this is always possible if $-1<a, b<1$), then we set $\epsilon=\varphi_{r}(a)$.

Decomposition of \mathbb{D}. The hyperbolic geometry is the intrinsic geometry underlying the Whitney decomposition of \mathbb{D}.

Introduce polar coordinates $z=r e^{i \theta}, r \in[0,1), \theta \in[0,2 \pi]$. Consider the boxes

$$
Q_{n, m}=\left\{r e^{i \theta}: 2^{n+1} \leq 1-r \leq 2^{n}, \theta \in\left[\frac{m-1}{2 \pi 2^{n}}, \frac{m}{2 \pi 2^{n}}\right]\right\}
$$

where $n \in \mathbb{N}, 1 \leq m \leq 2^{n}$.
Exercise 12 Show that the $Q_{n, m}$'s are approximate hyperbolic balls.
We call the $Q_{n, m}$ qubes. They are essentially disjoint. To make them into a disjoint partition of \mathbb{D} we can modify them, e.g., by setting

$$
\tilde{Q}_{n, m}=\left\{r e^{i \theta}: 2^{n+1}<1-r \leq 2^{n}, \theta \in\left[\frac{m-1}{2 \pi 2^{n}}, \frac{m}{2 \pi 2^{n}}\right)\right\} .
$$

We now introduce a graph $G=(T, \sim)$ whose vertices are the qubes $g \in T(T$ is the set of vertices), and such that there is an edge joining $g, h \in G(g \sim h)$ if the closures of the qubes g and h have nonempty intersection. We can make G into a metric space in the usual way. If $g, h \in T$, a path of length $n \gamma$ between g and h is a sequence $t_{0}=g, t_{1}, \ldots, t_{n}=h$ such that $t_{i-1} \sim t_{i}$. The distance $d_{G}(g, h)$ between g and h is the minimum n such that a path of length n joins h and g. For each $z \in \mathbb{D}$, let $[z]$ be the qube in G such that $z \in[z]$. The map $z \mapsto[z]$ is not even continuous (it can't: G is totally disconnected!). The following proposition says that this map establishes a rough isometry between $(\mathbb{D}, d s)$ and $\left(G, d_{G}\right)$.

Theorem 13 There are positive constants C_{1}, C_{2} such that

$$
C_{1}\left(d_{G}([z],[w])+1\right) \leq d_{G}([z],[w])+1 \leq C_{2}(d(z, w)+1)
$$

In other words, $(\mathbb{D}, d s)$ and $\left(G, d_{G}\right)$ are biLipschitz equivalent at scale $d=1$.
Proof. We prove the first inequality first. Let $[z]=\left[z_{0}\right],\left[z_{1}\right], \ldots,\left[z_{n}\right]=[w]$ be a path Γ between $[z]$ and $[w]$ in G. The path might be a single point $\left[z_{0}\right]$ if z and w both belong to $\left[z_{0}\right]$. To Γ we associate a piecewise smooth curve γ between z and w. Let $\gamma[\zeta, \xi]$ be the hyperbolic geodesic between $\zeta, \xi \in \mathbb{D}$. Then $\gamma=\gamma\left[z_{0}, z_{1}\right] \cup \gamma\left[z_{1}, z_{2}\right] \cup \ldots \gamma\left[z_{n-1}, z_{n}\right]$. If Γ reduces to a single point, then length $(\gamma) \leq C$. Generally, length $\left(\gamma\left[z_{j-1}\right],\left[z_{j}\right]\right) \leq C$, since z_{j-1} and z_{j} belong to neighboring boxes, hence

$$
d(z, w) \leq \operatorname{length}(\gamma) \leq C \cdot \text { length }_{G}(\Gamma)+C
$$

Passing to the inf over Γ on the right, we obtain the desired inequality.
To prove the converse, let $\gamma:[0,1] \rightarrow \mathbb{D}$ be a path between z and w. Let K be a constant large enough to have that $d(\zeta, \xi) \geq K \Longrightarrow[\zeta] \nsim[\xi]$. Let $z_{0}=z$, $t=0 \in \mathbb{R}$ and let $z_{j}=\gamma\left(t_{j}\right)$, where

$$
t_{j}=\inf \left\{t>t_{j-1}: d\left(\gamma(t), \gamma\left(t_{j-1}\right)\right)>K\right\},
$$

where the quantity on the right is set to be 1 if $\forall t>t_{j-1}: d\left(\gamma(t), \gamma\left(t_{j-1}\right)\right) \leq K$. Now, we can find N points (N being a universal constant) such that there is path Γ_{j} in G having length at most N which joins $\left[z_{j-1}\right]$ and $\left[z_{j}\right]$. Assume $t_{1}<1$ and let Γ be the union of all these paths. Then,

$$
d_{G}([z],[w]) \leq \text { length }_{G}(\Gamma) \leq C \cdot \text { length }(\gamma) .
$$

We are left with the possibility that $t_{1}=1$. In this case $d_{G}(z, w) \leq C$. Overall, after taking the infimum over all possible γ, we have the second inequality in the thesis.

