Elementary Number Theory with the TI-89/92

Giulio C. Barozzi
Università di Bologna - Italy
barozzi@ciram.ing.unibo.it
http://eulero.ing. unibo.it/~barozzi

The calculators TI 89 and TI 92 Plus provide a good starting point for explorations in the domain of elementary number theory. Let us recall the basic functions: given the natural numbers n and m, with $m>0$, $\operatorname{intDiv}(n, m)$ gives the quotient of n divided by $m, \bmod (n, m)$ gives the remainder of n divided by m, so that the identity

$$
\mathrm{n}=\operatorname{intDiv}(\mathrm{n}, \mathrm{~m}) * \mathrm{~m}+\bmod (\mathrm{n}, \mathrm{~m})
$$

holds. Equally important are the functions factor (n), which gives the prime factorization of n, and isPrime(n) which gives True in n is prime, False otherwise.
The first thing we can do, is a program for finding the decimal or the binary representation of a rational number n / m; this has been accomplished by writing the two programs $r d(n, m)$ and $r b(n, m)$ (see Appendix). A vertical bar (\mid) separates the non recurring from the recurring digits.

A bit of theory helps here: a classical result in number theory states that the number of non recurring digits in the decimal representation of n / m equals $\max \{\alpha, \gamma\}$, where

$$
m=2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \ldots
$$

is the factorization of the denominator m. So we know in advance which remainder to check in the process of division.
An experimentation with various prime denominators m leads us to conjecture that the number of recurring digits (sometimes called the "period") is a factor of $n-1$. This is also true for the binary representation (and the same holds with respect to any base).
What happens if the denominator m is not prime? It turns out that the length of the "period" is a factor of

$$
\phi(m):=\text { number of numbers less than } m \text { and coprime with it. }
$$

The function phi(n) (see Appendix) computes $\phi(n)$ with a brute force method; the same function can be efficiently computed starting from the factorization of n (see bibliography [6]; the relevant programs are listed in the Appendix).

Numbers like $1 / 5$ or $1 / 10$, in general any rational number which cannot be expressed as a binary fraction, has a binary representation which is periodic; such a number cannot be stored exactly as a floating point number.

This explains the rather surprising results shown above (the calculator has been switched to Approximate mode).

It is not difficult to program the so called "extended version" of Euclid's algorithm, giving the Bezout's formula

$$
d=\operatorname{gcd}(n, m)=x \cdot n+y \cdot m
$$

with x and y convenient integers (of opposite sign). This is done by the program xgcd.

If n and m are coprime, then $1=\operatorname{gcd}(n, m)=x \cdot n+y \cdot m$, i.e.

$$
x \cdot n=1-y \cdot m \quad \Longleftrightarrow x \cdot n \equiv 1 \quad(\bmod m)
$$

So the euclidean algorithm gives us the reciprocal of n modulo m. If we want to represent each class of congruence modulo m with the corresponding remainder between 0 and $m-1$, than n itself must be reduced modulo m (if necessary).

The function pinv computes the reciprocal of n modulo m, when n and m are coprime, and gives (quite arbitrarily) 0 otherwise.

- seq(pinu($x, 7), x, 1,6)$				
$\text { - seq(pinu(} \times, 11), \times, 1,10)$				
$\begin{array}{llllllllllll}1 & 6 & 4 & 3 & 9 & 2 & 8 & 7 & 5 & 103\end{array}$				
secr $\langle\operatorname{pinu}(x, 12), x, 1,11)$				
MAIN $\frac{\text { BAI EXACT }}{}$				

Using the function seq and mod we can construct the addition and multiplication tables modulo m.

If we call \mathbb{Z}_{m} the set of classes of congruence modulo m, then a classical theorem states that \mathbb{Z}_{m} is a field iff m is prime, otherwise it is a commutative ring with unity. The invertible elements are those which are coprime with m, so their number is exacty $\phi(m)$.

