Subharmonic functions*

N.A.

07

Upper semicontinuous functions. Let (X, d) be a metric space. A function $f: X \to \mathbb{R} \cup \{-\infty\}$ is upper semicontinuous (u.s.c.) if

$$\liminf_{y \le x} f(y) \le f(x) \ \forall x \in X.$$

A function g is lower semicontinuous (l.s.c.) iff -g is u.s.c.

For instance, if $E \subseteq X$, then χ_E is u.s.c. $\iff E$ is closed. An increasing function $\varphi : \mathbb{R} \to \mathbb{R}$ is u.s.c. $\iff \varphi$ is right-continuous.

Lemma 1 f is u.s.c. $\iff f^{-1}([a,\infty))$ is closed $\forall a \in \mathbb{R} \iff f^{-1}([-\infty,a))$ is open $\forall a \in \mathbb{R}$.

Proof. Exercise with sequences. \blacksquare

Theorem 2 (Weierstrass.) If $K \subseteq X$ is compact and $f : K \to \mathbb{R} \cup \{-\infty\}$ is u.s.c., then f has maximum (eventually, $-\infty$) on K.

Proof. Let $x_n \in K$ be s.t. $f(x_n) \xrightarrow{n \to \infty} \sup_K(f)$. There is a subsequence of the $x'_n s$ converging in K (we still call it $x_n, x_n \to x$). Then,

$$\sup(f) \ge f(x) \ge \lim_{n} f(x_n) = \sup(f).$$

Subharmonic functions. Let $U \subseteq \mathbb{C}$ be open. $u: U \to \mathbb{R} \cup \{-\infty\}$ is subharmonic if u is u.s.c. in U and $\forall w \in U \exists \rho > 0 \ \forall r \in [0, \rho)$:

$$u(w) \le \int_{-\pi}^{\pi} u(w + re^{i\theta}) \frac{d\theta}{2\pi}.$$
(1)

v is superharmonic iff -v is subharmonic.

Theorem 3 Let $f \in Hol(U)$. Then, $\log |f|$ is subharmonic in U.

- **Proposition 4** (i) u, v subharmonic and $a, b \ge 0 \implies au + bv$ is subharmonic (the class of the subharmonic functions is a cone).
 - (ii) If u, v are subharmonic, then $\max(u, v)$ is subharmonic.
- (iii) If h is harmonic on U and Φ is convex on the range of h, then $\Phi \circ h$ is subharmonic.

^{*}Mostly from Thomas Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts, 28. Cambridge University Press, Cambridge, 1995. x+232

Proof. (i) and (ii) are obvious, (iii) follows from Jensen's inequality.

Theorem 5 (Maximum principle.) If u is subharmonic in U and U is connected, then

- (i) If u has maximum in U, then u is constant.
- (ii) If $\limsup_{z\to\zeta} u(z) \leq 0$ for all $\zeta \in \partial U$, then $u \leq 0$ on U.

Note. If U is unbounded, $\infty \in \partial U$.

Proof. (i) Let $A = \{z : u(z) < M = \sup_D u\}$ and $B = \{z : u(z) = M\}$. Since u is u.s.c., A is open. Let $z_0 \in B$. By the sub-mean value property,

$$M = u(z_0) \le \int_{-\pi}^{\pi} u(z_0 + re^{i\theta}) \frac{d\theta}{2\pi} \le M.$$

for all sufficiently small values of r, say $r \leq \rho$. Then, u(z) = M a.e. on $\{|z - z_0| \leq \rho\}$. Now, since u is u.s.c., u(z) = M on all of $\{|z - z_0| \leq \rho\}$. Hence, B is open, too. This implies that B = U.

(ii) Extend u to $U \cup \partial U$ by setting $u(\zeta) = \limsup_{z \to \zeta} u(z) \leq 0$ when $\zeta \in \partial U$. By Weierstrass' Theorem, u has a maximum on $U \cup \partial U$. If the maximum is on ∂U , we are finished, if it is inside U, then u is constant and we are finished anyway.

Phragmén-Lindelöf principle. In a quantitative way, the theorem below says that a subharmonic function is either well behaved at the boundary, or it has to explode at a minimum rate.