Rough isometries were introduced by M. Kanai [Ka] and they have become a standard tool in the global analysis of manifolds.

The hyperbolic geometry of \mathbb{D} is the right geometric setting for thinking of positive harmonic functions.

Theorem 14 (Harnack's inequality.) Let $h: \mathbb{D} \rightarrow \mathbb{R}^{+}$be a positive harmonic function. If $z, w \in \mathbb{D}$, then

$$
\begin{equation*}
|\log h(z)-\log h(w)| \leq \log \frac{1+\left|\frac{z-w}{1-\bar{z} w}\right|}{1-\left|\frac{z-w}{1-\bar{z} w}\right|}=2 d(z, w) \tag{6}
\end{equation*}
$$

The inequality is sharp, in the sense that for any choice of z, w there is h such that equality holds in (6).

Proof. By conformal invariance of harmonicity and of the pseudo-distance $\left|\frac{z-w}{1-\bar{z} w}\right|$, we can suppose that $z=0$ and that $w=r \in[0,1)$. Fix $R, r<R<1$. By Poisson integrals,

$$
\begin{aligned}
h(r) & =\int_{-\pi}^{\pi} h\left(R e^{i \theta}\right) \frac{R^{2}-r^{2}}{\left|R e^{i \theta}-r\right|^{2}} \frac{d \theta}{2 \pi} \\
& \leq \frac{R^{2}-r^{2}}{(R-r)^{2}} \int_{-\pi}^{\pi} h\left(R e^{i \theta}\right) \frac{d \theta}{2 \pi} \\
& =\frac{R-r}{R-r} h(0) .
\end{aligned}
$$

Let $R \rightarrow 1$.
We have equality when $h(z)=\frac{1-|z|^{2}}{|1-z|^{2}}$ is (essentially) the Poisson kernel.
In particular,

$$
\begin{equation*}
\frac{1}{4 r} \leq \frac{h(z)}{h(w)} \leq 4 r \tag{7}
\end{equation*}
$$

when z, w belong to a hyperbolic ball of radius r.

Exercise 15 Show that the hyperbolic distance in \mathbb{R}_{+}^{2} is given by

$$
d s^{2}=\frac{|d z|^{2}}{4 x^{2}}
$$

Deduce a formula for the distance of two point $z, w \in \mathbb{R}_{+}^{2}$ and the sharp form of Harnack's inequality.

A proof of Harnack's inequality via Schwarz' Lemma. Here is a short proof of Harnack's inequality. Let H^{+}be the right half plane $\operatorname{Re}(w)>0$. Schwarz' Lemma for a holomorphic function $f=u+i v: \mathbb{D} \rightarrow H^{+}$is

$$
\begin{equation*}
\frac{|d f|}{2 u} \leq \frac{|d z|}{1-|z|^{2}} \tag{8}
\end{equation*}
$$

The Cauchy-Riemann equations give $\left|f^{\prime}\right|=|\nabla u|$, hence, choosing a geodesic in \mathbb{D} as path of integration between z_{1} and z_{2},

$$
\begin{aligned}
d_{\mathbb{D}}\left(z_{1}, z_{2}\right) & \geq \int_{z_{1}}^{z_{2}} \frac{|d z|}{1-|z|^{2}} \\
& =\int_{z_{1}}^{z_{2}} \frac{\left|f^{\prime}(z) d z\right|}{2 u(z)} \\
& =\int_{z_{1}}^{z_{2}} \frac{|\nabla u(z)| \cdot|d z|}{2 u(z)} \\
& \geq \int_{z_{1}}^{z_{2}} \frac{|\nabla u(z) \cdot d z|}{2 u(z)} \\
& =\left|\int_{z_{1}}^{z_{2}} \frac{d u}{2 u(z)}\right| \\
& =\frac{1}{2}\left|\log u\left(z_{2}\right)-\log u\left(z_{1}\right)\right|
\end{aligned}
$$