Figure 1

The schemes in Figure 1 show the compatibility of the arithmetic operations in \mathbb{Z} with the congruence modulo m.
Particularly important, for the sequel, is the computation of powers modulo m. As soon as a partial product exceedes m, it can be substituted by its remainder, so that no number greater than $(m-1)^{2}$ is involved in the computation.
For the moment we limit ourselves to the following consideration: suppose we want to compute

$$
z=x^{b \cdot c} \quad(\bmod m),
$$

where x is some integer between 0 and $m-1$ and b and c are natural numbers.
Since $x^{b \cdot c}=\left(x^{b}\right)^{c}$, we can perform the following steps (see Figure 2)

$$
r:=x^{b} \quad(\bmod m), \quad z=r^{c} \quad(\bmod m) .
$$

Figure 2

In fact the function $\operatorname{pwm}(\mathrm{a}, \mathrm{b}, \mathrm{n})$ we have written (where a, b, n are natural numbers with $n>0$), computes $a^{b} \bmod n$ by cleverly combining the reduction modulo n and the binary representation of the exponent b (bibliography [4]). It achieves both the results of reducing the number of multiplications and of keeping each partial product less than or equal to $(n-1)^{2}$.
A first interesting result in modular arithmetic (the Latin name modulus was in fact chosen by C.F. Gauss in his Disquisitione Arithmeticce, 1799) is due to P. de Fermat (1602-1665): it is the so called Fermat's little theorem:

If n is prime, than for any x between 0 and $n-1$ one has $x^{n} \equiv x \bmod n$.

In other words: we can recover x by computing a power of it modulo n. Notice that if n is prime, the numbers between 1 and $n-1$ are obviously coprime with it.
What happens if n is not prime? The answer came from Euler: for any x less than n coprime with it one has
$x^{\phi(n)+1} \equiv x \bmod n$.
A bit of experimentation shows that for $n=4=2^{2}$ or $n=8=2^{3}$, the equality we have written is false for x non coprime with n.

But, surprisingly, for $n=6=2 \cdot 3, n=10=2 \cdot 5$ or $n=15=3 \cdot 5$ the equality holds for every x between 0 and $n-1$, the case $x=0$ being obvious.
The following theorem holds:

> If $n=p \cdot q$, with p and q distinct primes, then $x^{\phi(n)+1} \equiv x \bmod n$, for every natural number $x<n$.

How to compute $\phi(n)=\phi(p \cdot q)$? It is not difficult to show the ϕ is multiplicative, i.e. if a and b are coprime

$$
\phi(a \cdot b)=\phi(a) \cdot \phi(b) .
$$

So, in the case of p and q distinct primes,

$$
\phi(p \cdot q)=\phi(p) \cdot \phi(q)=(p-1)(q-1)=p q-p-q+1
$$

and finally

$$
\phi(n)+1=\phi(p \cdot q)+1=n-p-q+2 .
$$

Suppose we can write $\phi(n)+1$ as a product:

$$
n-p-q+2=b \cdot c,
$$

then $x \equiv x^{\phi(n)+1}=x^{b \cdot c}$ can be trasmitted from a sender to a receiver by using the following scheme (see Figure 3):

$$
x \rightarrow \operatorname{pwm}(x, b, n)=r \rightarrow \operatorname{pwm}(r, c, n)=x
$$

The result holds for any natural number x less than the modulus n. To code the message we need n and b (the so called public keys), to decode one needs n and c (the private key).
Now

$$
b \cdot c=n-p-q+2 \Rightarrow c=\frac{n-p-q+2}{b} .
$$

If p and q are big primes (say, 100 digits long) they can't be recovered from the knowledge of n in a reasonable time.

How to produce "big" primes? A theorem by Dirichlet (P.G. Lejeune-Dirichlet, 1805-1859) can help:

Figure 3

If a and b are coprime, then the arithmetic progression $a+k \cdot b, k \in \mathbb{N}$, contains an infinite number of primes.

