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Upper semicontinuous functions. Let (X, d) be a metric space. A function
f : X → R ∪ {−∞} is upper semicontinuous (u.s.c.) if

lim inf
y≤x

f(y) ≤ f(x) ∀x ∈ X.

A function g is lower semicontinuous (l.s.c.) iff −g is u.s.c.
For instance, if E ⊆ X, then χE is u.s.c. ⇐⇒ E is closed. An increasing

function ϕ : R → R is u.s.c. ⇐⇒ ϕ is right-continuous.

Lemma 1 f is u.s.c. ⇐⇒ f−1([a,∞)) is closed ∀a ∈ R ⇐⇒ f−1([−∞, a))
is open ∀a ∈ R.

Proof. Exercise with sequences.

Theorem 2 (Weierstrass.) If K ⊆ X is compact and f : K → R ∪ {−∞} is
u.s.c., then f has maximum (eventually, −∞) on K.

Proof. Let xn ∈ K be s.t. f(xn) n→∞→ supK(f). There is a subsequence of the
x′ns converging in K (we still call it xn, xn → x). Then,

sup(f) ≥ f(x) ≥ lim
n

f(xn) = sup(f).

Subharmonic functions. Let U ⊆ C be open. u : U → R ∪ {−∞} is subhar-
monic if u is u.s.c. in U and ∀w ∈ U ∃ρ > 0 ∀r ∈ [0, ρ):

u(w) ≤
∫ π

−π

u(w + reiθ)
dθ

2π
. (1)

v is superharmonic iff −v is subharmonic.

Theorem 3 Let f ∈ Hol(U). Then, log |f | is subharmonic in U .

Proposition 4 (i) u, v subharmonic and a, b ≥ 0 =⇒ au + bv is subhar-
monic (the class of the subharmonic functions is a cone).

(ii) If u, v are subharmonic, then max(u, v) is subharmonic.

(iii) If h is harmonic on U and Φ is convex on the range of h, then Φ ◦ h is
subharmonic.

∗Mostly from Thomas Ransford, Potential theory in the complex plane. London Mathe-
matical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232
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Proof. (i) and (ii) are obvious, (iii) follows from Jensen’s inequality.

Theorem 5 (Maximum principle.) If u is subharmonic in U and U is con-
nected, then

(i) If u has maximum in U , then u is constant.

(ii) If lim supz→ζ u(z) ≤ 0 for all ζ ∈ ∂U , then u ≤ 0 on U .

Note. If U is unbounded, ∞ ∈ ∂U .
Proof. (i) Let A = {z : u(z) < M = supD u} and B = {z : u(z) = M}.

Since u is u.s.c., A is open. Let z0 ∈ B. By the sub-mean value property,

M = u(z0) ≤
∫ π

−π

u(z0 + reiθ)
dθ

2π
≤ M.

for all sufficiently small values of r, say r ≤ ρ. Then, u(z) = M a.e. on
{|z − z0| ≤ ρ}. Now, since u is u.s.c., u(z) = M on all of {|z − z0| ≤ ρ}. Hence,
B is open, too. This implies that B = U .

(ii) Extend u to U ∪∂U by setting u(ζ) = lim supz→ζ u(z) ≤ 0 when ζ ∈ ∂U .
By Weierstrass’ Theorem, u has a maximum on U ∪ ∂U . If the maximum is
on ∂U , we are finished, if it is inside U , then u is constant and we are finished
anyway.
Phragmén-Lindelöf principle. In a quantitative way, the theorem below
says that a subharmonic function is either well behaved at the boundary, or it
has to explode at a minimum rate.

Theorem 6 Let U be a connected open set in C having ∞ on its boundary.
Suppose that

lim sup
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂U − {∞}

and suppose that there exists a superharmonic v on U such that

lim inf
z→∞

v(z) > 0 and lim sup
z→∞

u(z)
v(z)

≤ 0.

Then,
u ≤ 0 on U.

Proof. (i) Suppose first that v > 0 on U and for ε > 0, let uε = u− εv, which is
subharmonic in U . Since v > 0, lim supz→ζ uε(z) ≤ 0 for ζ ∈ ∂U − {∞}. Also,
there are R, δ > 0 such that v(z) ≥ δ if |z| ≥ R. Hence,

lim sup
z→∞

uε(z) = lim sup
z→∞

v

(
u(z)
v(z)

− ε

)
≤ 0

by the various hypothesis. By the maximum principle, uε ≤ 0 on U and letting
ε → 0 we are finished.

