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Abstract

Some properties of the function “Carnot distance from a curve” are considered, both

in the case of a horizontal and of a nowhere horizontal curve. Application to: (i) the cut-

locus of a surface; (ii) approximating a surface by means of a surface without characteristic

points.
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1. Introduction

In two joint papers [5] [6] with Fausto Ferrari the problem of the regularity “signed

Carnot distance from a surface in the Heisenberg group” was studied. (See [8] for an

extension of the result to step-two Carnot groups and [10] for an interesting application

to PDE’s in Carnot groups). To prove the regularity result we introduced the “metric

normal” to a surface: a geodesic which plays, in this sub-Riemannian setting, the rôle

played by the tangent vector normal to a surface in Riemannian geometry. In Riemannian

geometry there is one-to-one correspondence between geodesics starting at a point and

unit tangent vectors based at that same point. In the sub-Riemannian world this is not

true in any obvious way. Usually, one considers priviledged tangent vactors (horizontal

vectors); but each of them is tangent to infinitely many geodesics. On the other hand,

geodesics have horizontal tangents: the rôle of non-horizontal vectors, if there is one, is

not as transparent as that they play in the Riemannian world.

In this seminar I consider the distance from a curve instead of the distance from a

surface. Let Γ : [α, β]→ H be a smooth (simple, open) curve in the Heisenberg rgoup H

and let dΓ : H→ [0,+∞) be the function measuring the (Carnot) distance from Γ:

dΓ(Q) = inf{d(Q,P ) : P ∈ Γ([α, β])}.

We consider various problems.

(i) Is the function dΓ regular near Γ?

(ii) Given P in Γ, what can we say about the set NPΓ = {Q ∈ H : d(Q,P ) = dΓ(Q)}?

We will see that the answer to question (i) is negative if Γ is a horizontal curve and it is

positive if Γ is nowhere horizontal. In Riemannian geometry (consider the case of a three-

dimensional manifold for better comparison of results), the set NPΓ is the union of arcs of

the geodesics which are normal to Γ at P . The answer to (ii) identifies the corresponding

sub-Riemannian object in the union of a corresponding one-parameter family of geodesics

of H, starting at P . We can not say that such geodesics are normal to Γ in the usual

sub-Riemannian sense; unless the curve Γ is horizontal (but this is the bad case for the

distance function dΓ).
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We give two applications of the results just reviewed. The first one concerns the “nega-

tive case” of the horizontal curves: the cut-locus of a subset of H can not be a horizontal

curve. More precisely, let E be a closed subset of H and let K be its cut-locus. There is

no open subset U of H such that K ∩ U is a horizontal curve. Actually, this result does

not directly follow from the analysis of the function “distance from a curve”; but its proof

is a variation on that of the Theorem concerning the “negative case”.

The second result is based on the “positive case” of nowhere horizontal curves. Let Ω

be a bounded open subset of H with rectifiable boundary S. Let Hs denote s-Hausdorff

measure w.r.t. the Carnot metric. For each ε > 0 there is an open subset Ω′ whose

boundary S ′ is a smooth surface without characteristic points and such thatH4(Ω∆Ω′) < ε

and |H3(S)−H3(S ′)| < ε. Here Ω∆Ω′ stands for the symmetric set difference of the two

sets.

In the case when Γ is a straight line in H (i.e. a coset of a one parameter subrgroup

of H), the distance from Γ was studied in [4], in collaboration with A. Baldi. It was

shown there that the metric tube around Γ could be identified with a metric disc in the

Gruschin plane. It was clear from the results of [4] that the properties of the metric

tube were different in the case where Γ is horizontal and in that where it is not. In [4],

however, this point was not further developed because the main theme of the article was

the projection of the Heisenberg group onto the Gruschin plane per se.

2. Notation and preliminaries

In H = R3 3 (x, y, t) consider the vector fields X = ∂x − y
2
∂t, Y = ∂y + x

2
∂t and

T = [X, Y ] = ∂t and the product for which h = span{X, Y, T} is the Lie algebra of the

corresponding group H,

(x1, y1, t1) · (x2, y2, t2) = (x1 + x2, y1 + y2, t1 + t2 + 1/2(x1y2 − y1x2)).

