
Geometry of the unit disc.

N.A.

13/2/07

Notation. C is the complex field; D = {z ∈ C : |z| < 1} is the unit disc;
S = ∂D is the unit circle.

Theorem 1 (Schwarz’ Lemma). Let f : D → D be a holomorphic function and
suppose that f(0) = 0. Then

∀z ∈ D |f(z)| ≤ |z| and |f ′(0)| ≤ 1. (1)

Moreover, if equality holds in (1) for some z ∈ D or for the inequality involving
f ′(0), then ∃v ∈ S∀z ∈ D : f(z) = vz.

Proof. Let r ∈ (0, 1) and let gr(z) = f(rz)/z, gr : D → C after removing the
singularity in z = 0. gr ∈ H(D) ∩ C(D) and

|gr(eiθ)| = |f(reiθ)| < 1 ∀θ ∈ R,

hence, by the Maximum Principle1, |gr(z)| < 1 for all z ∈ D, i.e., for any fixed
w ∈ D,

|f(z)|
|z|

≤ 1
r

whenever r > |z| and the first part of (1) follows. The second follows from the
first and the definition of derivative,

f ′(0) = lim
z→0

f(z)
z

.

Suppose we have equality in the first inequality for some z0 ∈ D and let g = g1.
Then |g(z)| ≤ 1 on D and g(z0) = v with |v| = 1. Thus the open mapping fails
for g, hence g is constant, g(z) = g(z0) = v.

Consider now tha case of equality in the second inequality. By Cauchy’s
formula, unless f is constant,

1 = |f ′(0)| =

∣∣∣∣∣ 1
2πi

∫
|z|=r<1

f(z)
z2

dz

∣∣∣∣∣ ≤ 1
2π

∫ 2π

0

|f(reiθ)|dθ
r
< 1,

where the strict inequality comes from |f(z)| < |z|, and we have so reached a
contradiction.

1Exercise. Show that the Maximum Principle for holomorphic functions is a consequence
of the Open Mapping Theorem.
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Exercise 2 Let Ω ⊂ C be a simply connected domain of C and let f, g : D → Ω
be conformal (1−1, onto, holomorphic) maps of D onto C. Suppose that f(0) =
g(0) and that f ′(0)

|f ′(0)| = g′(0)
|g′(0)| . Deduce that f = g.

A Möbius map of C is any map ϕ having the form

ϕ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0.

Exercise 3 Show that any Möbius map is conformal and it sends straight lines
and circles into straight lines and circles.

Show that that the Möbius maps mapping D onto itself are the ones having
the form

ϕ(z) =
eiθz + a

1 + aeiθz
, θ ∈ R, a ∈ D. (2)

Observe that ϕ(0) = a and ϕ′(0) = (1− |a|2)eiθ.

Theorem 4 (i) The map ϕ in (2) is a conformal map of D onto itself.

(ii) ϕ is the only conformal of D onto itself such that ϕ(0) = a and ϕ′(0)
|ϕ′(0)| =

eiθ.

(iii) Let the Möbius group M be the set of the Möbius maps of D having as
product the composition of functions. Then M is a Lie group of dimension
3 and (a, eiθ) 7→ ϕ = ϕa,θ is a 1− 1 parametrization of M.

Exercise 5 Prove Theorem 4, or find a proof in a book of complex analysis.

We now look for a Riemannian geometry on D which is invariant under the
action of M. Consider the Riemannian distance

ds2 = ρ2(z)|dz|2

on D, where the positive density ρ is our unknown2. Invariance underM implies
that, for a ∈ D,

ρ(z)|dz| = ρ

(
z + a

1 + az

) ∣∣∣∣d(
z + a

1 + az

)∣∣∣∣
= ρ

(
z + a

1 + az

)
1− |a|2

|1 + az|
|dz|.

Letting z = 0, we have

ρ(a) =
ρ(0)

1− |a|2
.

Conventionally we choose ρ(0) = 1, and this gives

ds2 =
|dz|2

(1− |z|2)2
. (3)

The metric ds2 in (3) is called the hyperbolic metric in D. By the calculation
above it is invariant under Möbius maps ϕa,0. Invariance under the general

2Any such metric is conformal to the Euclidean metric on D.
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maps ϕa,θ = ϕa,0 ◦ ϕ0,θ follows immediately, since ϕ0,θ is a Euclidean rotation
around the origin.