Theorem 6 Let U be a connected open set in \mathbb{C} having ∞ on its boundary. Suppose that

$$\limsup_{z \to \zeta} u(z) \le 0 \text{ for all } \zeta \in \partial U - \{\infty\}$$

and suppose that there exists a superharmonic v on U such that

 $\liminf_{z \to \infty} v(z) > 0 \ and \ \limsup_{z \to \infty} \frac{u(z)}{v(z)} \le 0.$

Then,

$$u \leq 0 \ on \ U.$$

Proof. (i) Suppose first that v > 0 on U and for $\epsilon > 0$, let $u_{\epsilon} = u - \epsilon v$, which is subharmonic in U. Since v > 0, $\limsup_{z \to \zeta} u_{\epsilon}(z) \leq 0$ for $\zeta \in \partial U - \{\infty\}$. Also, there are $R, \delta > 0$ such that $v(z) \geq \delta$ if $|z| \geq R$. Hence,

$$\limsup_{z \to \infty} u_{\epsilon}(z) = \limsup_{z \to \infty} v\left(\frac{u(z)}{v(z)} - \epsilon\right) \le 0$$

by the various hypothesis. By the maximum principle, $u_{\epsilon} \leq 0$ on U and letting $\epsilon \to 0$ we are finished.

(ii) Let A > 0. The hypothesis hold for $v_A = v + A$ in place of v. Clearly, $\liminf_{z\to\infty} v_A > A$. Also, let R > 0 s.t. |z| > R implies that v(z) > 0.

$$\begin{split} \limsup_{z \to \infty} \frac{u(z)}{v(z)} &\leq 0 \quad \iff \quad \forall \epsilon > 0 \exists \rho > 0: \ |z| \geq \rho \implies \frac{u(z)}{v(z)} \leq \epsilon \\ &\implies \quad \forall \epsilon > 0 \exists \rho > 0: \ |z| \geq \max(R, \rho) \implies u(z) \leq \epsilon v(z) \end{split}$$

$$\begin{array}{ll} \implies & \forall \epsilon > 0 \exists \rho > 0: \ |z| \ge \max(R, \rho) \implies u(z) \le \epsilon(v(z) + A) \\ \Leftrightarrow & \limsup_{z \to \infty} \frac{u(z)}{v_A(z)} \le 0. \end{array}$$

Let now $F_{\eta} = \{z : u(z) \geq \eta > 0\}$. F_{η} is closed in U by u.s.c. of u. Then, v has a minimum on $F_{\eta} \cap \{|z| \leq R\}$ and v > 0 on $F_{\eta} - \{|z| \leq R\}$; hence, v is bounded below on F_{η} . Choose A > 0 s.t. v + A > 0 on F_{η} and set $V = \{z : v_A(z) > 0\}$. Then V is open by l.s.c. of v. If $\zeta_1 \in \partial U - \{\infty\}$, then $\limsup_{z \to \zeta_1} (u(z) - \eta) \leq -\eta < 0$ by hypothesis. If $\zeta_2 \in U \cap \partial V$, then $\limsup_{z \to \zeta_2} (u(z) - \eta) \leq 0$ because $\zeta_2 \notin V$ and $F_{\eta} \subseteq V$. Applying (i) on each connected component of V, we have that $u - \eta \leq 0$ on

Applying (i) on each connected component of V, we have that $u - \eta \leq 0$ on V. On the other hand, $F_{\eta} \subseteq V$, hence $u - \eta > 0$ on U - V. Overall, $u \leq \eta$ on U. Let now $\eta \to 0$.

Corollary 7 Let $U \subset \mathbb{C}$ be an unbounded domain and let u be subharmonic in U. If

$$\limsup_{z \to \zeta} u(z) \le 0 \ \forall \zeta \in \partial U - \{\infty\} \ and \ \limsup_{z \to \infty} \frac{u(z)}{\log |z|} \le 0,$$

then $u \leq 0$ on U.

Proof. Let $\zeta \in \partial U \cap \mathbb{C}$. Then, $z \log |z - \zeta|$ is superharmonic in U. By Theorem 9 and translation invariance, $u(z - \zeta) \leq 0$ on $U + \zeta$, hence $u \leq 0$ on U.

For instance, if $u \leq 0$ on $\partial U - \{\infty\}$ and $u(z) = o_{z \to \infty}(\log |z|)$, then $u \leq 0$ on U.

Theorem 8 (Liouville.) Let u be subharmonic in \mathbb{C} and suppose that

$$\limsup_{z \to \infty} \frac{u(z)}{\log |z|} \le 0.$$

Then, u is constant in \mathbb{C} .

Proof. If $u \equiv -\infty$, we are o.k. Otherwise, let $w \in \mathbb{C}$ s.t. $u(w) \neq -\infty$ and consider $u_1 = u - u(w)$ on $\mathbb{C} - \{w\}$. Then, $\limsup_{z \to w} u_1(z) \leq 0$ and the corollary to Theorem 9 applies, giving $u_1 \leq 0$ on \mathbb{C} . By the maximum principle, u must be constant.