which is Harnack's inbequality.
Actually, one can prove that Schwarz' Lemma is equivalent to an enhanced version of Harnack's inequality. Let star with Schwarz' Lemma for $f=u+i v$ from \mathbb{D} into H^{+}. Pushing forward to H^{+}the hyperbolic metric in \mathbb{D}, we find that

$$
d_{H^{+}}\left(w_{1}, w_{2}\right)=\frac{1}{2} \log \frac{1+\left|\frac{w_{1}-w_{2}}{\overline{w_{2}+w_{1}}}\right|}{1-\left|\frac{w_{1}-w_{2}}{\overline{w_{2}+w_{1}}}\right|} .
$$

Schwarz' Lemma says that

$$
\begin{equation*}
d_{\mathbb{D}}\left(z_{1}, z_{2}\right) \geq d_{H^{+}}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \tag{9}
\end{equation*}
$$

Let

$$
D=\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{2} z_{1}}\right|
$$

Standard manipulation shows that (9) implies

$$
D^{2} \geq\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{\overline{f\left(z_{1}\right)}+f\left(z_{2}\right)}\right|^{2}
$$

$$
=\frac{\left[u\left(z_{1}\right)-u\left(z_{2}\right)\right]^{2}+\left[v\left(z_{1}\right)-v\left(z_{2}\right)\right]^{2}}{\left[u\left(z_{1}\right)+u\left(z_{2}\right)\right]^{2}+\left[v\left(z_{1}\right)-v\left(z_{2}\right)\right]^{2}} .
$$

After rearranging, this inequality becomes:

$$
\begin{equation*}
\left[v\left(z_{1}\right)-v\left(z_{2}\right)\right]^{2} \leq \frac{D^{2}}{1-D^{2}}\left[u\left(z_{1}\right)+u\left(z_{2}\right)\right]^{2}-\frac{1}{1-D^{2}}\left[u\left(z_{1}\right)-u\left(z_{2}\right)\right]^{2} \tag{10}
\end{equation*}
$$

Now, replacing the LHS of (10) by 0 , we obtain an inequality which is exactly equivalent to Harnack's inequality, hence we can view (10) as a sharper version of Harnack's. Observe that here we have a pointwise estimate for v, the function conjugate to u.

On the other hand, if we let $z_{j}=r e^{i \theta_{j}}$ in (10), divide both sides of the inequality by $\left(\theta_{1}-\theta_{2}\right)^{2}$ and let $\theta_{2} \rightarrow \theta_{1}$, we obtain (8), which is equivalent to Schwarz' Lemma.

A more suggestive form of (10) can be obtained by adding $\left[u\left(z_{1}\right)-u\left(z_{2}\right)\right]^{2}$ to both sides of the inequality:

$$
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|^{2} \leq \frac{4\left|z_{1}-z_{2}\right|^{2}}{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)} u\left(z_{1}\right) u\left(z_{2}\right)
$$

Exercise 16 Show that there is $C>0$ such that, whenever h is a function harmonic in \mathbb{D} and such that $0<h<1$ in \mathbb{D}, then the inequality

$$
\log \left(\frac{1}{h(z)(1-h(w))}\right) \leq C(d(z, w)+1)
$$

holds for all $z, w \in \mathbb{D}$.
Hint (1).Consider the function f which conformally maps \mathbb{D} onto $S=\{W$: $0<I m w<1\}$:

$$
w=f(z)=\frac{1}{\pi} \log \left(\frac{1+z}{1-z}+\frac{1}{2}\right) .
$$

Then, use Schwarz' Lemma as above.
Hint. (2).Let $z \in \mathbb{D}$ be a point such that $h(z) \leq \epsilon$ and $w \in \mathbb{D}$ such that $1-h(w) \leq \delta$. Fix a hyperbolic diameter D such that $\frac{h(\xi)}{h(\zeta)} \leq 2$ if $d(\xi, \zeta) \leq R$. Let $\mathcal{C}=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ be a chain of such balls $\left(B_{i} \cap B_{i+1} \neq \emptyset\right)$, with $z \in B_{1}$ and $w \in B_{n}$. Show that $C n \geq \log \frac{1}{\epsilon \delta}$. (This second argument has the advantage that it can be transfered to the higher dimensional case).
The Bloch and the Dirichlet spaces. The holomorphic maps of \mathbb{D} into itself contract the hyperbolic metric. It is natural to ask which holomorphic maps from \mathbb{D} to \mathbb{C} are Lipschitz w.r.t. the hyperbolic metric in \mathbb{D} and the Euclidean metric in \mathbb{C}.