Equipped with this metric, D is homogeneous (we can move from point to
point by isometries) and isotropic (given hyperbolic-unit vectors u and v at
z ∈ D, there is an isometry fixing z and whose differential takes u to v).

Exercise 6 Prove that, if f : D → D is holomorphic, then f is a contraction
for the hyperbolic metric:

d(f(z), f(w)) ≤ d(z, w).

Moreover, if equality holds for some z, w ∈ D, then f ∈M.

As a consequence of this exercise we have the two-point Pick’s property.

Proposition 7 Given two couple of points z1, z2 ∈ D and w1, w2 ∈ D, there
exists a holomorphic f : D → D such that f(zj) = wj if and only if d(w1, w2) ≤
d(z1, z2).

This is an interpolation problem with just two points z1 and z2. The general-
ization of it to n points is called the Nevanlinna-Pick problem and it was solved
early in the 20th century. The extension to function spaces other than that of
the bounded holomorphic functions is nowadays a very active area of research
[AMcC].

We can now compute distances and geodesics. We denote by d(z, w) the
hyperbolic distance between z, w ∈ D.
Step 1. Let r ∈ [0, 1). Then

d(0, r) =
1
2

log
(

1 + r

1− r

)
= arctanh(r).

The (only) geodesic passing through 0 and r is the intersection of the real line
with D.

Proof. Consider any absolutely continuous curve t 7→ α(t) + iβ(t) = γ(t)
joining 0 and r over the t-interval [0, 1]. Then,

length(γ) =
∫ 1

0

√
|γ̇(t)|2

(1− |γ(t)|2)2
dt

≥
∫ 1

0

|α̇(t)|
1− |α(t)|2

dt

≥
∫ r

0

ds

1− s2
= arctanh(r),

and we have equality all the way when γ(t) = t/r. Uniqueness of the geodesic
is easily proved.
Step 2. Let z, w ∈ D. Then

d(z, w) =
1
2

log

1 +
∣∣∣ z−w
1−wz

∣∣∣
1−

∣∣∣ z−w
1−wz

∣∣∣
 = arctanh

(∣∣∣∣ z − w

1− wz

∣∣∣∣) .

The (only) geodesic passing through z and w is an arc of a circle (or a segment
of a straight line) which is orthogonal to S.

Proof. It follows from Step 1 and conformal invariance of the metric.
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Exercise 8 (i) Let (X, d) be a metric space and let Φ : R+ → R+ be a strictly
increasing, concave function such that Φ(0) = 0. Show that δ = Φ(d) is a metric
on X.

(ii) Show that the pseudo-hyperbolic metric δ on D, δ(z, w) = |z−w|
|1−zw| is in

fact a metric.
(iii) Show that δ satisfies the enhanced triangular inequality

δ(z, w) ≤ δ(z, t) + δ(t, w)
1 + δ(z, t)δ(t, w)

.

Hyperbolic balls. Let r ∈ (0, 1). The map z ∈ z−r
1−rz = ϕ(z) fixes the real

geodesic γ = R ∩ R, is orientation preserving on γ and (hence) has no fixed
points. In fact, ϕ is isometrically equivalent (via a reparametrization of γ) to a
translation of size R = d(0, r) in the direction of the negative real half-axis.

Consider the hyperbolic ball Bh(ξ, ε) of center ξ radius d. After a rotation,we
can assume that ξ ∈ [0, 1). By invariance, ϕ(Bh(r, ε)) = Bh(0, ε). Hence, the
equation defining Bh(r, ε) is ∣∣∣∣ z − r

1− rz

∣∣∣∣ ≤ tanh(ε). (4)

We denote by D(z0, δ) the Euclidean disc having center z0 and radius δ.

Proposition 9 Let c0 <1< 1. If Q ∈ D is a region such that

D(z0, c0(1− |z0|)) ⊂ Q ⊂ D(z1, c1(1− |z1|)),

for some z0, z1 ∈ D, then Q is an approximate hyperbolic ball.
More precisely, the first inequality implies that there is a hyperbolic ball of

(hyperbolic) radius ε(c0) which only depends on c0 (and not on z0) which is
contained in Q and the second inequality implies that the hyperbolic diameter of
Q is bounded by a constant E(c1) which only depends on c1.

Exercise 10 Deduce Proposition 9 from Lemma 11 below.

Lemma 11 (i) All Euclidean balls whose closure is contained in D are hyper-
bolic balls.