In particular, a function u, subharmonic on \mathbb{C} , which is bounded above, is constant.

Theorem 9 (Phragmén-Lindelöf in its original form.) Let $\gamma > 0$ and consider the strip $S = \{z : |Re(z)| < \frac{\pi}{2\gamma}\}$. Let u be subharmonic in S be such that, for some A > 0 and $\alpha < \gamma$,

$$u(x+iy) \le ae^{\alpha|y|}.$$

If $\limsup_{z \to \zeta} u(z) \leq 0$ for all $\zeta \neq \infty$ in ∂S , then $u \leq 0$ on S.

Proof. Let $v(z) = Re(\cos(\beta z)) = \cos(\beta x)\cosh(\beta y) > 0$ on S, if $\alpha < \beta < \gamma$. v is clearly harmonic. Also,

$$\liminf_{z \to \infty} v(z) \ge \cos\left(\frac{\beta\pi}{2\gamma}\right) \liminf_{|y| \to +\infty} \cosh(\beta y) = +\infty,$$

 $\limsup_{z \to \infty} \frac{u(z)}{v(z)} \le \limsup_{|y| \to \infty} \frac{A e^{\alpha |y|}}{\cos\left(\frac{\beta \pi}{2\gamma}\right) \cosh(\beta y)}.$

Hence, we can apply Theorem 9. \blacksquare

One might wonder where the complex cos-function came from. It originates from the Poisson kernel of S (rather, from the sum of two instances of the Poisson kernel).¹

A famous consequence of the above.

Theorem 10 (Three Lines Lemma.) Let u be subharmonic in $S = \{z : 0 < Re(z) < 1\}$ and suppose that there exist A > 0 and $\alpha < \pi$ such that $u(z) \leq Ae^{\alpha y}$. If

$$\limsup_{z \to \zeta} u(z) \le \begin{cases} M_0 \ when \ Re(\zeta) = 0, \\ M_1 \ when \ Re(\zeta) = 1, \end{cases}$$

then

$$u(x+iy) \le M_0(1-x) + M_1x$$

Proof. Let $u_1(z) = u(z) - Re(M_0(1-z) + M_1z)$, which is subharmonic in S. Then, u satisfies a (translated version of) the classical PL principle, hence $u_1 \leq 0$ on S.

Consider the function $u(z) = Re(\cos(\gamma(z)))$. It fails the hypothesis of Theorem 9 "just barely", yet it does not satisfies the thesis.

Exercise 11 Write a version of the Phragmén-Lindelöf Theorem for the angle $\{z: |\arg(z)| < \frac{\pi}{2\gamma}\}.$

Subharmonicity and laplacians

Theorem 12 Let $\Omega \subseteq \mathbb{C}$ be open and let $u : \Omega \to \mathbb{R}$ be a function in $C^2(\Omega)$. Then, u is subharmonic in Ω if and only if $\Delta u \ge 0$ in Ω .

Proof. (\Leftarrow) We verify that the (global) sub-mean value property holds. Without loss of generality, we verify it at $0 \in \Omega$. We will use Green's Theorem².

$$\begin{split} \int_{|z| < r} \Delta u dx dy &= \int_{|z| = r} \nabla u \cdot \nu d\sigma \\ &= \int_{-\pi}^{\pi} \partial_{\nu} u(re^{i\theta}) r \frac{d\theta}{2\pi} \\ &= \int_{-\pi}^{\pi} \partial_{r} u(re^{i\theta}) r \frac{d\theta}{2\pi} \\ &= \frac{\partial}{\partial r} \left\{ \int_{-\pi}^{\pi} u(re^{i\theta}) \frac{d\theta}{2\pi} \right\} \end{split}$$

¹There is an exercise of this kind below. Maybe some hint here is necessary.

$$\int_{\Omega} \mathrm{div} X dx dy = \int_{c} X \cdot \nu d\sigma,$$

where dxdy and $d\sigma$ are area measure in Ω and the length element on c, respectively.

and

²If Ω is open, bounded and has piecewise \check{C}^1 boundary, if X is a $C^1(\Omega, \mathbb{R}^2)$ vector field which continuously extends to $c = \partial \Omega$, if ν denotes the exterior unit normal to c, then

If $\Delta u \geq 0$ in Ω , then $M(u, r) = \int_{-\pi}^{\pi} u(re^{i\theta}) \frac{d\theta}{2\pi}$ increases with r, but M(u, 0) = 0, hence u satisfies the sub-mean value property.

