Some applications of subharmonicity*

N.A.

Theorem 1 (Littlewood's subordination principle.) ${ }^{1}$ Suppose that ω : $\mathbb{D} \rightarrow \mathbb{D}$ is holomorphic and that $\omega(0)=0$. Let G be continuous and subharmonic in \mathbb{D} and $g=G \circ \omega$. Then, if $0 \leq r<1$,

$$
\begin{equation*}
\int_{-\pi}^{\pi} g\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \leq \int_{-\pi}^{\pi} G\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} . \tag{1}
\end{equation*}
$$

Proof. We can assume that G is continuous up to the boundary of \mathbb{D}. If not, replace it by $z \mapsto G(R(z))$, with $R<1$ close to 1 . $H=P[F]$ and $h=H \circ \omega$. Then,

$$
\begin{aligned}
\int_{-\pi}^{\pi} g\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} & \leq \int_{-\pi}^{\pi} h\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \\
& =h(0)=H(0)=\int_{-\pi}^{\pi} H\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \\
& =\int_{-\pi}^{\pi} G\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} .
\end{aligned}
$$

We know that, if f is holomorphic in \mathbb{D}, then $|f|^{p}$ is subharmonic in \mathbb{D} for all $p>0$. For $\rho \in(0,1)$, let $\omega(z)=\rho z$. By Littlewood subordination,

$$
M_{p}(f, \rho r) \leq M_{p}(f, r) .
$$

This is the same inequality we proved by means of Young's inequality in the case $p>1$.
L^{p} estimates for the conjugate function.
Theorem 2 Let $f=u+i v$ be holomorphic in \mathbb{D} and suppose that $v(0)=0$, u, v being real and imaginary parts of f. For $1<p<\infty$, let $p^{*}=\max \left\{p, p^{\prime}\right.$: $\left.p^{-1}+p^{-1}=1\right\}$. Then,

$$
\|f\|_{H^{p}(\mathbb{D})} \leq\left(\frac{p^{*}}{p^{*}-1}\right)^{1 / p^{*}}\|u\|_{h^{p}(\mathbb{D})}
$$

The idea is reducing the integral inequality to a differential inequality.

[^0]Lemma 3 Suppose that there is $G: \mathbb{C} \rightarrow \mathbb{R}$ such that
(i) G is subharmonic on \mathbb{C},
(ii) $G(u) \geq 0$ for $u \in \mathbb{R}$,
(iii) $G(w) \leq C|u|^{p}-|w|^{p}$ on \mathbb{C}.

If $f=u+i v$ is holomorphic in \mathbb{D} and $v(0)=0$, then

$$
\int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi} \leq C \int_{-\pi}^{\pi}\left|u\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi} .
$$

holds for all $0 \leq r<1$.
Proof of the lemma. The function $G \circ f$ is subharmonic on \mathbb{D}. By the sub-mean value property,

$$
\begin{aligned}
0 & \leq f(G(0)) \leq \int_{-\pi}^{\pi} G \circ f\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} \\
& \leq \int_{-\pi}^{\pi} C\left|u\left(r e^{i \theta}\right)\right|^{p}-\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}
\end{aligned}
$$

Proof of the Theorem. By duality ${ }^{2}$ we can consider the case $1<p \leq 2$ only.

By the lemma and a simple limiting argument, it suffices to find a function G with properties (i)-(iii). We claim that

$$
G(z)=\frac{p}{p-1}|u|^{p}-|w|^{p}
$$

is one such function. Properties (ii) and (iii) are trivial, so we only have to prove subharmonicity. First we check the sub-mean value property at the origin. For $1<p \leq 2$,

$$
\int_{-\pi}^{\pi}|\cos (\theta)|^{p} \frac{d \theta}{2 \pi} \geq \int_{-\pi}^{\pi} \cos ^{2}(\theta) \frac{d \theta}{2 \pi}=\pi>\frac{1}{2} \geq \frac{p-1}{p}
$$

then, when $r \geq 0$,

$$
G(0)=0 \leq r^{p}\left(\frac{p}{p-1}|\cos (\theta)|^{p}-1\right)=\int_{-\pi}^{\pi} G\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi} .
$$

