Test di prova III

February 7, 2003

(1) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $g: \mathbb{R}^k \to \mathbb{R}^4$, h(x) = g(x, f(x)), $h: \mathbb{R}^n \to \mathbb{R}^m$. Allora

(1)
$$n = 2, m = 2, k = 3$$

- (2) n=3, m=4, k=2
- (3) n=3, k=5, m=4
- (4) n=2, k=5, m=2
- (2) È data la funzione u definita su \mathbb{R}^2 , $u(x,y) = e^{-x^2}(1-y^2)$. Scrivere il gradiente di u nel punto (x,y). Scrivere, nel punto di coordinate (1,0), l'equazione del piano tangente al grafico di u e il differenziale di u.
- (3) Scrivere lo sviluppo di Taylor al secondo ordine nel punto di coordinate (1,0) della funzione $u: \mathbb{R}^2 \to \mathbb{R}$.

$$u(x,y) = e^{-x^2}(1 - y^2)$$

(4) Trovare i punti critici di u e classificarli, dove

$$u(x,y) = e^{-x^2}(1 - y^2)$$

è definita su tutto \mathbb{R}^2 .

(5) Siano $f \in C^1(\mathbb{R}^2, \mathbb{R})$ e $g \in C^1(\mathbb{R}, \mathbb{R})$. Sia $h : \mathbb{R}^3 \to \mathbb{R}^2$ la funzione definita da

$$h(x,y,z) = (f(y,z), f(y,x) + z)$$

Scrivere Jh(x, y, z).

(6) Sia f la curva definita da [-1, 1] a \mathbb{R}^3 ,

$$f(t) = (\sqrt{2}t, t, e^t + e^{-t})$$

Calcolarne la lunghezza (scrivere l'integrale che esprime la lunghezza e calcolarlo).

(7) (Facoltativo.) Sia $f(x,y) = x^2 + y^2$, $f: \mathbb{R}^2 \to \mathbb{R}$. Determinare f(D), dove

$$D = \{(x, y) : x^2 - 1 \le y \le 0\}$$

Soluzioni. (1) n=3, m=4, k=5. (2) gradiente: $\nabla u(x,y)=(-2xe^{-x^2}(1-y^2),-2ye^{-x^2});$ differenziale: $du(0,1)(h,k)=-2e^{-1}h;$ piano tangente $z-e^{-1}(1+\pi^2)=-2e^{-1}(x-1)$ (3) $u(1+h,k)=e^{-1}-2e^{-1}h+e^{-1}h^2-e^{-1}k^2+o_{(h,k)\to 0}(h^2+k^2)$ (4) (0,0), punto di massimo relativo. (5) Sia f=f(u,v).

$$Jh(x,y,z) = \left[egin{array}{ccc} 0 & \partial_u f(y,z) & \partial_v f(y,z) \ \partial_v f(y,x) & \partial_u f(y,x) & 1 \end{array}
ight]$$

(6)
$$\int_0^1 \sqrt{e^{2t} + e^{-2t} + 2} dt = e - e^{-1}$$