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Abstract

Mehler observed that the Gaussian measure on R can be approximated
by the normalized Hausdorff measure on the spheres S*~!(,/n) of dimension
n — 1 and radius n. In 1973, Mk Kean showed how this observation can
be extended to the extent that the geometry of the spheres tends to the
differential calculus in Gauss space and gave an interpretation of this in terms
of probability theory and It6 calculus. This bridge between geometry and
probability is popular among symmetrizers (Baernstein II, Beckner, Carlen
and Loss). In fact, in order to be transferable to Gauss’ space, estimates
on S™~! must be best possible or, at least, exhibit the right behavior with
respect to the dimension n.

In this note I give a partial overview of results with this flavor and show
how the spectral theory of the Laplacian on S®~! tends to the spectral theory
of the Hermite operator.

Notation. 9; and 9;; denote the first and the second partial derivative with respect
to z; in Euclidean space. If (X,F,p) is a measure space, f: X — R" is a measurable
function and p € [1, 00), the L norm of f is defined by | f|, = | f|zs(xr=) = (fx |f|”da:)%.
If S is a linear operator which maps R valued functions of L? into (X, F, u) to R™ valued
LP functions on (X1, Feo, 1), |S], = sup{|Sf],: |f], = 1} is the operator norm of S.

0 Geometry of (Gauss’ space

The m dimensional Gauss space is the measure space (R™,7), where

2 2
v(dx) = (2%)’%6’% dx, z € R™, is the m - dimensional Gaussian measure.
Let Vgm D = (0, - - ., Om) be the gradient in R™ and D* be its formal adjoint
with respect to the measure v. If X = (X3,..., X,,) is a smooth vector field

on R™, then
m

DX ==Y (9;X; — x;X;)

=1



Gauss' space

and

m

A=-D'D = Zajj — mjﬁj

j=1
is a negative operator, the m - dimensional Hermite operator. A plays the
role of the Laplacian in Gauss space. The carré du champ associated with A
is the quadratic form I'(f, f) = 3(Af?—2fAf) = |Df[*, the square modulus
of the Euclidean gradient.

The m-dimensional Ornstein-Uhlenbeck process is the process generated
by A. Its densities are given by the Ornstein-Uhlenbeck semigroup P, =
exp(tA).

The analysis of Brownian motion naturally leads to the study of an infinite
dimensional Ornstein - Uhlenbeck process, in which the Gaussian measure
v is supported on an infinite dimensional Fréchet space instead of R™. The
connection is the following. Let B be a 1 - dimensional Brownian motion and
€1,---5€m,--. be an orthonormal basis of L?([0,00)). Consider the stochastic
integral with “sure” integrand B; = fooo e;(t)dB;. Bi,...,Bn,... are inde-
pendent Gaussian random variables. Hence, for each m, the density of the
distribution of By, ..., B, is the Gaussian measure 7 on R™. A complete
exposition of the theory can be found, for instance, in [BH|. This explains
the importance of having estimates on the finite dimensional Gauss spaces
that are optimal with respect to the dimension. Such estimates, in fact, tell
something about Brownian motion. On the other hand, estimates that are
not optimal are lost in the limit n — oc.

Gauss’ space has two features that make it more difficult to develop a
harmonic analysis on it. First of all, it is not a homogeneous space in the
sense of Coifman-Weiss, since it does not satisfy a doubling condition. Sec-
ondly, though it has total measure 1 and a large group of measure preserving
transformations, hence it resembles the homogeneous space of a Lie group,
the operator A is not a Casimir operator on R™. In fact

AD; — 0;A = 0;

A is nonetheless some sort of Casimir operator. Let

Tij = 2i0; — w;0; (1)
Then,
TiA = ATy

In fact, 7;; is derivative with respect to the angular coordinate in the (z;, z;)
plane and the operator A commutes with the orthogonal group SO(m). Un-
fortunately, A does not lie in the enveloping algebra engendered by the 7;; ’s.
We will see below that it fails to do so by a small error, in a suitable sense.
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In the analysis of the Ornstein - Uhlenbeck process a crucial role is played
by the eigenfunctions of A. A generalized Hermite polynomial of degree k is
a solution P of the equation

AP +kP =0 (2)

in R™, where & € N. For m = 1, the unique solutions of (2) are the constant
multiples of the classical Hermite polynomial of degree k. $,°™ denotes
the space of the generalized Hermite polynomials of degree £ on R™ and
o= @;?:O H;>™ is the space of their finite linear combinations up to
degree k. It is classical that

L*(R™,y) = P 9™ (3)

=0

Actually, (3) holds for m = oo as well, but in this note we only deal with the
finite dimensional case. For the arguments leading to the infinite dimensional
case see, for instance, [BH], [Me3].

