## Mathematical Methods - Mathematical Analysis: takehome

Suppose  $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$  is defined as

$$\widehat{Ta}(t) = \frac{\widehat{a}(t)}{1 - 2e^{it}}.$$

for all  $a \in \ell^2(\mathbb{Z})$ .

- Is T linear?
- Is T stable?
- Is T time-invariant?
- Is T realizable?

Motivate your answer.

Find  $b \in \ell^2(\mathbb{Z})$  such that

$$Ta(n) = \sum_{k=-\infty}^{+\infty} a(n-k)b(k).$$

Compute  $T\delta_b$ , where b is the last digit of your student ID.

## It is useful to know that:

• 
$$\hat{a}(t) = \sum_{k=-\infty}^{+\infty} a(k) e^{-ikt}$$

•  $\delta_k : \mathbb{Z} \to \mathbb{C}$  is a discrete Dirac's delta, defined as

$$\delta_k(n) = \begin{cases} 1 \text{ if } n = k, \\ \hat{a}(t) \text{ if } n \neq k. \end{cases}$$

• for the meaning of linear, stable, time-invariant and realizable see your notes from the class, or the solution to the exercise.