The graded structure of h has a horizontal stratum H = V1 = {X, Y } and a commutator

V = V2 = [V1, V2] = span{T}. The CC-length of an absolutely continuous horizontal

curve Γ : [a, b]→ H, Γ̇ ∈ H, is

lengthCC(Γ) =

∫ b

a

|Γ̇(τ)|Hdτ,
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where | · |H is the horizontal norm of a vector in H. The Carnot distance between two

points P, Q in H is

d(P,Q) = inf {lengthCC(Γ) : Γ(a) = P, Γ(b) = Q} .

A nice interpretation of length and distance in H can be given in terms of areas and

perimeters in the Euclidean plane. Consider a smooth curve γ : [α, β] → R2 in the

(x, y)-plane (assume WLOG that γ(α) = (0, 0)) and let Γ : [α, β] → H be its horizontal

lift:

Γ(τ) = (γ(τ), t(τ)),

where

t(τ) =

∫ τ

α

xdy − ydx
2

is (by Stokes’ Theorem) the (signed) Euclidean area enclosed between the arc of γ corre-

sponding to the interval [α, τ ] and the straight line returning from γ(τ) and (0, 0). Then,

Γ is a horizontal curve in H and lengthCC(Γ) = lengthEuclidean(γ). It is easily checked

that the group law in H is the one for which this interpretation of horizontal curves and

length can be moved around the plane by translations, dropping the special assumption

that γ(0) = (0, 0).

The Carnot distance in realized by the length of geodesics. The interpretation in terms

of areas rightly suggests that geodesics are horizontal lifts of circles, which are solutions

to isoperimetric problems.

2.0.1. Geodesics. The equations of the unit-speed geodesics starting at O and having

initial speed −Y are ηκ = (x, y, t).
x(τ) = 1

κ
(1− cos(κτ)),

y(τ) = − 1
κ

sin(κτ)),

t(τ) = κτ−sin(κτ)
2κ2 .

(1)

Each ηκ is length-minimizing in an interval of length 1/2πκ. The number κ is the curvature

of ηκ. Here we let κ > 0, but the case κ ∈ R will also be considered. Observe that
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η̇κ(0) = (0,−1, 0) = Y . More generally,
ẋ(τ) = sin(κτ),

ẏ(τ) = − cos(κτ),

ṫ(τ) = 1−cos(κτ)
2κ

.

We look for efficient ways to parametrize the set of geodesics. The rotation Rθ : (z, t) 7→

(eiθz, t) is an isometric isomorphism of H and we let ηθ,κ = Rθηκ, θ ∈ T, κ ≥ 0. Our

parameter space for geodesics will be Θ = T× R+, with R+ = [0,+∞).

Given ε > 0, the geodesic sphere ∂B(O, ε) is the set of endpoints of geodesics whose

parameters (θ, κ) ∈ Θ satify 0 ≤ κ ≤ 2π/ε.

For the record, we write down the equation of ηθ,κ and of η̇θ,κ.
x(τ) = cos(θ)

κ
(1− cos(κτ)) + sin(θ)

κ
sin(κτ)) = 1

κ
(cos(θ)− cos(θ + κτ)) ,

y(τ) = sin(θ)
κ

(1− cos(κτ))− cos(θ)
κ

sin(κτ)) = 1
κ

(sin(θ)− sin(θ + κτ)) ,

t(τ) = κτ−sin(κτ)
2κ2 .

ẋ(τ) = cos(θ) sin(κτ) + sin(θ) cos(κτ) = sin(θ + κτ),

ẏ(τ) = sin(θ) sin(κτ)− cos(θ) cos(κτ) = − cos(θ + κτ),

ṫ(τ) = 1−cos(κτ)
2κ

.

(2)

In particular, η̇θ,κ(0) = (sin(θ),− cos(θ), 0).

