Test di prova VII

10 marzo 2003

(1) Sia γ la frontiera di D,

$$D = \{(x, y) \in \mathbb{R}^2 : |x| \le y \le \sqrt{1 - x^2}\}$$

Sia f una funzione continua da \mathbb{R}^2 a \mathbb{R} .

- (a) Scrivere una somma di integrali in una variabile che esprima $\int_{\gamma} f ds$.
- (b) Quale dei seguenti numeri è uguale a $\int_{\gamma}f\,ds$ per la funzione

$$f(x,y) = x + y?$$

- (i) 0, (ii) $-\sqrt{2}/2$ (iii) $\frac{3}{2}\sqrt{2}$, (iv) $\sqrt{2}$.
- (2) Sia A un numero reale e sia F il campo vettoriale definito su tutto $\mathbb{R}^2 \{(0,0)\},$

$$F(x,y) = \left(\frac{Ax}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

- (a) per quale dei seguenti valori di A il campo f è chiuso?
- (i) A = 0, (ii) A = 1, (iii) A = -1, (iv) per ogni valore di A
- (b) per quale valore di A, il campo è conservativo? Per quel valore di A, in caso di risposta affermativa, calcolarne un potenziale.
- (3) Sia $A = \{(x,y) \in \mathbb{R}^2 : |x| \le y \le \sqrt{1-x^2}\}$. Sia $f : \mathbb{R}^2 \to \mathbb{R}$ una funzione continua.
- (a) Scrivere $\int_A f(x,y) dx dy$ in forma di integrali ripetuti. (b) Quale dei seguenti numeri è $\int_A f(x,y) dx dy$ per la funzione $f(x,y) = e^{-x^2-y^2}$?
 - (i) 0; (ii) $\frac{\pi}{4}(e^{-1}-1)$; (iii) $\frac{\pi}{4}(e^{-1}+1)$; (iv) $\frac{\pi}{4}(1-e^{-1})$.
 - (4) Trovare l'integrale generale dell'equazione differenziale

$$(*) y'' + 4y' + 4y = 0$$

Scrivere la soluzione del problema di Cauchy per (*) con dati iniziali y(0) =0, y'(0) = 2.

(5) Per quali valori del parametro reale a converge la seguente serie?

$$\sum_{n=1}^{\infty} \frac{(a+1)^n}{n^2+1}$$

(i)
$$-1 < a < 1$$
, (ii) $-1 \le a \le 1$, (iii) $-2 \le a \le 0$, (ii) $0 \le a \le 2$

Esercizio facoltativo. Calcolare (usando un metodo a piacere e giustificando la procedura utilizzata) l'integrale di linea

$$\int_{\partial D} P dx + Q dy$$

dove (P,Q) = (x, -y) e $D = \{(x,y): |y| \le 1, y - 1 \le x \le \sqrt{1 - x^2}\}.$ Qualè l'area di D?

SOLUZIONI. (1): (a) $\int_{\pi/4}^{\frac{3}{4}\pi} f(\sin(t), \cos(t)) dx + \int_{0}^{1/\sqrt{2}} f(x, x) \sqrt{2} dx + \int_{-1/\sqrt{2}}^{0} f(t, -t) \sqrt{2} dt$; (b) (iii).

(2): (a) (ii); (b) il campo F, per A=1, è chiuso, $\mathbb{R}^2 - \{(0,0)\}$ non è semplicemente connesso, quindi, per sapere se F è conservativo, devo mostrare che esiste o che non esiste un potenziale. I potenziali U di F in $\mathbb{R}^2 - \{(0,0)\}$ sono le funzioni $U(x,y) = 1/2 \log(x^2 + y^2) + k$, $k \in \mathbb{R}$ (quindi, F è effettivamente conservativo).

(3): (a)
$$\int_{-1/\sqrt{2}}^{1/\sqrt{2}} dx \int_{|x|}^{\sqrt{1-x^2}} f(x,y) dy$$
; (b) (iv).

(4): Integrale generale: $y(x) = C_1 e^{-2x} + C_2 x e^{-2x}$, soluzione del problema di Cauchy: $y(x) = 2xe^{-2x}$

(5): (iii)

Esercizio facoltativo: conviene usare il Teorema di Green-Gauss.