In the points $w=u+i v$ where $u \neq 0$ we have

$$
\Delta G(w)=\frac{p}{p-1} p(p-1)|u|^{p-2}-p^{2}|w|^{p-2} \geq 0
$$

since $p \leq 2$.
We are left with the points where $u=0$ and $v \neq 0$. The function G is C^{1} in a neighborhood of each of these points and C^{2} on the neighborhood minus a segment of straight line, hence Green's Theorem can be appplied. WLOG,

[^1]consider the point $w=i$ and consider $0 \leq r<1$. Let $D^{+}=\{|w-i|<r, u>0\}$, $D^{-}=\{|w-i|<r, u<0\}$.
\[

$$
\begin{aligned}
\frac{\partial}{\partial r}\left\{\int_{-\pi}^{\pi} G\left(i+r e^{i \theta}\right) \frac{d \theta}{2 \pi}\right\} & =\int_{\{|z-i|=r\}} \nabla G \cdot \nu d \sigma \\
& =\int_{\partial D^{+}} \nabla G \cdot \nu d \sigma+\int_{\partial D^{-}} \nabla G \cdot \nu d \sigma \\
& =\int_{D^{+} \cup D^{-}} \Delta G d u d v \geq 0
\end{aligned}
$$
\]

which proves the sub-mean value property.
Corollary 4 Let $f=u+i v$ be holomorphic in \mathbb{D} and suppose that $v(0)=0$, u, v being real and imaginary parts of f. For $1<p<\infty$, let $p^{*}=\max \left\{p, p^{\prime}:\right.$ $\left.p^{-1}+p^{-1}=1\right\}$. Then,

$$
\|v\|_{H^{p}(\mathbb{D})}^{p^{p^{*}}} \leq\left(\frac{p^{*}}{p^{*}-1}-1\right)\|u\|_{h^{p}(\mathbb{D})}^{p^{*}}
$$

Recall the projection operator $\pi_{+}: L^{2} \rightarrow H^{2}$. Its action on harmonic functions is

$$
\pi_{+} u=\frac{1}{2}(u+u(0)+i v) .
$$

Theorem 5 If $1<p<\infty$, then the projection operators π_{+}, π_{-}, initially defined on $h^{p} \cap h^{2}$, extend to bounded operators on h^{p}. Moreover, $\pi_{+}: h^{p} \rightarrow H^{p}$ is bounded and onto.
Proof. By Corollary 4, if $u \in h^{p} \cap h^{2}$ then

$$
\left\|\pi_{+} u\right\|_{h^{p}} \leq C\|u\|_{h^{p}}
$$

A simple limiting argument finishes the proof that π_{+}extends to a bounded operator.

Surjectivity is easy, as well. ${ }^{3}$
Theorem 6 Let $1<p<\infty$. The dual space of H^{p} under the inner product of H^{2} is $H^{p^{\prime}}$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Proof. Let $\Lambda \in\left(H^{p}\right)^{*}$ be a bounded, linear functional on H^{p}. Since H^{p} is a closed subspace of h^{p}, by Hahn-Banach's Theorem Λ has an extension Λ^{\prime} to h^{p} such that $\left\|\Lambda^{\prime}\right\|=\|\Lambda\|$. There exists $g \in L^{p^{\prime}}(\mathbb{S})$ such that

$$
\Lambda(f)=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) g\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}=\langle f, g\rangle_{h^{2}}
$$

Let $h=\pi_{+} g \in H^{p^{\prime}}$, by the boundedness of the projection operator. For $k \in H^{p}$,

$$
\begin{aligned}
\Lambda(k) & =\lambda^{\prime}(k) \\
& =\langle k, g\rangle_{h^{2}} \\
& =\left\langle k, \pi_{+} g+\pi_{-} g\right\rangle_{h^{2}} \\
& =\left\langle k, \pi_{+} g\right\rangle_{h^{2}},
\end{aligned}
$$

since $\pi_{-} g$ is orthogonal to $H^{p} 4$
The argument breaks down at the endpoint $p=1$. Surprisingly, the result breaks down, too. We will see later that $\left(H^{1}\right)^{*}=B M O$ is a larger space that H^{∞}.

[^2]
[^0]: *Some of the topics (duality and so forth) would be more clear after the pointwise convergence results.
 ${ }^{1}$ We use the characterization of subharmonicity in terms of harmonic functions: add to the subharmonic chapter.

[^1]: ${ }^{2}$ Write down some details.

[^2]: ${ }^{3}$ Provide some details.
 ${ }^{4}$ Well, this on a formal level: add an approximation argument.

