ORALI 2006/07

Nicola Arcozzi

1 A risposta multipla

(1) Siano a>0 e $b\in\mathbb{R}$ numeri reali. Quali delle seguenti affermazioni é certamente vera?

(i)
$$b < \sqrt{a} \implies b^2 < a$$
.

(ii)
$$b^2 < a \implies b < \sqrt{a}$$
.

(iii)
$$b < \sqrt{a} \implies b < 0$$
.

(iv)
$$b^2 > a \implies b > \sqrt{a}$$
.

(2) Quale delle seguenti affermazioni vale per ogni $x \in \mathbb{R}$?

(i)
$$\frac{1}{x} < x \iff x > 1$$
.

(ii)
$$\frac{1}{x} < x \iff x < -1 \text{ o } x > 1.$$

(iii)
$$-1 < x < 0 \implies \frac{1}{x} < x$$
.

(iv)
$$x > 0 \implies \frac{1}{x} < x$$
.

(3) Quale delle seguenti affermazioni vale per ogni $x \in \mathbb{R}$?

(i)
$$\sqrt[4]{x^2} < -x \iff x < -1$$
.

(ii) La disuguaglianza $\sqrt[4]{x^2} < -x$ non é mai verificata.

(iii)
$$\sqrt[4]{x^2} < -x \iff x^2 < x^4$$
.

(iv)
$$\sqrt[4]{x^2} < -x \iff \sqrt{|x|} < |x|$$
.

- (4) Siano $v_1=(a,2),\ v_2=(3,4a)\in\mathbb{R}^2.$ Trovare tutti i valori di a per cui v_1 e v_2 sono linearmente dipendenti.
- (5) Quale delle seguenti affermazioni vale per ogni $x, y \in \mathbb{R} \{0\}$?
 - (i) $x < y \implies \frac{1}{x} < \frac{1}{y}$.
 - (ii) Se x e y hanno segno diverso, allora $\frac{1}{x} < \frac{1}{y} \iff x < y$.
- (iii) $x > y \implies \frac{1}{x} < \frac{1}{y}$.
- (iv) $\frac{1}{x} < \frac{1}{y} \implies x > y$.
- (6) Siano $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ le funzioni

$$f(x) = 2^x$$
, $g(x) = \frac{1}{1+x^2}$.

Quale delle seguenti identitá é vera per ogni $x \in \mathbb{R}$?

- (i) $f \circ g(x) = \frac{1}{1+2^{2x}}$.
- (ii) $g \circ f(x) = 2^{\frac{1}{1+x^2}}$.
- (iii) $g \circ f(x) = \frac{1}{1+2^{x^2}}$.
- (iv) $g \circ f(x) = \frac{1}{1+2^{2x}}$.
- (7) Sia a>1e sia . Se

$$L = a^{\log_a(a^2)} + a^{\log_a(a^3)} e M = a^{\log_a(a^2)} a^{\log_a(a^3)},$$

allora

- (i) L = 6.
- (ii) L = 5.
- (iii) M = 6.

- (iv) M = 5.
- (8) Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione

$$f(x) = \frac{1}{1+x}.$$

Quale delle seguenti identitá é vera per ogni $x \in \mathbb{R}$?

- (i) $f \circ f(x) = \frac{1}{1+2x}$.
- (ii) $f \circ f(x) = \frac{1}{1+x^2}$.
- (iii) $f \circ f(x) = \frac{1+x}{2+x}$.
- (iv) $f \circ f(x) = \frac{2+x}{1+x}$.
- (9) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile su tutto \mathbb{R} . Sia ora $h: \mathbb{R} \to \mathbb{R}$ cosídefinita:

$$h(x) = x \cdot f(x^2 + 1).$$

Calcolare h'(2), sapendo che $f(1)=2,\ f(2)=3,\ f(5)=5,\ f'(1)=\pi,$ $f'(2)=e,\ f'(5)=\log 2.$

(10) Sia $a \in \mathbb{R}$ e sia $f: \mathbb{R} \to \mathbb{R}$ la funzione

$$f(x) = \begin{cases} (x+1)^2 \text{ se } x < a, \\ 1 \text{ se } x \ge a. \end{cases}$$

Per quali valori del parametro $a \in \mathbb{R}$ la funzione f é continua?

