Suppose $T: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ is defined as

$$
\widehat{T a}(t)=\left(\cos ^{2}(t)-\sin ^{2}(t)+2 i \cos (t) \sin (t)\right) \cdot \hat{a}(t) .
$$

for all $a \in \ell^{2}(\mathbb{Z})$.

- Is T linear?
- Is T stable?
- Is T time-invariant?
- Is T realizable?

Motivate your answer.
Find $b \in \ell^{2}(\mathbb{Z})$ such that

$$
T a(n)=\sum_{k=-\infty}^{+\infty} a(n-k) b(k)
$$

Compute $T \delta_{b}$, where b is the last digit of your student ID.
It is useful to know that:

- $\hat{a}(t)=\sum_{k=-\infty}^{+\infty} a(k) e^{-i k t}$;
- $\delta_{k}: \mathbb{Z} \rightarrow \mathbb{C}$ is a discrete Dirac's delta, defined as

$$
\delta_{k}(n)=\left\{\begin{array}{l}
1 \text { if } n=k \\
\hat{a}(t) \text { if } n \neq k
\end{array}\right.
$$

- for the meaning of linear, stable, time-invariant and realizable see your notes from the class, or the solution to the exercise.

