
Elementary Number Theory with the TI-89/92

Giulio C. Barozzi

Università di Bologna – Italy
barozzi@ciram.ing.unibo.it

http://eulero.ing.unibo.it/~barozzi

The calculators TI 89 and TI 92 Plus provide a good starting point for explorations in
the domain of elementary number theory. Let us recall the basic functions: given the
natural numbers n and m, with m > 0, intDiv(n,m) gives the quotient of n divided by
m, mod(n,m) gives the remainder of n divided by m, so that the identity

n = intDiv(n,m) * m + mod(n,m)

holds. Equally important are the functions factor(n), which gives the prime factorization
of n, and isPrime(n) which gives True in n is prime, False otherwise.

The first thing we can do, is a program for finding the decimal or the binary representation
of a rational number n/m; this has been accomplished by writing the two programs rd(n,m)
and rb(n,m) (see Appendix). A vertical bar (|) separates the non recurring from the
recurring digits.

A bit of theory helps here: a classical result in number theory states that the number of
non recurring digits in the decimal representation of n/m equals max{α, γ}, where

m = 2α · 3β · 5γ . . .

is the factorization of the denominator m. So we know in advance which remainder to
check in the process of division.

An experimentation with various prime denominators m leads us to conjecture that the
number of recurring digits (sometimes called the “period”) is a factor of n−1. This is also
true for the binary representation (and the same holds with respect to any base).

What happens if the denominator m is not prime? It turns out that the length of the
“period” is a factor of

φ(m) := number of numbers less than m and coprime with it.

Dallas 2000 – 1

The function phi(n) (see Appendix) computes φ(n) with a brute force method; the same
function can be efficiently computed starting from the factorization of n (see bibliography
[6]; the relevant programs are listed in the Appendix).

Numbers like 1/5 or 1/10, in general any rational number which cannot be expressed as
a binary fraction, has a binary representation which is periodic; such a number cannot be
stored exactly as a floating point number.

This explains the rather surprising results shown above (the calculator has been switched
to Approximate mode).

It is not difficult to program the so called “extended version” of Euclid’s algorithm, giving
the Bezout’s formula

d = gcd(n,m) = x · n+ y ·m

with x and y convenient integers (of opposite sign). This is done by the program xgcd.

If n and m are coprime, then 1 = gcd(n,m) = x · n+ y ·m, i.e.

x · n = 1− y ·m ⇐⇒ x · n ≡ 1 (mod m)

So the euclidean algorithm gives us the reciprocal of n modulo m. If we want to represent
each class of congruence modulo m with the corresponding remainder between 0 and m−1,
than n itself must be reduced modulo m (if necessary).

The function pinv computes the reciprocal of n modulo m, when n and m are coprime,
and gives (quite arbitrarily) 0 otherwise.

Dallas 2000 – 2

Using the function seq and mod we can construct the addition and multiplication tables
modulo m.

If we call Zm the set of classes of congruence modulo m, then a classical theorem states
that Zm is a field iff m is prime, otherwise it is a commutative ring with unity. The
invertible elements are those which are coprime with m, so their number is exacty φ(m).

Figure 1 x1

x2
+

+

Z

Z

s

r

r1

r2

mod(· , m)

mod(· , m)

mod(· , m)
mod(· , m)

x1

x2
*

*

Z

Z

p

t

r1

r2

mod(· , m)

mod(· , m)

mod(· , m)
mod(· , m)

Dallas 2000 – 3

The schemes in Figure 1 show the compatibility of the arithmetic operations in Z with the
congruence modulo m.

Particularly important, for the sequel, is the computation of powers modulo m. As soon
as a partial product exceedes m, it can be substituted by its remainder, so that no number
greater than (m− 1)2 is involved in the computation.

For the moment we limit ourselves to the following consideration: suppose we want to
compute

z = xb·c (mod m),

where x is some integer between 0 and m− 1 and b and c are natural numbers.

Since xb·c =
(
xb
)c, we can perform the following steps (see Figure 2)

r := xb (mod m), z = rc (mod m).

Figure 2 x

Z
r

z

mod(· , m)

Z
mod(· , m)

(·)b

(·)c

In fact the function pwm(a,b,n) we have written (where a, b, n are natural numbers with
n > 0), computes ab mod n by cleverly combining the reduction modulo n and the binary
representation of the exponent b (bibliography [4]). It achieves both the results of reducing
the number of multiplications and of keeping each partial product less than or equal to
(n− 1)2.

A first interesting result in modular arithmetic (the Latin name modulus was in fact chosen
by C.F. Gauss in his Disquisitione Arithmeticæ, 1799) is due to P. de Fermat (1602-1665):
it is the so called Fermat’s little theorem:

If n is prime, than for any x between 0 and n− 1 one has xn ≡ x mod n.