3. The metric tube around a non-horizontal curve.

Let Γ : (α, β)→ H be a smooth curve in the Heisenberg group, which we assume for the

moment to be nonhorizontal pointwise. We want to find the geodesics which are normal

to Γ at some P = Γ(τ0). Assume WLOG that Γ(0) = O. The geodesics η we look for are

s.t. for some ε > 0 and all 0 ≤ τ ≤ ε one has d(η(τ),Γ) = τ (think of the Euclidean case

for comparison). We assume throughtout that the projection Γ̇H of Γ̇(0) on H satisfies

|Γ̇H | = 1. After a rotation we can assume that

Γ̇(0) = X +mT = ∂x +m∂t = (1, 0,m).
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Proposition 3.1. Let Γ be as above. The normal (length minimizing) geodesics starting

at O are the geodesics ηb (−∞ ≤ b ≤ +∞) such that (if b 6= ±∞) having initial speed

η̇b(0) =

(
m√

m2 + b2
,

b√
m2 + b2

, 0

)
and curvature

κb =
4√

m2 + b2
.

If b = ±∞, then η̇±∞(0) = (0,±1, 0), κ±∞ = 0 and η±∞ has equation

η±∞(τ) =


x(τ) = 0,

y(τ) = ±τ,

t(τ) = 0.

That is, there exists ε > 0 such that for all b ∈ [−∞,+∞] and τ ∈ [0, ε]:

d(ηb(τ),Γ) = d(ηb(τ), O) = τ.

Moreover, if P 6= O and P = Γ(σ) for some σ, then d(ηb(τ), P ) > 0. That is, in the

metric disc {ηb(τ) : −∞ ≤ b ≤ +∞, 0 ≤ τ ≤ ε} we have the unique projection property.

Sketch of the proof. Think of a closed Carnot-metric ball B which is already tangent

to Γ at O. This means that (assuming the ball is small enough, depending smallness on

several things which include the Euclidean -or Riemannian w.r.t. suitable Riemannian

metrics- curvature of Γ) there is a plane in H which is tangent to both Γ and B. There

is in fact a one-parameter family of such planes. They have equation

mx+ by = t,

where b is a free real parameter. (We have indeed the exceptional plane y = 0, correspond-

ing to b =∞). Call Π = Πb the plane. Its characteristic point is C = Cb = (−b/2,m/2, 0),

which describes a straight line in the t = 0 plane. Observe that the straight line OC is

the only horizontal line (direction) on Π at O.

The geodesic η we look for is the metric normal to Π at O. The starting velocity

η̇(0) = ν is the horizontal normal to Π at O while |d(O,P )|/2 is the radius of curvature

of η, that is κ = 2/d(O,P ). We will choose a positive direction for η in the following way.
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Consider the circle having diameter OC on the plane t = 0, counterclockwise oriented.

Then, η̇(0) is the normalized velocity of this circle at O. Namely,

ν = η̇(0) =

(
m√

m2 + b2
,

b√
m2 + b2

, 0

)
.

With this choice, for (small) positive τ ’s we see η(τ) above t = 0 and below Π.
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We now translate the above into concrete equations. Namely, η = ηθ,κ with

(3)


κ = 4/

√
b2 +m2,

cos(θ) = −b/
√
b2 +m2,

sin(θ) = m/
√
b2 +m2.

That is, 
x(τ) = − b

4
(1− cos(κτ)) + m

4
sin(κτ)),

y(τ) = m
4

(1− cos(κτ)) + b
4

sin(κτ)),

t(τ) = b2+m2

32

[
4τ√
b2+m2 − sin

(
4τ√
b2+m2

)]
.

Observe that b = 0 gives the maximal curvature corresponding to a given choice for m.

We have

κmax = 4/|m|,

θmax = sign(m)
π

2
,

Cmax = (0,m/2, 0).

Let us go back to the curve Γ. Suppose Γ̇(s) = cos(α)(s)X + sin(α(s))Y + m(s)T .

