Subharmonic functions*

N.A.

Upper semicontinuous functions. Let (X, d) be a metric space. A function $f: X \rightarrow \mathbb{R} \cup\{-\infty\}$ is upper semicontinuous (u.s.c.) if

$$
\liminf _{y \leq x} f(y) \leq f(x) \forall x \in X
$$

A function g is lower semicontinuous (1.s.c.) iff $-g$ is u.s.c.
For instance, if $E \subseteq X$, then χ_{E} is u.s.c. $\Longleftrightarrow E$ is closed. An increasing function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is u.s.c. $\Longleftrightarrow \varphi$ is right-continuous.

Lemma $1 f$ is u.s.c. $\Longleftrightarrow f^{-1}([a, \infty))$ is closed $\forall a \in \mathbb{R} \Longleftrightarrow f^{-1}([-\infty, a))$ is open $\forall a \in \mathbb{R}$.

Proof. Exercise with sequences.
Theorem 2 (Weierstrass.) If $K \subseteq X$ is compact and $f: K \rightarrow \mathbb{R} \cup\{-\infty\}$ is u.s.c., then f has maximum (eventually, $-\infty$) on K.

Proof. Let $x_{n} \in K$ be s.t. $f\left(x_{n}\right) \xrightarrow{n \rightarrow \infty} \sup _{K}(f)$. There is a subsequence of the $x_{n}^{\prime} s$ converging in K (we still call it $x_{n}, x_{n} \rightarrow x$). Then,

$$
\sup (f) \geq f(x) \geq \lim _{n} f\left(x_{n}\right)=\sup (f)
$$

Subharmonic functions. Let $U \subseteq \mathbb{C}$ be open. $u: U \rightarrow \mathbb{R} \cup\{-\infty\}$ is subharmonic if u is u.s.c. in U and $\forall w \in U \exists \rho>0 \forall r \in[0, \rho)$:

$$
\begin{equation*}
u(w) \leq \int_{-\pi}^{\pi} u\left(w+r e^{i \theta}\right) \frac{d \theta}{2 \pi} . \tag{1}
\end{equation*}
$$

v is superharmonic iff $-v$ is subharmonic.
Theorem 3 Let $f \in \operatorname{Hol}(U)$. Then, $\log |f|$ is subharmonic in U.
Proposition 4 (i) u, v subharmonic and $a, b \geq 0 \Longrightarrow a u+b v$ is subharmonic (the class of the subharmonic functions is a cone).
(ii) If u, v are subharmonic, then $\max (u, v)$ is subharmonic.
(iii) If h is harmonic on U and Φ is convex on the range of h, then $\Phi \circ h$ is subharmonic.

[^0]Proof. (i) and (ii) are obvious, (iii) follows from Jensen's inequality.
Theorem 5 (Maximum principle.) If u is subharmonic in U and U is connected, then
(i) If u has maximum in U, then u is constant.
(ii) If $\lim \sup _{z \rightarrow \zeta} u(z) \leq 0$ for all $\zeta \in \partial U$, then $u \leq 0$ on U.

Note. If U is unbounded, $\infty \in \partial U$.
Proof. (i) Let $A=\left\{z: u(z)<M=\sup _{D} u\right\}$ and $B=\{z: u(z)=M\}$. Since u is u.s.c., A is open. Let $z_{0} \in B$. By the sub-mean value property,

$$
M=u\left(z_{0}\right) \leq \int_{-\pi}^{\pi} u\left(z_{0}+r e^{i \theta}\right) \frac{d \theta}{2 \pi} \leq M
$$

for all sufficiently small values of r, say $r \leq \rho$. Then, $u(z)=M$ a.e. on $\left\{\left|z-z_{0}\right| \leq \rho\right\}$. Now, since u is u.s.c., $u(z)=M$ on all of $\left\{\left|z-z_{0}\right| \leq \rho\right\}$. Hence, B is open, too. This implies that $B=U$.
(ii) Extend u to $U \cup \partial U$ by setting $u(\zeta)=\lim \sup _{z \rightarrow \zeta} u(z) \leq 0$ when $\zeta \in \partial U$. By Weierstrass' Theorem, u has a maximum on $U \cup \partial U$. If the maximum is on ∂U, we are finished, if it is inside U, then u is constant and we are finished anyway.
Phragmén-Lindelöf principle. In a quantitative way, the theorem below says that a subharmonic function is either well behaved at the boundary, or it has to explode at a minimum rate.