The program $\mathrm{dr}(\mathrm{a}, \mathrm{b}, \mathrm{k})$ explores the arithmetic progression $a+k \cdot b$ starting from a given k until a prime is found. The availability of the primality testing function isPrime is essential at this point.
Let us give a practical example. Suppose we want to use the private key $c=7$. Then $n-p-q+2=(p-1)(q-1)+1$ must be a multiple of 7 , hence congruent to 0 modulo 7 . This means that $(p-1)(q-1)$ must be congruent to 6 modulo 7 , and since $6=2 \cdot 3$ we can find p congruent to 3 and q congruent to 4 modulo 7 .
We can find as many primes as we like in the arithmetic progressions $3+k \cdot 7$ and $4+k \cdot 7$, and use them as values for p and q. For instance $\mathrm{dr}(3,7,3000)$ gives $p=21017$ and $\operatorname{dr}(4,7,3000)$ gives $q=21011$, so

$$
n=p \cdot q=441588187
$$

any "message" x less than n can be transmitted using the scheme we already know.

The procedure is known as the RSA method, from the initials of its discoverers R. Rivest, A. Shamir, L. Adleman in 1978.

Bibliography

[1] G.C. Barozzi: Teoria elementare dei numeri con la TI 89/92, Ipotesi vol. 2 (1999), n.2, 15-21, Pitagora Editrice (Bologna);
[2] H. Davenport: Higher Arithmetic, Cambridge University Press, 1992;
[3] G.H. Hardy, E.M. Wright: An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979;
[4] D.E. Knuth: The Art of Computer Programming, Vol. 1: Fundamental Algorithms (1973), Vol. 2: Seminumerical Algorithms (1980), Addison Wesley, Reading MA;
[5] R. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and public-key cryptosystems, Communication ACM 21 (1978)n 120-128;
[6] L. Verardi: Scomposizioni e funzioni aritmetiche con TI 89/92, Ipotesi, Vol. 2 (1999), n.3, 11-15, Pitagora Editrice (Bologna) .

Appendix - Program listings
The following program computes the decimal representation of the rational number n / m ($n, m>0$; a vertical bar (\mid) separates the non recurring from the recurring digits.

```
rd(n,m)
```

Prgm
Clrio
Local g, c,h,k,r,j,rr,ad
$\operatorname{gcd}(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{g}$
If $g>1$ Then
$\mathrm{n} / \mathrm{g} \rightarrow \mathrm{n}: \mathrm{m} / \mathrm{g} \rightarrow \mathrm{m}$
EndIf
string(n)\&"/"\&string(m)\&" = "\&string(intDiv(n,m))\&"." \rightarrow ad
$\mathrm{m} \rightarrow \mathrm{r}: \quad 0 \rightarrow \mathrm{~h}: 0 \rightarrow \mathrm{k}$
While $\bmod (r, 2)=0$ $\mathrm{h}+1 \rightarrow \mathrm{~h}: \quad \mathrm{r} / 2 \rightarrow \mathrm{r}$
EndWhile
While $\bmod (r, 5)=0$ $\mathrm{k}+1 \rightarrow \mathrm{k}: \mathrm{r} / 5 \rightarrow \mathrm{r}$
EndWhile
$\max (\mathrm{h}, \mathrm{k}) \rightarrow \mathrm{k}: 0 \rightarrow \mathrm{j}: 0 \rightarrow \mathrm{rr}: \bmod (\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{r}$
While $\mathrm{r} \neq \mathrm{rr}$
If $\mathrm{j}=\mathrm{k}$ Then
$r \rightarrow r r:$ ad\&"।" \rightarrow ad
EndIf
$\mathrm{j}+1 \rightarrow \mathrm{j}: \operatorname{intDiv}(10 * r, \mathrm{~m}) \rightarrow \mathrm{c}: \bmod (10 * r, m) \rightarrow r$
ad\&string(c) \rightarrow ad
EndWhile
Disp ad