1 Mehler’s principle

From now on, S,, = S"7!(y/n) will be the (n — 1) - dimensional sphere of
radius y/n. We endow S,, with its natural Riemannian metric and with the
SO(n) invariant measure j, normalized so that u,(S,) = 1. The L? norms
on S, are taken with respect to this measure. Many geometric objects on S,,
pass to the limit to corresponding objects on the infinite dimensional Gauss
space. This observation is attributed to Poincaré in [McK], but it seems to
be due to Mehler, see [Bel]. We shall call this heuristic observation Mehler’s
principle. It has been used in several works dealing with sharp estimates on
the n - dimensional sphere in order to obtain corresponding results for the
Ornstein - Uhlenbeck process, see [Bel], [Be2], [CL]. In the same spirit, see
[A].

With 7, asin (1), if F:S, — R is smooth enough, we have

Ik

1
AsnF: n T, T, F and (4)
1<I<k<n
2 1
Vo F[ == > IT.F’ (5)
1<I<k<n

If F' is a spherical harmonic of degree k, then,

k(n—2+k)
n

A, F+

Sn

F=0 (6)
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Let m be a fixed positive integer. Let IL,:S,, — R™ be the projection
I,(z,y) = z,iffz € R", y € R*™ and |z|* + |y|* = n. If 1 R™* - R
fn=foll,.

Then, if f is smooth,

Ay fule) = Danf(@) = "N w8 g (@)~ - 3wy f@) ()

i,j=1
where 0;; is the cross derivative, and

m

Vs ful® =D (0, - % (Z Ijajf) (8)

=1

In (7) and (8) we made use of the fact that that the left hand side only
depends on the x € R™ component of a point (z,y) € S, and we omitted the
y € R* ™ component.

It is clear that, as n — oo,

A, Jnlz) = Af(2) 9)

and
Vs, fu(@)* = |Ven f (2)]” (10)

The last equality can be read as a limit involving carrés des champs on dif-
ferent spaces. See [Mel], [Me2]. (9) and (10) might be called the differential
geometric Mehler’s principle.

Given the commutativity relation Agn-17;; = T;;Agn-1, which ultimately
comes from the fact that SO(n) is a compact Lie group with a biinvariant
metric that projects on that of S*™!, one might expect some similar relation
to hold for A. In fact, we saw above that 7;; does commute with A. Still, (4)
and (7) , and probabilistic intuition, show that A can not directly be written
in terms of such vector fields.

The original observation by Mehler, the measure theoretic Mehler’s prin-
ciple, is that, if F C R™ is measurable, then

1l - xg(z) (1—%) * dx
R
/ XE © Hn d,LLn = ‘:c‘QS" n—m-—2
" [ (1-5) 7 @
\wnlakn
— Xe dvy
Rm
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as n — oo. It is not difficult to check that, in fact, if f:R™ — R has
polynomial growth, then

fadp — | fdy (11)

Sn R™

Hence, if f is a polynomial in x € R™ and 1 < p < oo, then

Jim 195, faliags,) = 1950l "2
s 136, ol sy = 147 iy 1

In fact, by (8) and (7), in the integrals above we have error terms with respect
to n, with polynomial growth with respect to x € R™.

2 Spectral theoretic Mehler’s principle

The main goal of this section is Theorem 2.3.

Let A}J* be the space of polynomials of degree not greater than £ in
x = (Z1,-..,Tm). Hi(R") is the space of homogeneous harmonic polynomials
of degree k in R* and $;"™ is the space of those Y € #;(R") that are
invariant under SO(n — m), the subgroup of SO(n) that pointwise fixes the
first factor of R* = R™ x R*™™, n > m. Then Y € $;”™ if and only if it is a
spherical harmonic of degree & on R" that can be written as Y (x1,...,2,) =
(1, .., Ty T2y + ...+ 22), where ¢ is a polynomial in m + 1 variables.

Mimicking the reasoning in [SW], chpt. IV, it is easy to verify that
dim (™) = dim ($™) = d}* is independent of n. In fact, dj* = f{a €
Ne:|al = + ...+ ap =k}

Let now P € $;°™, n > m and let P, be its restriction to S,. Then

P, =3 Qy™(P) (14)
J<k
where Q7™ (P) is the L*(S,) - orthogonal projection of P onto H;(R"), a
spherical harmonic of degree £, that we extend to a homogeneous polynomial
on R*. Then, by SO(n — m) invariance, Q7™ (P) € $;"™. The following
lemma shows how the spectral decomposition of P, semplifies as n — oco. In
[Ma], C. Martini has a result with the same flavor.

LEMMA 2.1 Let P € $;°™ and consider its decomposition as in (14). Then
V™ (P) is the leading term of P, in the L* sense.

(i) Timyso [ Q2™ (P s,y = I1Plli2gy) and
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(43) limy, e HQ;."T"(P)||L2(§n) =0, ifj <k.