The geodesic we have computed before has to be rotated by an angle of α(s), then left

translated by Γ(s). That is, for each b ∈ R we have a geodesic ηs,b(τ) = Γ(s)·ηα(s),m(s),b(τ),

where ηα(s),m(s),b(τ) is given by

(4)


x(τ) = 1

κ(m(s),b)
(cos(α(s) + θ(m(s), b))− cos(α(s) + θ(m(s), b) + κ(m(s), b)τ)) ,

y(τ) = 1
κ(m(s),b)

(sin(α(s) + θ(m(s), b))− sin(α(s) + θ(m(s), b) + κ(m(s), b)τ)) ,

t(τ) = κ(m(s),s)τ−sin(κ(m(s),s)τ)
2κ2(m(s),s)

,

and θ, κ are given by (3). We record the velocity:

(5)


ẋ(τ) = sin(α(s) + θ(m(s), b) + κ(m(s), b)τ),

ẏ(τ) = − cos(α(s) + θ(m(s), b) + κ(m(s), b)τ),

ṫ(τ) = 1−cos(κ(m(s),s)τ)
2κ(m(s),s)

.
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The metric exponential map starting on the curve Γ is

Exp : Γ× R∗ × R→ H, Exp(Γ(s), b, τ) = Γ(s) · ηα(s),m(s),b(τ).

Here, R∗ = R ∪ {∞}.

Theorem 3.1. If Γ : [a, b] → H is a C2 regular curve which is nowhere horizontal and

ε > 0 is suitably small, then Exp defines a diffeomorphism of Γ×R∗× [−ε, ε] onto a closed

region T in H.

Moreover, T contains in its interior the open part Γ((a, b)).

The key step in proving the theorem is an estimate which is provided in a subsection

below.

Fix ε > 0 small enough and consider the ε-tube SεΓ = TubeεΓ(Γ× R∗) around Γ, where

TubeεΓ(s, b) = Exp(Γ(s), b, ε).

By definition and construction, the metric normal to SεΓ at TubeεΓ(s0, b0) is the geodesic

∆τ 7→ Exp(Γ(s0), b0, ε+ ∆τ). The imaginary curvature at TubeεΓ(s0, b0) is then κ(s0, b0),

the horizontal normal is

νH(s0, b0, ε) =
d

dτ

∣∣∣∣
τ=ε

Exp(Γ(s0), b0, τ),

which can easily computed. In principle, this gives the mean curvature as well. The

horizontal field v can be reconstructed from νH . Overall, we could compute the Hessian

of δTubeεΓ
, using the results of [5].

Corollary 3.1. If Γ is smooth and everywhere non-horizontal, then for small ε > 0 the

surface TubeεΓ is smooth and free of characteristic points.

3.1. The metric tube around non-horizontal curve: the differential. We give here

the estimate which is the key in proving Theorem 3.1.

Let Γ : I → H be a non-horizontal curve, smooth and without self-intersections, which

we parametrize so to have unit speed projection Γ on R2,

(6) Γ̇(s) = cos(α(s))X + sin(α(s))Y +m(s)T, Γ̇(s) = eiα
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in complex notation. The exponential map, projected on R2, is

(7) w = z + ei(α+θ) 1− eiκτ

κ

where z = z(s) = Γ(s), θ = θ(s, b) and κ = κ(s, b) are as in (3) and the expression is

deduced from (4). We are interested in the tube {τ = ε} and we want to show that, for

ε > 0 small enough it is a smooth surface in H. Since θ depends on s through m = m(s),

we will write θm and θs = θmm
′ to denote the partial derivatives w.r.t. these coordinates

and the same we will do with κ. From (3) we deduce some useful formulas:

∆ :=
√
b2 +m2, κ = 4/∆

− sin θ · θm = ∂m(cos θ) = ∂m

(
− b

∆

)
=
bm

∆3
= sin θ · b

∆2
=⇒ θm = − b

∆2

cos θ · θb = ∂b(sin θ) = ∂b

(m
∆

)
= −bm

∆3
= cos θ · m

∆2
=⇒ θb =

m

∆2

κb = − b

∆3
and κm = − m

∆3
.(8)

Since ż = eiα, we have

ws = eiα + ei(α+θ)i(αs + θs)
1− eiκε

κ
+ ei(α+θ)−eiκεiκε− (1− eiκε)

κ2
κs

= eiα + ei(α+θ)i(αs + θs)
1− eiκε

κ
− ei(α+θ) 1− eiκε

κ

1− iκε
κ

κs − ei(α+θ) iεκs
κ
.(9)

Also

wb = ei(α+θ)iθb
1− eiκε

κ
− ei(α+θ) 1− eiκε

κ

1− iκε
κ

κb − ei(α+θ) iεκb
κ
.(10)

Observe that ws = eiαw′s (where w′s is like ws with α = 0) and that wb = eiαw′b (same

convention). This means that

J

 w

s, b

 = eiαJ

w′

s, b

 ,

where we have (ab)used a mixed real-complex notation. We record:

w′s = 1 + eiθi(αs + θs)
1− eiκε

κ
− eiθ 1− eiκε

κ

1− iκε
κ

κs − eiθ
iεκs
κ
,

w′b = eiθiθb
1− eiκε

κ
− eiθ 1− eiκε

κ

1− iκε
κ

κb − eiθ
iεκb
κ
.