 $(\Longrightarrow).$ The followin formula extends the limit-characterization of the second derivative from calculus.³

Lemma 13 If $u \in C^2(\Omega, \mathbb{R})$ and $z_0 \in \Omega$, then

$$\lim_{r \to 0} \frac{\int_{-\pi}^{\pi} u(z_0 + re^{i\theta}) \frac{d\theta}{2\pi} - u(z_0)}{r^2} = \frac{\Delta u(z_0)}{4}.$$
 (2)

Proof of the Lemma. WLOG, let $z_0 = 0$. Let $v_\theta = (\cos \theta, \sin \theta) \equiv e^{i\theta}$ and $\phi_\theta(r) = u(rv_\theta)$. Then, $\phi'_\theta(r) = \nabla u(rv_\theta) \cdot v_\theta$ and $\phi''_\theta(r) = v_\theta \cdot (\text{Hess}u(rv_\theta)v_\theta)$. By Taylor's formula with the error term in Lagrange' form,

$$\phi_{\theta}(r) = \phi_{\theta}(0) + \phi'_{\theta}(0)r + \frac{\phi''_{\theta}(ar)}{2}r^{2} \\
\text{where } a \in [0, 1], \\
= \phi_{\theta}(0) + \phi'_{\theta}(0)r + \frac{\phi''_{\theta}(0)}{2}r^{2} + r^{2}\epsilon$$

where the error $\epsilon = \epsilon(\theta, r)$ satisfies

$$\begin{aligned} |\epsilon(\theta, r)| &= |\phi_{\theta}''(ar) - \phi_{\theta}''(0)| \\ &= |v_{\theta} \cdot (\operatorname{Hess} u(ar) - \operatorname{Hess} u(0))v_{\theta}| \\ &\leq \sup_{|z| \leq r} ||\operatorname{Hess} u(z) - \operatorname{Hess} u(0)|| \\ &= \eta(r) \end{aligned}$$

and $\eta(r) \to 0$ as $r \to 0$ because u is C^2 . For the same reason, $\epsilon(\theta, r)$ is continuous in (θ, r) . Then,

$$\begin{split} \int_{-\pi}^{\pi} u(e^{i\theta}) \frac{d\theta}{2\pi} - u(0) &= \int_{-\pi}^{\pi} \left[u(e^{i\theta}) - u(0) \right] \frac{d\theta}{2\pi} \\ &= \int_{-\pi}^{\pi} \left[\phi_{\theta}(r) - \phi_{\theta}(0) \right] \frac{d\theta}{2\pi} \\ &= \int_{-\pi}^{\pi} \phi_{\theta}'(0)r + \frac{\phi_{\theta}''(0)}{2}r^2 + r^2\epsilon \frac{d\theta}{2\pi} \\ &= \int_{-\pi}^{\pi} \nabla u(0) \cdot v_{\theta} \frac{d\theta}{2\pi} + \frac{r^2}{2} \left\{ \int_{-\pi}^{\pi} v_{\theta} \cdot (\text{Hess}u(0)v_{\theta}) \frac{d\theta}{2\pi} + \epsilon(\theta, r) \right\}. \end{split}$$

Now, in the last line, the first summand clearly vanishe (essentially by symmetry), the last one tends to zero as $r \to 0$ by the estimates above and the fact that ϵ is continuous, while for the term in the middle, we have (below, D is the diagonalization of Hessu(0) and λ_j are the eigenvalues of Hessu(0))

$$\frac{1}{2} \int_{-\pi}^{\pi} v_{\theta} \cdot (\text{Hess}u(0)v_{\theta}) \frac{d\theta}{2\pi} = \frac{1}{2} \int_{-\pi}^{\pi} v_{\theta} \cdot (Dv_{\theta}) \frac{d\theta}{2\pi}$$
$$= \frac{1}{2} \int_{-\pi}^{\pi} (\lambda_1 \cos^2 \theta + \lambda_2 \sin^2 \theta) \frac{d\theta}{2\pi}$$

³From Taylor's formula,

$$\phi''(x) = \lim_{h \to 0} \frac{\phi(x+h) - 2\phi(x) + \phi(x-h)}{h^2}$$

$$= \frac{1}{4}(\lambda_1 + \lambda_2) = \frac{1}{4}\Delta u(0).$$

 \blacksquare The wished implication follows from the lemma and the sub-mean value property. \blacksquare