(ii) Let A > 0. The hypothesis hold for vA = v + A in place of v. Clearly,
lim infz→∞ vA > A. Also, let R > 0 s.t. |z| > R implies that v(z) > 0.

lim sup
z→∞

u(z)
v(z)

≤ 0 ⇐⇒ ∀ε > 0∃ρ > 0 : |z| ≥ ρ =⇒ u(z)
v(z)

≤ ε

=⇒ ∀ε > 0∃ρ > 0 : |z| ≥ max(R, ρ) =⇒ u(z) ≤ εv(z)
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=⇒ ∀ε > 0∃ρ > 0 : |z| ≥ max(R, ρ) =⇒ u(z) ≤ ε(v(z) + A)

⇐⇒ lim sup
z→∞

u(z)
vA(z)

≤ 0.

Let now Fη = {z : u(z) ≥ η > 0}. Fη is closed in U by u.s.c. of u. Then,
v has a minimum on Fη ∩ {|z| ≤ R} and v > 0 on Fη − {|z| ≤ R}; hence,
v is bounded below on Fη. Choose A > 0 s.t. v + A > 0 on Fη and set
V = {z : vA(z) > 0}. Then V is open by l.s.c. of v. If ζ1 ∈ ∂U − {∞},
then lim supz→ζ1

(u(z) − η) ≤ −η < 0 by hypothesis. If ζ2 ∈ U ∩ ∂V , then
lim supz→ζ2

(u(z)− η) ≤ 0 because ζ2 /∈ V and Fη ⊆ V .
Applying (i) on each connected component of V , we have that u− η ≤ 0 on

V . On the other hand, Fη ⊆ V , hence u − η > 0 on U − V . Overall, u ≤ η on
U . Let now η → 0.

Corollary 7 Let U ⊂ C be an unbounded domain and let u be subharmonic in
U . If

lim sup
z→ζ

u(z) ≤ 0 ∀ζ ∈ ∂U − {∞} and lim sup
z→∞

u(z)
log |z|

≤ 0,

then u ≤ 0 on U .

Proof. Let ζ ∈ ∂U ∩C. Then, z log |z− ζ| is superharmonic in U . By Theorem
9 and translation invariance, u(z − ζ) ≤ 0 on U + ζ, hence u ≤ 0 on U .

For instance, if u ≤ 0 on ∂U − {∞} and u(z) = oz→∞(log |z|), then u ≤ 0
on U .

Theorem 8 (Liouville.) Let u be subharmonic in C and suppose that

lim sup
z→∞

u(z)
log |z|

≤ 0.

Then, u is constant in C.

Proof. If u ≡ −∞, we are o.k. Otherwise, let w ∈ C s.t. u(w) 6= −∞ and
consider u1 = u − u(w) on C − {w}. Then, lim supz→w u1(z) ≤ 0 and the
corollary to Theorem 9 applies, giving u1 ≤ 0 on C. By the maximum principle,
u must be constant.

In particular, a function u, subharmonic on C, which is bounded above, is
constant.

Theorem 9 (Phragmén-Lindelöf in its original form.) Let γ > 0 and con-
sider the strip S = {z : |Re(z)| < π

2γ }. Let u be subharmonic in S be such that,
for some A > 0 and α < γ,

u(x + iy) ≤ aeα|y|.

If lim supz→ζ u(z) ≤ 0 for all ζ 6= ∞ in ∂S, then u ≤ 0 on S.

Proof. Let v(z) = Re(cos(βz)) = cos(βx) cosh(βy) > 0 on S, if α < β < γ. v
is clearly harmonic. Also,

lim inf
z→∞

v(z) ≥ cos
(

βπ

2γ

)
lim inf
|y|→+∞

cosh(βy) = +∞,

3



and

lim sup
z→∞

u(z)
v(z)

≤ lim sup
|y|→∞

Aeα|y|

cos
(

βπ
2γ

)
cosh(βy)

.

Hence, we can apply Theorem 9.
One might wonder where the complex cos-function came from. It originates

from the Poisson kernel of S (rather, from the sum of two instances of the
Poisson kernel).1

A famous consequence of the above.

Theorem 10 (Three Lines Lemma.) Let u be subharmonic in S = {z : 0 <
Re(z) < 1} and suppose that there exist A > 0 and α < π such that u(z) ≤ Aeαy.
If

lim sup
z→ζ

u(z) ≤

{
M0 when Re(ζ) = 0,

M1 when Re(ζ) = 1,

then
u(x + iy) ≤ M0(1− x) + M1x.