In order to use the Inverse Mapping Theorem, we show that w′s and w′b are independent

for small ε.
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The Taylor expansion w.r.t. ε gives (after lengthy calculations):

det J(w′s, w
′
b) = cos(κε) · −εb

2

∆3
+ sin(κε)

1

4
+ o(ε) =

(
− b2

κ∆3
+

1

4

)
ε+ o(ε)

=
m2

4∆2
ε+ o(ε).(11)

Since m 6= 0 and m is a continuous function of τ , for ε > 0 small enough the Jacobian is

non-vanishing. There seems to be a problem for b → ±∞, which is seen to be apparent

after changing to the variable 1/b→ 0 and verifyng the Jacobian in the new variables is

still of the order of ε.

Corollary 3.2. Let Γ : [a, b]→ H be a smooth non-horizontal curve. Then, [a, b]× R 7→

Exp(Γ(s), b, ε) has non-singular jacobian provided 0 < ε ≤ ε0 with ε0 small enough.

4. Approximating surfaces by surfaces without characteristic points

Let S be a smooth, compact, connected, boundaryless surface in H, S = ∂Ω, where Ω is

a bounded open subset of H. If, for instance, Ω is simply connected, then S necessarily has

characteristic points. Can we approximate S by surfaces without characteristic points?

We can do this, in general, only at the expenses of boundedness or byaltering the topology.

Here we sacrifice boundedness.

Theorem 4.1. Let Ω be a bounded open set with rectifieble boundary S. Fix ε > 0. Then,

there exists a (possibly unbounded) open set Ωε in H such that §ε := ∂Ωε is smooth and

free of characteristic points,

H4(Ωε∆Ω) < ε

and ∣∣H3(Sε)−H3(S)
∣∣ < ε.

Moreover, Ω and Ωε are homeomorphic.

Sketch of the proof. First, we approximate Ω by a bounded open set Ω′ such that: (i)

S ′ := ∂Ω′ is smooth and has just isolated (forcibly, finitely many) characteristic points;

(ii) it satisfies the desired estimates of volume and perimeter with ε/2 instead of ε. This

can be done by approximating first S by polyhedra, then by smoothing their edges and
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vertices, having care not to introduce curves of characteristic points. We can arrange

things so to have all characteristic points on flat parts ofS ′.

Next, for each characteristic point Pof S ′, we consider a simple, smooth, everywhere

non-horizontal curve ΓP (i) starting at P ; (ii) lying in {P} ∪H \Ω; (iii) going to infinity

(i.e. eventually leaving all compact subsets of H); whose starting arc and final (infinite)

arc are vertical (i.e. of the form τ 7→ (x0, y0, τ)). We can ask such curves not to intersect

each other.

For each such curve and characteristic point P , remove a small disc of S ′ around P

and consider a thin surface of rotation like the ones described in the subsection below

which is smoothly glued to the disc’s boundary. We shall see that such surface is free of

characteristic points. Then, we smoothly glue on the final circle of the surface of rotation

the metric tube (with a small radius) around the non-horizontal curve until we reach the

final (infinite) vertical arc of ΓP . Since the curve ΓP is everywhere non-horizontal, by

the previous results the metric tube is free of characteristic points, provided its radius

is small enough. At the end of the metric tube we glue another surface of rotation

which becomes thinner and thinner, so to have globally small perimeter and volume. In

this approximating procedure we have replaced a small disc of S ′ around a characteristic

point by an infinite tube having small perimeter and volume, which is free of characteristic

points.

If we do this for all characteristic points while keeping the total perimeter and volume

under control, and taking care thatthe tubes do not intersect, we obtain a surface S with

the desired properties.