Theorem 6 Let U be a connected open set in \mathbb{C} having ∞ on its boundary. Suppose that

$$
\limsup _{z \rightarrow \zeta} u(z) \leq 0 \text { for all } \zeta \in \partial U-\{\infty\}
$$

and suppose that there exists a superharmonic v on U such that

$$
\liminf _{z \rightarrow \infty} v(z)>0 \text { and } \limsup _{z \rightarrow \infty} \frac{u(z)}{v(z)} \leq 0
$$

Then,

$$
u \leq 0 \text { on } U .
$$

Proof. (i) Suppose first that $v>0$ on U and for $\epsilon>0$, let $u_{\epsilon}=u-\epsilon v$, which is subharmonic in U. Since $v>0$, $\lim \sup _{z \rightarrow \zeta} u_{\epsilon}(z) \leq 0$ for $\zeta \in \partial U-\{\infty\}$. Also, there are $R, \delta>0$ such that $v(z) \geq \delta$ if $|z| \geq R$. Hence,

$$
\limsup _{z \rightarrow \infty} u_{\epsilon}(z)=\limsup _{z \rightarrow \infty} v\left(\frac{u(z)}{v(z)}-\epsilon\right) \leq 0
$$

by the various hypothesis. By the maximum principle, $u_{\epsilon} \leq 0$ on U and letting $\epsilon \rightarrow 0$ we are finished.
(ii) Let $A>0$. The hypothesis hold for $v_{A}=v+A$ in place of v. Clearly, $\liminf _{z \rightarrow \infty} v_{A}>A$. Also, let $R>0$ s.t. $|z|>R$ implies that $v(z)>0$.

$$
\begin{aligned}
\limsup _{z \rightarrow \infty} \frac{u(z)}{v(z)} \leq 0 & \Longleftrightarrow \forall \epsilon>0 \exists \rho>0:|z| \geq \rho \Longrightarrow \frac{u(z)}{v(z)} \leq \epsilon \\
& \Longrightarrow \forall \epsilon>0 \exists \rho>0:|z| \geq \max (R, \rho) \Longrightarrow u(z) \leq \epsilon v(z)
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow \quad \forall \epsilon>0 \exists \rho>0:|z| \geq \max (R, \rho) \Longrightarrow u(z) \leq \epsilon(v(z)+A) \\
& \Longleftrightarrow \quad \limsup _{z \rightarrow \infty} \frac{u(z)}{v_{A}(z)} \leq 0
\end{aligned}
$$

Let now $F_{\eta}=\{z: u(z) \geq \eta>0\}$. F_{η} is closed in U by u.s.c. of u. Then, v has a minimum on $F_{\eta} \cap\{|z| \leq R\}$ and $v>0$ on $F_{\eta}-\{|z| \leq R\}$; hence, v is bounded below on F_{η}. Choose $A>0$ s.t. $v+A>0$ on F_{η} and set $V=\left\{z: v_{A}(z)>0\right\}$. Then V is open by l.s.c. of v. If $\zeta_{1} \in \partial U-\{\infty\}$, then $\lim \sup _{z \rightarrow \zeta_{1}}(u(z)-\eta) \leq-\eta<0$ by hypothesis. If $\zeta_{2} \in U \cap \partial V$, then $\lim \sup _{z \rightarrow \zeta_{2}}(u(z)-\eta) \leq 0$ because $\zeta_{2} \notin V$ and $F_{\eta} \subseteq V$.