EndPrgm

The following program computes the binary representation of the rational number n / m $(0<n<m)$.
$\mathrm{rb}(\mathrm{n}, \mathrm{m})$
Prgm
ClrIO
Local g,c,h,r,j,rr,ab
$\operatorname{gcd}(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{g}$
If $g>1$ Then
$\mathrm{n} / \mathrm{g} \rightarrow \mathrm{n}: \mathrm{m} / \mathrm{g} \rightarrow \mathrm{m}$
EndIf
string(n)\&"/"\&string(m)\&" = "\&string(intDiv(n,m))\&"." \rightarrow ab
$\mathrm{m} \rightarrow \mathrm{r}: \quad 0 \rightarrow \mathrm{~h}$
While $\bmod (r, 2)=0$
$\mathrm{h}+1 \rightarrow \mathrm{~h}: \mathrm{r} / 2 \rightarrow \mathrm{r}$
EndWhile
$0 \rightarrow j: 0 \rightarrow r r: \bmod (n, m) \rightarrow r$
While $r \neq r r$
If $j=h$ Then
$r \rightarrow r r: a b \& " \mid " \rightarrow a b$
EndIf
$j+1 \rightarrow j$
intDiv $(2 * r, m) \rightarrow c: \bmod (2 * r, m) \rightarrow r: a b \& s t r i n g(c) \rightarrow a b$
EndWhile
Disp ab
EndPrgm
The following function equals 1 if x and y are coprime, otherwise equals 0 .

```
co(x,y)
Func
If gcd(x,y) > 1 Then
    0
Else
    1
EndIf
EndFunc
```

The following function (Euler's phi function) computes the number of numbers less than n and coprime with it.

```
phi(n)
Func
If isPrime(n) Then
    n-1
```

```
Else
    sum(seq(co(x,n), x, 1, n-1))
EndIf
EndFunc
```

The following function computes the reciprocal of n modulo m (if n and m are coprime) and gives 0 otherwise. It is based on Fermat's little theorem.

```
inv(n,m)
Func
If gcd(n,m) = 1 Then
    mod(n^(phi(m)-1),m)
Else
    O
EndIf
EndFunc
```

Comment: The computation of $\bmod \left(n^{(\phi(m)-1)}, m\right)$ is quite naïve, and can result in an overflow. The following version takes advantage of the function pwm (see below) and is definitely to be used instead.

```
minv(n,m)
Func
Local k
If gcd(n,m)=1 Then
    phi(m)-1 }->\textrm{k}:\operatorname{pwm(n,k,m)
Else
    O
EndIf
EndFunc
```

Computation of the extended GCD (Bezout's formula).

```
xgcd(n,m)
Prgm
ClrIO
Local xv,xn,sv,sn,tv,tn,q,r
n }->\mathrm{ xv: m }->\mathrm{ xn
1 }->\mathrm{ sv: 0 }->\mathrm{ sn: 0 }->\mathrm{ tv: 1 }->\mathrm{ tn
While xn > 0
    intDiv(xv,xn) }->\textrm{q}:\operatorname{mod}(xv,xn) -> 
    xn }->\textrm{xv}: r -> x
    sv-q*sn }->\mathrm{ r: sn }->\mathrm{ sv: r }->\mathrm{ sn
    tv-q*tn }->\mathrm{ r: tn }->\mathrm{ tv: r }->\mathrm{ tn
EndWhile
Disp string(xv)&" = "&string(sv)&"*"&string(n)&" +
```

```
"&string(tv)&"*"&string(m)
EndPrgm
```

Computation of the extended GCD (this version stores intermediate results as matrices).

```
\(\operatorname{mgcd}(\mathrm{n}, \mathrm{m})\)
Prgm
Local w,q,s
\([[\mathrm{n}, 1,0][\mathrm{m}, 0,1]] \rightarrow \mathrm{w}\)
While w[2,1] > 0
    intDiv(w[1, 1],w[2,1]) \(\rightarrow\) q
\(\mathrm{w}[1] \rightarrow \mathrm{s}: \mathrm{w}[2] \rightarrow \mathrm{w}[1]: \mathrm{s}-\mathrm{q} * \mathrm{w}[2] \rightarrow \mathrm{w}[2]\)
EndWhile
Disp string(w[1,1])\&" = "\&string(w[1,2])\&"*"\&string(n)\&" +
"\&string(w \([1,3]) \& " * " \& s t r i n g(m)\)
EndPrgm
```