=

PROOF . If ) is a spherical harmonic of degree j, then (—Ag, )2 Q =
j("*%‘-j)’ then
-7 -2 + -7 n, m - . 1 2
JE&Z A HL%S) - JL”QOH(_A&VP" 12(S,)

J— 3 2
= Rh_EEOHVSnPn”LZ(Sn)
2
= ||VRmP||L2(7)
3 P2 2
= [I(= ) Pllz2) =k||P||Lzm

- JE&Z k@™ ( L2(sn>

Comparing the first and the last term in the chain of equalities and tak-
ing into account that ||Q7"™ (P HL2(S ) < ||P||%2(Sn) is bounded in n, since
1PallZ2s,) = [IPll72(,), we obtain (ii) for 0 < j < k. The case j = 0 is

obtained through (11), and (i) follows.q
Let now J,"™ = @;?:0 H;™, m <m < oo. A consequence of Lemma 2.1
is that .
|(~as,)7 P,
as n — oo, if P € J.°™. The lemma below is the key to extend (15) to

1 < p < c0. The real problem is p > 2, the case p < 2 being easily reduced
to that of p = 2.

=

15
6 (15)

LEMMA 2.2 Let 1 < p < oo. There erist K, = K(p,m,k) and N =
N(m, k) such that, if F € 3™,

[Fllprsny < Kpll Fllz2s.,) (16)

PROOF . If p <2, (16) follows from Jensen’s inequality, with K, = 1.

Let p > 2. If F € 3", then F,, the restriction of F' to Sy, is the restric-
tion to S, of a polynomial ¢, € A}* that only depends on x = (z1,...,Zm)-
By Schwarz’s inequality we have

||F||I[),P(Sn) S n—2—m C (n7 m)
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=

ula) (2))

<1 |z|2<n
< C (M) gnllhan
scﬁmkmwmmy

where C’ (+) represent various positive constants dependent on the arguments
in parenthesis and, in particular,

cnm = </Iw|2sn (1 N ¥> o e|w|2d7(:ﬂ)> |

is bounded in n, for fixed m. The last inequality follows from the fact that
+ is a finite dimensional Banach space with any of its L? norms.

Consider now on Aj* the norms [-],, m < n < oo, [fln = ||fallr2s.),
[floo = || fllz2(y)- By (11) and simple considerations about finite dimensional
Hilbert spaces, we have that

C"(m. k)[floo < [fln < C"(m, B)[fleo (17)

for n > N(m, k). Together with the chain of inequalities above, (17) implies
(16).g

THEOREM 2 3Let P =P +...+PY e 3™ PY e 9™ Then

S QP™(PW) is the leading term of P, in the L? sense, for 1 < p < oc.
= ||P|ltr(y) and

o k n,m
(Z) llmn—)oo HZlZO Ql (P(l)) LP(Sy)

(i) Yy oso0 || Q7™ (PO)| gy = 0, 5 <.

PROOF . Part (ii) of the theorem is just Lemma 2.2. For 0 < [ < k,

D)

consider the decomposition of P,E in spherical harmonics,

Then, by (i),
ko1
DX 1QF™ (PY)[usgn-y = 0 (18)

1=0 j=0



as n — 0o, hence, by (11), (18)and a triangulation

k
I1Pllzrey) = 7}1_{20 | ZQ?’m(P(”)HLP(Sn—I)
1=0

which is (i).g

The following application of Theorem 2.3 is in [A], and it is instrumental
in transfering L? estimates for the Riesz transform on S™ ! to an estimate
for the Riesz transform for the Ornstein - Uhlenbeck process.

COROLLARY 2.4 Let1 < p < oo. If P is a finite linear combination of
generalized Hermite polynomials, then

H(—Asn)% P,

o H(—A)%P

(19)

Lo(s L2()

as n — oo.

PROOF . Suppose P =PV +.. . +P" pY ¢ $,°™. By (6), the multiplier
1

of (—Agn)% is the sequence m"(k) = (@) * — k2 = m*(k), which is

the multiplier of (—A)%. Hence, by Theorem 2.3 the leading term, in the L?
1
sense, of the decomposition of (—Ag, )2 P, in spherical harmonics is

((n—n)% ?,m(Pm)+m+((n—2+k>k)% i p®)

n

(19) immediately follows.q

Corollary 2.4 is useful because we have good estimates for the L? norms
of the Riesz transform on S"~!. It is likely that the same method can be
successfully applied, for instance, to find conditions under which a multiplier
operator is L? bounded in L?(vy), provided we have a similar result on "™,
for all n, with nearly sharp estimates of the L? norms. For instance, we have
the following

PROPOSITION 2.5 Let ¢ be a continuous, bounded function on N such that,
for all n, ¢(—As,) is a bounded multiplier on LP(S™'). Suppose, more, that

[6(=2s,) fllzo(s,y < CllFllzrsa

with C independent of n. Then, ¢(—A) is a bounded multiplier on LP(~).
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