Applying (i) on each connected component of V, we have that $u-\eta \leq 0$ on V. On the other hand, $F_{\eta} \subseteq V$, hence $u-\eta>0$ on $U-V$. Overall, $u \leq \eta$ on U. Let now $\eta \rightarrow 0$.

Corollary 7 Let $U \subset \mathbb{C}$ be an unbounded domain and let u be subharmonic in U. If

$$
\limsup _{z \rightarrow \zeta} u(z) \leq 0 \forall \zeta \in \partial U-\{\infty\} \text { and } \limsup _{z \rightarrow \infty} \frac{u(z)}{\log |z|} \leq 0
$$

then $u \leq 0$ on U.
Proof. Let $\zeta \in \partial U \cap \mathbb{C}$. Then, $z \log |z-\zeta|$ is superharmonic in U. By Theorem 9 and translation invariance, $u(z-\zeta) \leq 0$ on $U+\zeta$, hence $u \leq 0$ on U.

For instance, if $u \leq 0$ on $\partial U-\{\infty\}$ and $u(z)=o_{z \rightarrow \infty}(\log |z|)$, then $u \leq 0$ on U.

Theorem 8 (Liouville.) Let u be subharmonic in \mathbb{C} and suppose that

$$
\limsup _{z \rightarrow \infty} \frac{u(z)}{\log |z|} \leq 0
$$

Then, u is constant in \mathbb{C}.
Proof. If $u \equiv-\infty$, we are o.k. Otherwise, let $w \in \mathbb{C}$ s.t. $u(w) \neq-\infty$ and consider $u_{1}=u-u(w)$ on $\mathbb{C}-\{w\}$. Then, $\lim \sup _{z \rightarrow w} u_{1}(z) \leq 0$ and the corollary to Theorem 9 applies, giving $u_{1} \leq 0$ on \mathbb{C}. By the maximum principle, u must be constant.

In particular, a function u, subharmonic on \mathbb{C}, which is bounded above, is constant.

Theorem 9 (Phragmén-Lindelöf in its original form.) Let $\gamma>0$ and consider the strip $S=\left\{z:|\operatorname{Re}(z)|<\frac{\pi}{2 \gamma}\right\}$. Let u be subharmonic in S be such that, for some $A>0$ and $\alpha<\gamma$,

$$
u(x+i y) \leq a e^{\alpha|y|}
$$

If $\lim \sup _{z \rightarrow \zeta} u(z) \leq 0$ for all $\zeta \neq \infty$ in ∂S, then $u \leq 0$ on S.
Proof. Let $v(z)=\operatorname{Re}(\cos (\beta z))=\cos (\beta x) \cosh (\beta y)>0$ on S, if $\alpha<\beta<\gamma$. v is clearly harmonic. Also,

$$
\liminf _{z \rightarrow \infty} v(z) \geq \cos \left(\frac{\beta \pi}{2 \gamma}\right) \liminf _{|y| \rightarrow+\infty} \cosh (\beta y)=+\infty
$$

and

$$
\limsup _{z \rightarrow \infty} \frac{u(z)}{v(z)} \leq \limsup _{|y| \rightarrow \infty} \frac{A e^{\alpha|y|}}{\cos \left(\frac{\beta \pi}{2 \gamma}\right) \cosh (\beta y)} .
$$

Hence, we can apply Theorem 9.
One might wonder where the complex cos-function came from. It originates from the Poisson kernel of S (rather, from the sum of two instances of the Poisson kernel). ${ }^{1}$

A famous consequence of the above.
Theorem 10 (Three Lines Lemma.) Let u be subharmonic in $S=\{z: 0<$ $\operatorname{Re}(z)<1\}$ and suppose that there exist $A>0$ and $\alpha<\pi$ such that $u(z) \leq A e^{\alpha y}$. If

$$
\limsup _{z \rightarrow \zeta} u(z) \leq\left\{\begin{array}{l}
M_{0} \text { when } \operatorname{Re}(\zeta)=0 \\
M_{1} \text { when } \operatorname{Re}(\zeta)=1
\end{array}\right.
$$

then

$$
u(x+i y) \leq M_{0}(1-x)+M_{1} x .
$$

Proof. Let $u_{1}(z)=u(z)-\operatorname{Re}\left(M_{0}(1-z)+M_{1} z\right)$, which is subharmonic in S. Then, u satisfies a (translated version of) the classical PL principle, hence $u_{1} \leq 0$ on S.