- (i) a = 0.
- (ii) a = 1.
- (iii) a = 0, 1.
- (iv) Per ogni valore di a.

(11) Sia $f : \mathbb{R} \to \mathbb{R}$ una funzione derivabile su tutto \mathbb{R} . Sia ora $h : \mathbb{R} \to \mathbb{R}$ cosídefinita:

$$h(x) = f(2x \cdot f(3x)).$$

- Calcolare h'(0), sapendo che f(0) = 2, f(2) = 3, $f'(0) = \pi$, f'(2) = e, $f'(3) = \log 2$.
 - (i) $h'(0) = 2\pi$.
 - (ii) $h'(0) = 4\pi$.
- (iii) $h'(0) = 6 \log^2 2$.
- (iv) h'(0) = 2e.
- (12) Siano $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ le funzioni

$$f(x) = x^2$$
, $g(x) = \frac{2}{x} + 1$.

- Quale delle seguenti identitá é vera per ogni $x \in \mathbb{R}$?
 - (i) $g \circ f(x) = \frac{2+x^2}{x^2}$.
 - (ii) $g \circ f(x) = \frac{4+4x+x^2}{x^2}$.
- (iii) $g \circ f(x) = 2x^2 + 1$.
- (iv) $g \circ f(x) = \frac{1}{2x^2+1}$.
- (13) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione derivabile su tutto \mathbb{R} . Sia ora $h: \mathbb{R} \to \mathbb{R}$ cosídefinita:

$$h(x) = f(x + f(x)).$$

- Calcolare h'(1), sapendo che f(1) = 2, f(2) = 3, $f'(1) = \pi$, f'(2) = e, $f'(3) = \log 2$.
 - (i) $h'(1) = \pi \log 2$.
 - (ii) $h'(1) = (1+\pi)\log 2$.
- (iii) $h'(1) = e \log 2$.
- (iv) $h'(1) = e\pi$.

2 Definizioni e teoremi

Definizione di limite di una funzione.

Successioni e limiti di successioni.

Definizione di continuitá in punto di una funzione.

Definizione di massimo di una funzione, di punto di massimo per una funzione e teorema di Weierstrass.

Definizione di funzione continua e teorema degli zeri.

Definizione di derivata di una funzione in un punto, relazione tra derivabilitá e continuitá di una funzione.

Definizione di funzione crescente e teoremi che legano la crescenza di una funzione al segno della sua derivata prima.

Definizione di composizione di due funzioni e teorema sulla derivata di una composizione.

Definizione di punto di massimo reativo per una funzione e teorema di Fermat.

Teoremi di Lagrange e Rolle.

Formula di Taylor al II ordine centrata in x = 0.

Teorema di de l'Hospital.

Definizione di derivata seconda e di funzione convessa.

Definizione di spazio vettoriale.

Definizione di vettori linearmente indipendenti e di base di uno spazio vettoriale.

Definizione e proprietá di prodotto scalare tra vettori.

3 Equazioni di secondo grado in $\mathbb C$

Risolvere in $\mathbb C$ l'equazione

$$x^2 + 2 = 0.$$

Risolvere in $\mathbb C$ l'equazione

$$x^2 + x + 1 = 0.$$

Risolvere in $\mathbb C$ l'equazione

$$x^2 - x + 1 = 0.$$

Risolvere in $\mathbb C$ l'equazione

$$x^2 + x + 2 = 0.$$

Risolvere in $\mathbb C$ l'equazione

$$x^2 + 2x + 3 = 0.$$

Risolvere in $\mathbb C$ l'equazione

$$x^2 + 1 = 0.$$