(ii) The hyperbolic ball B(r, tanh(ε)) in (4) has the segment[
r − ε

1− εr
,
r + ε

1 + εr

]
(5)

as one of its diameters, it has Euclidean radius and center, respectively,

ε(1− r2)
1− r2ε2

,
r(1− ε2)
1− r2ε2

.

The distance from B(r, tanh(ε)) to ∂D is

(1− r)(1− ε)
1 + rε

.
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Proof. (ii) is a calculation. In particular, if ψ(z) = z+ε
1+εz , it is easy to see that a

diameter of B(r, tanh(ε)) must have the form [ψ−1(r), ψ(r)], and this provides
a computationless proof of (5).

(i) it suffices to show that all intervals [a, b] with −1 < a < b < 1 the form
(5). Let

ϕr(ε) =
r − ε

1− rε
.

We want to solve ϕr(ε) = a, ϕr(−ε) = b. Observe that ϕ−1
r = ϕr, hence

ε = ϕr(a), −ε = ϕr(b). First we find r ∈ (0, 1) so that ϕr(a) + ϕr(b) = 0 (this
is always possible if −1 < a, b < 1), then we set ε = ϕr(a).

Decomposition of D. The hyperbolic geometry is the intrinsic geometry un-
derlying the Whitney decomposition of D.

Introduce polar coordinates z = reiθ, r ∈ [0, 1), θ ∈ [0, 2π]. Consider the
boxes

Qn,m =
{
reiθ : 2n+1 ≤ 1− r ≤ 2n, θ ∈

[
m− 1
2π2n

,
m

2π2n

]}
,

where n ∈ N, 1 ≤ m ≤ 2n.

Exercise 12 Show that the Qn,m’s are approximate hyperbolic balls.

We call the Qn,m qubes. They are essentially disjoint. To make them into a
disjoint partition of D we can modify them, e.g., by setting

Q̃n,m =
{
reiθ : 2n+1 < 1− r ≤ 2n, θ ∈

[
m− 1
2π2n

,
m

2π2n

)}
.

We now introduce a graph G = (T,∼) whose vertices are the qubes g ∈ T (T
is the set of vertices), and such that there is an edge joining g, h ∈ G (g ∼ h) if
the closures of the qubes g and h have nonempty intersection. We can make G
into a metric space in the usual way. If g, h ∈ T , a path of length n γ between
g and h is a sequence t0 = g, t1, . . . , tn = h such that ti−1 ∼ ti. The distance
dG(g, h) between g and h is the minimum n such that a path of length n joins
h and g. For each z ∈ D, let [z] be the qube in G such that z ∈ [z]. The
map z 7→ [z] is not even continuous (it can’t: G is totally disconnected!). The
following proposition says that this map establishes a rough isometry between
(D, ds) and (G, dG).

Theorem 13 There are positive constants C1, C2 such that

C1(dG([z], [w]) + 1) ≤ dG([z], [w]) + 1 ≤ C2(d(z, w) + 1).

In other words, (D, ds) and (G, dG) are biLipschitz equivalent at scale d = 1.
Proof. We prove the first inequality first. Let [z] = [z0], [z1], . . . , [zn] = [w]

be a path Γ between [z] and [w] in G. The path might be a single point [z0]
if z and w both belong to [z0]. To Γ we associate a piecewise smooth curve γ
between z and w. Let γ[ζ, ξ] be the hyperbolic geodesic between ζ, ξ ∈ D. Then
γ = γ[z0, z1] ∪ γ[z1, z2] ∪ . . . γ[zn−1, zn]. If Γ reduces to a single point, then
length(γ) ≤ C. Generally, length(γ[zj−1], [zj ]) ≤ C, since zj−1 and zj belong
to neighboring boxes, hence

d(z, w) ≤ length(γ) ≤ C · lengthG(Γ) + C.
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Passing to the inf over Γ on the right, we obtain the desired inequality.
To prove the converse, let γ : [0, 1] → D be a path between z and w. Let K

be a constant large enough to have that d(ζ, ξ) ≥ K =⇒ [ζ] 6∼ [ξ]. Let z0 = z,
t = 0 ∈ R and let zj = γ(tj), where

tj = inf {t > tj−1 : d(γ(t), γ(tj−1)) > K} ,

where the quantity on the right is set to be 1 if ∀t > tj−1 : d(γ(t), γ(tj−1)) ≤ K.
Now, we can find N points (N being a universal constant) such that there is
path Γj in G having length at most N which joins [zj−1] and [zj ]. Assume
t1 < 1 and let Γ be the union of all these paths. Then,

dG([z], [w]) ≤ lengthG(Γ) ≤ C · length(γ).