Consider the function $u(z)=\operatorname{Re}(\cos (\gamma(z)))$. It fails the hypothesis of Theorem 9 "just barely", yet it does not satisfies the thesis.

Exercise 11 Write a version of the Phragmén-Lindelöf Theorem for the angle $\left\{z:|\arg (z)|<\frac{\pi}{2 \gamma}\right\}$.

Subharmonicity and laplacians

Theorem 12 Let $\Omega \subseteq \mathbb{C}$ be open and let $u: \Omega \rightarrow \mathbb{R}$ be a function in $C^{2}(\Omega)$. Then, u is subharmonic in Ω if and only if $\Delta u \geq 0$ in Ω.

Proof. (\Longleftarrow) We verify that the (global) sub-mean value property holds. Without loss of generality, we verify it at $0 \in \Omega$. We will use Green's Theorem ${ }^{2}$.

$$
\begin{aligned}
\int_{|z|<r} \Delta u d x d y & =\int_{|z|=r} \nabla u \cdot \nu d \sigma \\
& =\int_{-\pi}^{\pi} \partial_{\nu} u\left(r e^{i \theta}\right) r \frac{d \theta}{2 \pi} \\
& =\int_{-\pi}^{\pi} \partial_{r} u\left(r e^{i \theta}\right) r \frac{d \theta}{2 \pi} \\
& =\frac{\partial}{\partial r}\left\{\int_{-\pi}^{\pi} u\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}\right\} .
\end{aligned}
$$

[^1]where $d x d y$ and $d \sigma$ are area measure in Ω and the length element on c, respectively.

If $\Delta u \geq 0$ in Ω, then $M(u, r)=\int_{-\pi}^{\pi} u\left(r e^{i \theta}\right) \frac{d \theta}{2 \pi}$ increases with r, but $M(u, 0)=0$, hence u satisfies the sub-mean value property.
(\Longrightarrow). The followin formula extends the limit-characterization of the second derivative from calculus. ${ }^{3}$

Lemma 13 If $u \in C^{2}(\Omega, \mathbb{R})$ and $z_{0} \in \Omega$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\int_{-\pi}^{\pi} u\left(z_{0}+r e^{i \theta}\right) \frac{d \theta}{2 \pi}-u\left(z_{0}\right)}{r^{2}}=\frac{\Delta u\left(z_{0}\right)}{4} . \tag{2}
\end{equation*}
$$

Proof of the Lemma. WLOG, let $z_{0}=0$. Let $v_{\theta}=(\cos \theta, \sin \theta) \equiv e^{i \theta}$ and $\phi_{\theta}(r)=u\left(r v_{\theta}\right)$. Then, $\phi_{\theta}^{\prime}(r)=\nabla u\left(r v_{\theta}\right) \cdot v_{\theta}$ and $\phi_{\theta}^{\prime \prime}(r)=v_{\theta} \cdot\left(\operatorname{Hess} u\left(r v_{\theta}\right) v_{\theta}\right)$. By Taylor's formula with the error term in Lagrange' form,

$$
\begin{aligned}
\phi_{\theta}(r)= & \phi_{\theta}(0)+\phi_{\theta}^{\prime}(0) r+\frac{\phi_{\theta}^{\prime \prime}(a r)}{2} r^{2} \\
& \text { where } a \in[0,1], \\
= & \phi_{\theta}(0)+\phi_{\theta}^{\prime}(0) r+\frac{\phi_{\theta}^{\prime \prime}(0)}{2} r^{2}+r^{2} \epsilon
\end{aligned}
$$