Theorem 17 The following properties are equivalent for a holomorphic function from \mathbb{D} to \mathbb{C} :
(i) There exists $L>0$ s.t. $|f(z)-f(w)| \leq L \cdot d(z, w)$.
(ii) We have that

$$
\sup _{z \in \mathbb{D}}\left|\left(1-|z|^{2}\right) f^{\prime}(z)\right|=\|f\|_{\mathcal{B}}<\infty .
$$

Moreover, $\|f\|_{\mathcal{B}}$ is the smallest value of L for which (i) holds.

If (i) or (ii) hold, we say that f belongs to the Bloch space \mathcal{B}.
Proof. Here is a sketch (exercise: fill in the details). To prove that (i) implies (ii), use the fact that

$$
\lim _{w \rightarrow z} \frac{d(z, w)}{|z-w|}=\frac{1}{1-|z|^{2}} .
$$

To show the opposite implication, integrate

$$
\left|f^{\prime}(t)\right| \leq \frac{\|f\|_{\mathcal{B}}}{1-|t|^{2}}
$$

along all curves joining z and w.
We can interprete $\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|$ as the the ratio between the hyperbolic radius of an infinitesimal ball β in \mathbb{D} and the Euclidean radius of its image, the ball $f(\beta)$. More specifically,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \sup _{w: d(w, z)=r} \frac{|f(w)-f(z)|}{r}=\lim _{r \rightarrow 0} \inf _{w: d(w, z)=r} \frac{|f(w)-f(z)|}{r}=\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| . \tag{11}
\end{equation*}
$$

Exercise 18 Prove (11). Hint:Show it for $z=0$, then "move the statement around" \mathbb{D} by means of Möbius maps.

Let $d A(z)=d x d y$ be the Lebesgue measure on \mathbb{D}. Let f be holomorphic in \mathbb{D}. The Dirichlet semi-norm of f is

$$
\begin{equation*}
\|f\|_{\mathcal{D}}^{*}=\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Observe that the seminorm defined in (12) is conformally invariant: $\|f\|_{\mathcal{D}}^{*}=$ $\|f \circ \psi\|_{\mathcal{D}}^{*}$ whenever ψ is an automorphism ${ }^{3}$ of \mathbb{D}. In fact,

$$
\|f\|_{\mathcal{D}}^{*}=\left(\int_{\mathbb{D}}\left[\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|\right]^{2} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\right)^{1 / 2}
$$

and $\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|$ is, as we saw before, conformally invariant, while $\frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}$ is conformally invariant, being the measure associated with the hyperbolic metric. The space \mathcal{D} of the funcions f for which $\|f\|_{\mathcal{D}}^{*}$ is called the Dirichlet space. To make the seminorm into a norm, we let

$$
\|f\|_{\mathcal{D}}=\|f\|_{\mathcal{D}}^{*}+|f(0)| .
$$

An extension of the Dirichlet space is given by the (diagonal) analytic Besov spaces $B_{p}, 1<p<\infty$:

$$
\|f\|_{B_{p}}^{*}=\left(\int_{\mathbb{D}}\left[\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|\right]^{p} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}\right)^{1 / p}
$$

Clearly, $\|f\|_{B_{p}}^{*}=\|f \circ \psi\|_{B_{p}}^{*}$ and $\mathcal{D}=B_{2}$.
The analytic Besov spaces are the holomorphic counterparts of the Sobolev spaces.

[^2]
References

[AMcC] J. Agler, J. E. McCarthy, Pick interpolation and Hilbert function spaces. Graduate Studies in Mathematics, 44. American Mathematical Society, Providence, RI, 2002. xx +308 pp.
[Ka] M. Kanai, Rough isometries, and combinatorial approximations of geometries of non-compact Riemannian manifolds. J. Math. Soc. Japan 37(3) (1985) 391-413.

[^0]: ${ }^{1}$ Exercise. Show that the Maximum Principle for holomorphic functions is a consequence of the Open Mapping Theorem.

[^1]: ${ }^{2}$ Any such metric is conformal to the Euclidean metric on \mathbb{D}.

[^2]: ${ }^{3}$ i.e., a Möbius map: introduce the terminoloogy at the appropriate place.