We are left with the possibility that t1 = 1. In this case dG(z, w) ≤ C. Overall,
after taking the infimum over all possible γ, we have the second inequality in
the thesis.

Rough isometries were introduced by M. Kanai [Ka] and they have become
a standard tool in the global analysis of manifolds.

The hyperbolic geometry of D is the right geometric setting for thinking of
positive harmonic functions.

Theorem 14 (Harnack’s inequality.) Let h : D → R+ be a positive har-
monic function. If z, w ∈ D, then

| log h(z)− log h(w)| ≤ log
1 +

∣∣∣ z−w
1−zw

∣∣∣
1−

∣∣∣ z−w
1−zw

∣∣∣ = 2d(z, w). (6)

The inequality is sharp, in the sense that for any choice of z, w there is h such
that equality holds in (6).

Proof. By conformal invariance of harmonicity and of the pseudo-distance∣∣∣ z−w
1−zw

∣∣∣, we can suppose that z = 0 and that w = r ∈ [0, 1). Fix R, r < R < 1.
By Poisson integrals,

h(r) =
∫ π

−π

h(Reiθ)
R2 − r2

|Reiθ − r|2
dθ

2π

≤ R2 − r2

(R− r)2

∫ π

−π

h(Reiθ)
dθ

2π

=
R− r

R− r
h(0).

Let R→ 1.
We have equality when h(z) = 1−|z|2

|1−z|2 is (essentially) the Poisson kernel.
In particular,

1
4r

≤ h(z)
h(w)

≤ 4r (7)

when z, w belong to a hyperbolic ball of radius r.
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Exercise 15 Show that the hyperbolic distance in R2
+ is given by

ds2 =
|dz|2

4x2
.

Deduce a formula for the distance of two point z, w ∈ R2
+ and the sharp form

of Harnack’s inequality.

A proof of Harnack’s inequality via Schwarz’ Lemma.Here is a short
proof of Harnack’s inequality. Let H+ be the right half plane Re(w) > 0.
Schwarz’ Lemma for a holomorphic function f = u+ iv : D → H+ is

|df |
2u

≤ |dz|
1− |z|2

. (8)

The Cauchy-Riemann equations give |f ′| = |∇u|, hence, choosing a geodesic in
D as path of integration between z1 and z2,

dD(z1, z2) ≥
∫ z2

z1

|dz|
1− |z|2

=
∫ z2

z1

|f ′(z)dz|
2u(z)

=
∫ z2

z1

|∇u(z)| · |dz|
2u(z)

≥
∫ z2

z1

|∇u(z) · dz|
2u(z)

=
∣∣∣∣∫ z2

z1

du

2u(z)

∣∣∣∣
=

1
2
|log u(z2)− log u(z1)| ,

which is Harnack’s inbequality.
Actually, one can prove that Schwarz’ Lemma is equivalent to an enhanced

version of Harnack’s inequality. Let star with Schwarz’ Lemma for f = u + iv
from D into H+. Pushing forward to H+ the hyperbolic metric in D, we find
that

dH+(w1, w2) =
1
2

log
1 +

∣∣∣w1−w2
w2+w1

∣∣∣
1−

∣∣∣w1−w2
w2+w1

∣∣∣ .
Schwarz’ Lemma says that

dD(z1, z2) ≥ dH+(f(z1), f(z2)). (9)

Let

D =
∣∣∣∣ z1 − z2
1− z2z1

∣∣∣∣ .
Standard manipulation shows that (9) implies

D2 ≥

∣∣∣∣∣f(z1)− f(z2)
f(z1) + f(z2)

∣∣∣∣∣
2

7



=
[u(z1)− u(z2)]2 + [v(z1)− v(z2)]2

[u(z1) + u(z2)]2 + [v(z1)− v(z2)]2
.

After rearranging, this inequality becomes:

[v(z1)− v(z2)]2 ≤
D2

1−D2
[u(z1) + u(z2)]2 −

1
1−D2

[u(z1)− u(z2)]2. (10)

Now, replacing the LHS of (10) by 0, we obtain an inequality which is exactly
equivalent to Harnack’s inequality, hence we can view (10) as a sharper version
of Harnack’s. Observe that here we have a pointwise estimate for v, the function
conjugate to u.

On the other hand, if we let zj = reiθj in (10), divide both sides of the
inequality by (θ1 − θ2)2 and let θ2 → θ1, we obtain (8), which is equivalent to
Schwarz’ Lemma.