where the error $\epsilon=\epsilon(\theta, r)$ satisfies

$$
\begin{aligned}
|\epsilon(\theta, r)| & =\left|\phi_{\theta}^{\prime \prime}(a r)-\phi_{\theta}^{\prime \prime}(0)\right| \\
& =\left|v_{\theta} \cdot(\operatorname{Hess} u(a r)-\operatorname{Hess} u(0)) v_{\theta}\right| \\
& \leq \sup _{|z| \leq r}\|\operatorname{Hess} u(z)-\operatorname{Hess} u(0)\| \\
& =\eta(r)
\end{aligned}
$$

and $\eta(r) \rightarrow 0$ as $r \rightarrow 0$ because u is C^{2}. For the same reason, $\epsilon(\theta, r)$ is continuous in (θ, r). Then,

$$
\begin{aligned}
\int_{-\pi}^{\pi} u\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}-u(0) & =\int_{-\pi}^{\pi}\left[u\left(e^{i \theta}\right)-u(0)\right] \frac{d \theta}{2 \pi} \\
& =\int_{-\pi}^{\pi}\left[\phi_{\theta}(r)-\phi_{\theta}(0)\right] \frac{d \theta}{2 \pi} \\
& =\int_{-\pi}^{\pi} \phi_{\theta}^{\prime}(0) r+\frac{\phi_{\theta}^{\prime \prime}(0)}{2} r^{2}+r^{2} \epsilon \frac{d \theta}{2 \pi} \\
& =\int_{-\pi}^{\pi} \nabla u(0) \cdot v_{\theta} \frac{d \theta}{2 \pi}+\frac{r^{2}}{2}\left\{\int_{-\pi}^{\pi} v_{\theta} \cdot\left(\operatorname{Hess} u(0) v_{\theta}\right) \frac{d \theta}{2 \pi}+\epsilon(\theta, r)\right\}
\end{aligned}
$$

Now, in the last line, the first summand clearly vanishe (essentially by symmetry), the last one tends to zero as $r \rightarrow 0$ by the estimates above and the fact that ϵ is continuous, while for the term in the middle, we have (below, D is the diagonalization of $\operatorname{Hess} u(0)$ and λ_{j} are the eigenvalues of $\left.\operatorname{Hess} u(0)\right)$

$$
\begin{aligned}
\frac{1}{2} \int_{-\pi}^{\pi} v_{\theta} \cdot\left(\operatorname{Hess} u(0) v_{\theta}\right) \frac{d \theta}{2 \pi} & =\frac{1}{2} \int_{-\pi}^{\pi} v_{\theta} \cdot\left(D v_{\theta}\right) \frac{d \theta}{2 \pi} \\
& =\frac{1}{2} \int_{-\pi}^{\pi}\left(\lambda_{1} \cos ^{2} \theta+\lambda_{2} \sin ^{2} \theta\right) \frac{d \theta}{2 \pi}
\end{aligned}
$$

${ }^{3}$ From Taylor's formula,

$$
\phi^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{\phi(x+h)-2 \phi(x)+\phi(x-h)}{h^{2}}
$$

$$
=\frac{1}{4}\left(\lambda_{1}+\lambda_{2}\right)=\frac{1}{4} \Delta u(0) .
$$

- The wished implication follows from the lemma and the sub-mean value property.

[^0]: *Mostly from Thomas Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232

[^1]: ${ }^{1}$ There is an exercise of this kind below. Maybe some hint here is necessary.
 ${ }^{2}$ If Ω is open, bounded and has piecewise C^{1} boundary, if X is a $C^{1}\left(\Omega, \mathbb{R}^{2}\right)$ vector field which continuously extends to $c=\partial \Omega$, if ν denotes the exterior unit normal to c, then

 $$
 \int_{\Omega} \operatorname{div} X d x d y=\int_{c} X \cdot \nu d \sigma
 $$