The following function, exactly as inv and minv, computes the reciprocal of n modulo m (if n and m are coprime) and gives 0 otherwise. It is based on the algorithm for the computation of the xgcd .

```
pinv(n,m)
Func
ClrIO
Local xv,xn,sv,sn,q,r
n }->\mathrm{ xv: m }->\mathrm{ xn: 1 }->\mathrm{ sv: 0 }->\mathrm{ sn
While xn > 0
    intDiv(xv,xn) }->\textrm{q}:\operatorname{mod}(xv,xn) -> 
    xn }->\textrm{xv: r }->\textrm{xn
    sv-q*sn }->\mathrm{ r: sn }->\mathrm{ sv: r }->\mathrm{ sn
EndWhile
If xv = 1 Then
    mod(sv,m)
Else
    O
EndIf
EndFunc
```

The following function computes x^{n} modulo m in an efficient way. No number exceeding $(m-1)^{2}$ is involved in the computation.

```
pwm(x,n,m)
Func
Local z
1 }->\textrm{z}:\operatorname{mod}(\textrm{x},\textrm{m})->\textrm{x
While n > 0
```

```
If mod(n,2) > 0 Then
    n-1 }->\textrm{n}:\quad\textrm{z}*\textrm{x}->\textrm{z}: mod(z,m) -> 
EndIf
    n/2 }->\textrm{n}:\quad\textrm{x}*\textrm{x}->\textrm{x}:\operatorname{mod}(\textrm{x},\textrm{m})->\textrm{x
EndWhile
```

The following function finds a prime in the arithmetic sequence $a+k \cdot b, k \in \mathbb{N}$, starting from a given k. The numbers a and b are coprime (Dirichlet's theorem).

```
\(d r(a, b, k)\)
Func
Local p
\(\mathrm{a}+\mathrm{k} * \mathrm{~b} \rightarrow \mathrm{p}\)
While isPrime(p) = false
    \(p+b \rightarrow p\)
EndWhile
p
EndFunc
```

The following program (due to L. Verardi [6]) displays the prime factorization of an integer as a two-rows matrix; first row: prime factors, second row: their esponents.

```
factint(nn)
Prgm
ClrIO
Local fa,lf,po,df,ed,ld,p1,p2
[[1][1]] }->\mathrm{ fatt
string(factor(nn)) }->\mathrm{ fa
Disp nn: Disp fa
dim(fa) }->\mathrm{ lf: 0 }->\textrm{kk
While lf }\not=
    kk+1->kk: instring(fa,"*") -> po
    If po }\not=0\mathrm{ Then
        left(fa,po-1) }->\mathrm{ df
    Else
        fa }->\mathrm{ df
    EndIf
    instring(df,"^") -> ed
    If ed }\not=0\mathrm{ Then
        dim(df) }->\mathrm{ ld: expr(left(df,ed-1)) }->\mathrm{ p1: expr(right(df,ld-ed)) }->\mathrm{ p2
    Else
        expr(df) }->\textrm{p}1: 1 -> p
    EndIf
    augment(fatt,[[p1][p2]]) }->\mathrm{ fatt
    If po }\not=0\mathrm{ Then
```

```
    right(fa,lf-po) \(\rightarrow\) fa: \(\operatorname{dim}(f a) \rightarrow\) lf
Else
    \(0 \rightarrow\) lf
EndIf
EndWhile
subMat (fatt,1,2,2,kk+1) \(\rightarrow\) fatt
Disp fatt
EndPrgm
```

The following function computes $\phi(n)$ using the results of factint.

```
euler(nn)
Prgm
Local i
factint(nn): nn }->\mathrm{ ee
For i,1,kk
    ee*(1-1/(fatt[1,i])) }->\mathrm{ ee
EndFor
Disp ee
EndPrgm
```