Proof. Let u1(z) = u(z) − Re(M0(1 − z) + M1z), which is subharmonic in
S. Then, u satisfies a (translated version of) the classical PL principle, hence
u1 ≤ 0 on S.

Consider the function u(z) = Re(cos(γ(z))). It fails the hypothesis of The-
orem 9 ”just barely”, yet it does not satisfies the thesis.

Exercise 11 Write a version of the Phragmén-Lindelöf Theorem for the angle
{z : | arg(z)| < π

2γ }.

Subharmonicity and laplacians

Theorem 12 Let Ω ⊆ C be open and let u : Ω → R be a function in C2(Ω).
Then, u is subharmonic in Ω if and only if ∆u ≥ 0 in Ω.

Proof. (⇐=) We verify that the (global) sub-mean value property holds. With-
out loss of generality, we verify it at 0 ∈ Ω. We will use Green’s Theorem2.∫

|z|<r

∆udxdy =
∫
|z|=r

∇u · νdσ

=
∫ π

−π

∂νu(reiθ)r
dθ

2π

=
∫ π

−π

∂ru(reiθ)r
dθ

2π

=
∂

∂r

{∫ π

−π

u(reiθ)
dθ

2π

}
.

1There is an exercise of this kind below. Maybe some hint here is necessary.
2If Ω is open, bounded and has piecewise C1 boundary, if X is a C1(Ω, R2) vector field

which continuously extends to c = ∂Ω, if ν denotes the exterior unit normal to c, thenZ
Ω

divXdxdy =

Z
c
X · νdσ,

where dxdy and dσ are area measure in Ω and the length element on c, respectively.
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If ∆u ≥ 0 in Ω, then M(u, r) =
∫ π

−π
u(reiθ) dθ

2π increases with r, but M(u, 0) = 0,
hence u satisfies the sub-mean value property.

(=⇒). The followin formula extends the limit-characterization of the second
derivative from calculus.3

Lemma 13 If u ∈ C2(Ω, R) and z0 ∈ Ω, then

lim
r→0

∫ π

−π
u(z0 + reiθ) dθ

2π − u(z0)
r2

=
∆u(z0)

4
. (2)

Proof of the Lemma. WLOG, let z0 = 0. Let vθ = (cos θ, sin θ) ≡ eiθ and
φθ(r) = u(rvθ). Then, φ′θ(r) = ∇u(rvθ) ·vθ and φ′′θ (r) = vθ · (Hessu(rvθ)vθ). By
Taylor’s formula with the error term in Lagrange’ form,

φθ(r) = φθ(0) + φ′θ(0)r +
φ′′θ (ar)

2
r2

where a ∈ [0, 1],

= φθ(0) + φ′θ(0)r +
φ′′θ (0)

2
r2 + r2ε,

where the error ε = ε(θ, r) satisfies

|ε(θ, r)| = |φ′′θ (ar)− φ′′θ (0)|
= |vθ · (Hessu(ar)−Hessu(0))vθ|
≤ sup

|z|≤r

‖Hessu(z)−Hessu(0)‖

= η(r)

and η(r) → 0 as r → 0 because u is C2. For the same reason, ε(θ, r) is continuous
in (θ, r). Then,∫ π

−π

u(eiθ)
dθ

2π
− u(0) =

∫ π

−π

[u(eiθ)− u(0)]
dθ

2π

=
∫ π

−π

[φθ(r)− φθ(0)]
dθ

2π

=
∫ π

−π

φ′θ(0)r +
φ′′θ (0)

2
r2 + r2ε

dθ

2π

=
∫ π

−π

∇u(0) · vθ
dθ

2π
+

r2

2

{∫ π

−π

vθ · (Hessu(0)vθ)
dθ

2π
+ ε(θ, r)

}
.

Now, in the last line, the first summand clearly vanishe (essentially by symme-
try), the last one tends to zero as r → 0 by the estimates above and the fact
that ε is continuous, while for the term in the middle, we have (below, D is the
diagonalization of Hessu(0) and λj are the eigenvalues of Hessu(0))

1
2

∫ π

−π

vθ · (Hessu(0)vθ)
dθ

2π
=

1
2

∫ π

−π

vθ · (Dvθ)
dθ

2π

=
1
2

∫ π

−π

(λ1 cos2 θ + λ2 sin2 θ)
dθ

2π

3From Taylor’s formula,

φ′′(x) = lim
h→0

φ(x + h) − 2φ(x) + φ(x − h)

h2
.
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=
1
4
(λ1 + λ2) =

1
4
∆u(0).

The wished implication follows from the lemma and the sub-mean value
property.
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