The goal of the following exercise is showing that if $z \in \mathbb{C}$, then

$$
(*) e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!},
$$

where the factorial n ! is defined by

$$
\left\{\begin{array}{l}
0!=1 \\
n!=n \cdot(n-1) \cdots \cdots \cdot 2 \cdot 1 \text { if } n \geq 1
\end{array}\right.
$$

(1)Line integrals.
(i) Let $\Gamma_{R}=\{\zeta \in \mathbb{C}:|\zeta|=R\}$ be the circle centered at 0 and having radius $R>0$, with a counterclockwise parametrization. Show that

$$
e^{z}=\sum_{n=0}^{\infty} \frac{1}{2 \pi i} \int_{\Gamma_{R}} \frac{e^{\zeta}}{\zeta^{n+1}} d \zeta \cdot z^{n}
$$

(ii) Show that, if $n \geq 0$, then

$$
\frac{1}{2 \pi i} \int_{\Gamma_{R}} \frac{e^{\zeta}}{\zeta^{n+1}} d \zeta=\frac{1}{2 \pi i n} \int_{\Gamma_{R}} \frac{e^{\zeta}}{\zeta^{n}} d \zeta
$$

Hint. Make the line integral explicit and use integration by parts.
(iii) Show that

$$
\frac{1}{2 \pi i} \int_{\Gamma_{R}} \frac{e^{\zeta}}{\zeta^{n+1}} d \zeta=\frac{1}{n!} .
$$

Deduce from this the series expansion of e^{z}.
(2)Let $\Gamma_{R}=\{\zeta \in \mathbb{C}:|\zeta|=R\}$ as above, with a counterclockwise parametrization. Compute, for $R>0, R \neq 1$, the line integral

$$
I(R):=\int_{\Gamma_{R}} \frac{z^{3}-2 z}{z-i} d z
$$

Hint. Use Cauchy Theorem and Cauchy formual. You should obtain two values of $I(R)$, depending on R being in $(0,1)$ or in $(1, \infty)$.

