Test di prova IV

22 febbraio 2003

(1) Sia γ la frontiera di D,

$$D = \{(x, y) \in \mathbb{R}^2 : x + y \ge 0, x^2 + y^2 \le 1\}$$

Sia f una funzione continua da \mathbb{R}^2 a \mathbb{R} .

- (a) Scrivere un integrale in una variabile che esprima $\int_{\gamma} f ds$.
- (b) Quale dei seguenti numeri è uguale a $\int_{\gamma} f ds$ per la funzione

$$f(x,y) = xy$$
?

- (i) 0, (ii) $\frac{1}{6}$ (iii) $-\frac{1}{3}$, (iv) $\frac{\pi}{4} \frac{1}{3}$.
- (2) Sia A un numero reale e sia F il campo vettoriale definito su tutto \mathbb{R}^2 ,

$$F(x,y) = \left(\frac{Axy}{(x^2+1)^2}, \frac{1}{x^2+1}\right)$$

- (a) per quale dei seguenti valori di A il campo f è chiuso? (i) A=0,(ii) A=-2, (iii) A=2, (iv) $A=\frac{1+x^2}{xy}$ (b) per quel valore di A, il campo è conservativo? Se sì, calcolarne un potenziale.

SOLUZIONI. (1): (a) $\int_{-\pi/4}^{3/4\pi} f(\cos(t), \sin(t)) dt + \sqrt{2} \int_{-1/\sqrt{2}}^{1/\sqrt{2}} f(t, -t) dt;$

(2): (a) (ii); (b) i potenziali U di F in \mathbb{R}^2 sono le funzioni $U(x,y)=\frac{y}{1+x^2}+k,\ k\in\mathbb{R}$. Basta scriverne uno, per esempio $U(x,y)=\frac{y}{1+x^2}$ (corrispondente a k=0).