4.1. Surfaces of rotation. We give here a less qualitative description of the surface

of rotation alluded to above. Let T be a surface having equation (x, y, t) = F (t, θ),

F : [a, b]× [−π, π]→ H,

F : (t, θ) 7→ (ϕ(t) cos(θ), ϕ(t) sin(θ), t).

Here ϕ : [a, b]→ (0,∞)is smooth.
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Lemma 4.1. The imaginary curvature of T is

κ =

√
1 + ϕ2(ϕ′)2

4

ϕ′

The mean curvaure of T is

hT (t, θ) =

1
ϕ
− 1

4
ϕ′′ϕ2

1
4
ϕ′2ϕ2 + 1

.

Hence, T is free of characteristic points.

The part of the lemma we need for the approximation theorem is the formula for the

imaginary curvature. The formula for the mean curvature can have independent interest.

With little more effort, one can find the horizontal curves ruling the surface T .

5. The metric tube around a horizontal curve.

Let Γ : [a, b] → H be a smooth horizontal curve and let P = Γ(τ0) with a < τ0 < b.

WLOG assume that P = O = Γ(0). Let B be a small closed metric ball touching Γ at O

and let Q be its center. Clearly, Γ̇(0) must lie on the space TO∂B tangent to ∂B at O,

hence it lies in the only horizontal direction in TO∂B. The geodesic η joining Q and O

is (if the ball is suitably small) the metric normal to TO∂B at O (identified with a plane

in H). Hence, η̇(0), the velocity of η at η(0) = O, is the unit horizontal vector normal

to Γ̇(0), by the horizontal Gauss Lemma in [5]. This means that all geodesics metrically

normal to Γ at Γ(0) = O have initial velocity η̇(0) = ±ν, where ν is one of the two

horizontal vectors normal to Γ̇(0). This state of affairs is radically different from the one

we have verified in the case of the non-horizontal curves. In the present situation, which

is peculiarly sub-Riemannian, all geodesics normal to Γ at Γ(0) have the same initial

velocity vector. Since the infimum of the length over which such geodesics are length

minimizing is zero, some of them will never reach the metric tube of radius ε around Γ,

no matter how small we choose Γ.

These euristics make believable, I think, the following theorem.

Theorem 5.1. Let Γ be as above a horizontal curve in H. Then, for all ε > 0 the tube

Tε = {Q ∈ H : d(Q,Γ) = ε}
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is not a C1 surface in the Riemannian sense.

In fact, there are points Q in Tε such that there are two distinct geodesics η1 and η2

which minimize the distance between Q and Γ and such geodesics have different horizontal

tangent vector at Q.

6. The cutlocus does not contain horizontal curves

The result we are going to present here does not follow, strictly speaking, from the one

about the distance from a horizontal curve, but its proof is a slight variation of that of

Theorem 5.1.

Let E be a closed subset of H and let K be the cut-locus of E. The set K is define as

follows. Let η be a geodesic starting at some point P = η(0) of E with the property that

d(η(τ), K) = τ for 0 ≤ τ ≤ ε and ε > 0. Let ε0 be the supremum of the ε > 0 for which

the property holds. If ε0 <∞, the point η(ε0) belongs to the cutlocus. If the supremum is

0 and P belongs to the boundary ∂E of E, we say as well that P belongs to the cut-locus.

See [1] and [5] for some properties of the cut-locus in H.

Theorem 6.1. Let E be a closed subset of H and let K be its cutlocus. Let Ω be an open

subset of H \ E. Then, K ∩ Ω is not a horizontal curve.

To better put into context this result, we recall some well known facts.

• The cut-locus of the plane t = 0 is the vertical axis, which is a smooth non-

horizontal curve.

• The cut-locus of a single point is a non-horizontal curve as well (a coset of the

vertical axis, in fact).

• The cutlocus of any closed set E can not contain isolated points.

These facts and the result just stated seem to justify the following.

Conjecture 6.1. Let E, K and Ω be as above. Then,

H2(Ω ∩K) > 0.

The example

E = {(±1, y, t) : y, t ∈ R},
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for which

K = {(0, y, t) : y, t ∈ R},

shows that it can happen that H3(Ω ∩K) > 0.
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