A more suggestive form of (10) can be obtained by adding [u(z1) − u(z2)]2

to both sides of the inequality:

|f(z1)− f(z2)|2 ≤
4|z1 − z2|2

(1− |z|2)(1− |w|2)
u(z1)u(z2).

Exercise 16 Show that there is C > 0 such that, whenever h is a function
harmonic in D and such that 0 < h < 1 in D, then the inequality

log
(

1
h(z)(1− h(w))

)
≤ C(d(z, w) + 1)

holds for all z, w ∈ D.

Hint (1).Consider the function f which conformally maps D onto S = {W :
0 < Imw < 1}:

w = f(z) =
1
π

log
(

1 + z

1− z
+

1
2

)
.

Then, use Schwarz’ Lemma as above.
Hint. (2).Let z ∈ D be a point such that h(z) ≤ ε and w ∈ D such that
1 − h(w) ≤ δ. Fix a hyperbolic diameter D such that h(ξ)

h(ζ) ≤ 2 if d(ξ, ζ) ≤ R.
Let C = (B1, B2, . . . , Bn) be a chain of such balls (Bi ∩Bi+1 6= ∅), with z ∈ B1

and w ∈ Bn. Show that Cn ≥ log 1
εδ . (This second argument has the advantage

that it can be transfered to the higher dimensional case).
The Bloch and the Dirichlet spaces. The holomorphic maps of D into itself
contract the hyperbolic metric. It is natural to ask which holomorphic maps
from D to C are Lipschitz w.r.t. the hyperbolic metric in D and the Euclidean
metric in C.

Theorem 17 The following properties are equivalent for a holomorphic func-
tion from D to C:

(i) There exists L > 0 s.t. |f(z)− f(w)| ≤ L · d(z, w).

(ii) We have that
sup
z∈D

|(1− |z|2)f ′(z)| = ‖f‖B <∞.

Moreover, ‖f‖B is the smallest value of L for which (i) holds.
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If (i) or (ii) hold, we say that f belongs to the Bloch space B.
Proof. Here is a sketch (exercise: fill in the details). To prove that (i)

implies (ii), use the fact that

lim
w→z

d(z, w)
|z − w|

=
1

1− |z|2
.

To show the opposite implication, integrate

|f ′(t)| ≤ ‖f‖B
1− |t|2

along all curves joining z and w.
We can interprete (1 − |z|2)|f ′(z)| as the the ratio between the hyperbolic

radius of an infinitesimal ball β in D and the Euclidean radius of its image, the
ball f(β). More specifically,

lim
r→0

sup
w:d(w,z)=r

|f(w)− f(z)|
r

= lim
r→0

inf
w:d(w,z)=r

|f(w)− f(z)|
r

= (1− |z|2)|f ′(z)|.

(11)

Exercise 18 Prove (11). Hint:Show it for z = 0, then ”move the statement
around” D by means of Möbius maps.

Let dA(z) = dxdy be the Lebesgue measure on D. Let f be holomorphic in D.
The Dirichlet semi-norm of f is

‖f‖∗D =
(∫

D
|f ′(z)|2dA(z)

)1/2

. (12)

Observe that the seminorm defined in (12) is conformally invariant: ‖f‖∗D =
‖f ◦ ψ‖∗D whenever ψ is an automorphism3 of D. In fact,

‖f‖∗D =
(∫

D
[(1− |z|2)|f ′(z)|]2 dA(z)

(1− |z|2)2

)1/2

,

and (1−|z|2)|f ′(z)| is, as we saw before, conformally invariant, while dA(z)
(1−|z|2)2 is

conformally invariant, being the measure associated with the hyperbolic metric.
The space D of the funcions f for which ‖f‖∗D is called the Dirichlet space. To
make the seminorm into a norm, we let

‖f‖D = ‖f‖∗D + |f(0)|.

An extension of the Dirichlet space is given by the (diagonal) analytic Besov
spaces Bp, 1 < p <∞:

‖f‖∗Bp
=

(∫
D
[(1− |z|2)|f ′(z)|]p dA(z)

(1− |z|2)2

)1/p

.

Clearly, ‖f‖∗Bp
= ‖f ◦ ψ‖∗Bp

and D = B2.
The analytic Besov spaces are the holomorphic counterparts of the Sobolev

spaces.
3i.e., a Möbius map: introduce the terminoloogy at the appropriate place.
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