In other words: we can recover x by computing a power of it modulo n. Notice that if n
is prime, the numbers between 1 and n− 1 are obviously coprime with it.

What happens if n is not prime? The answer came from Euler: for any x less than n
coprime with it one has

xφ(n)+1 ≡ x mod n.

A bit of experimentation shows that for n = 4 = 22 or n = 8 = 23, the equality we have
written is false for x non coprime with n.

Dallas 2000 – 4

But, surprisingly, for n = 6 = 2 · 3, n = 10 = 2 · 5 or n = 15 = 3 · 5 the equality holds for
every x between 0 and n− 1, the case x = 0 being obvious.

The following theorem holds:

If n = p · q, with p and q distinct primes, then xφ(n)+1 ≡ x mod n, for every natural
number x < n.

How to compute φ(n) = φ(p · q)? It is not difficult to show the φ is multiplicative, i.e. if a
and b are coprime

φ(a · b) = φ(a) · φ(b).

So, in the case of p and q distinct primes,

φ(p · q) = φ(p) · φ(q) = (p− 1)(q − 1) = pq − p− q + 1,

and finally

φ(n) + 1 = φ(p · q) + 1 = n− p− q + 2.

Suppose we can write φ(n) + 1 as a product:

n− p− q + 2 = b · c,

then x ≡ xφ(n)+1 = xb·c can be trasmitted from a sender to a receiver by using the following
scheme (see Figure 3):

x→ pwm(x, b, n) = r → pwm(r, c, n) = x

The result holds for any natural number x less than the modulus n. To code the message
we need n and b (the so called public keys), to decode one needs n and c (the private key).

Now

b · c = n− p− q + 2 ⇒ c =
n− p− q + 2

b
.

If p and q are big primes (say, 100 digits long) they can’t be recovered from the knowledge
of n in a reasonable time.

How to produce “big” primes? A theorem by Dirichlet (P.G. Lejeune-Dirichlet, 1805-1859)
can help:

Dallas 2000 – 5

Figure 3

x x

r r

pwm(x,b,n) pwm(r,c,n)

If a and b are coprime, then the arithmetic progression a + k · b, k ∈ N, contains an
infinite number of primes.

The program dr(a,b,k) explores the arithmetic progression a+k · b starting from a given
k until a prime is found. The availability of the primality testing function isPrime is
essential at this point.
Let us give a practical example. Suppose we want to use the private key c = 7. Then
n− p− q+ 2 = (p− 1)(q− 1) + 1 must be a multiple of 7, hence congruent to 0 modulo 7.
This means that (p − 1)(q − 1) must be congruent to 6 modulo 7, and since 6 = 2 · 3 we
can find p congruent to 3 and q congruent to 4 modulo 7.
We can find as many primes as we like in the arithmetic progressions 3 +k · 7 and 4 +k · 7,
and use them as values for p and q. For instance dr(3,7,3000) gives p = 21 017 and
dr(4,7,3000) gives q = 21 011, so

n = p · q = 441 588 187;

any “message” x less than n can be transmitted using the scheme we already know.

The procedure is known as the RSA method, from the initials of its discoverers R. Rivest,
A. Shamir, L. Adleman in 1978.

Dallas 2000 – 6

Bibliography

[1] G.C. Barozzi: Teoria elementare dei numeri con la TI 89/92, Ipotesi vol. 2 (1999), n.2,
15-21, Pitagora Editrice (Bologna);

[2] H. Davenport: Higher Arithmetic, Cambridge University Press, 1992;
[3] G.H. Hardy, E.M. Wright: An Introduction to the Theory of Numbers, Clarendon Press,

Oxford, 1979;
[4] D.E. Knuth: The Art of Computer Programming, Vol. 1: Fundamental Algorithms

(1973), Vol. 2: Seminumerical Algorithms (1980), Addison Wesley, Reading MA;
[5] R. Rivest, A. Shamir, L. Adleman: A method for obtaining digital signatures and

public-key cryptosystems, Communication ACM 21 (1978)n 120-128;
[6] L. Verardi: Scomposizioni e funzioni aritmetiche con TI 89/92, Ipotesi, Vol. 2 (1999),

n.3, 11-15, Pitagora Editrice (Bologna) .

Appendix – Program listings

The following program computes the decimal representation of the rational number n/m
(n,m > 0; a vertical bar (|) separates the non recurring from the recurring digits.

rd(n,m)

Prgm

ClrIO

Local g,c,h,k,r,j,rr,ad

gcd(n,m) → g

If g > 1 Then

n/g → n: m/g → m

EndIf

string(n)&"/"&string(m)&" = "&string(intDiv(n,m))&"."→ ad

m → r: 0 → h: 0 → k

While mod(r,2) = 0

h+1 → h: r/2 → r

EndWhile

While mod(r,5) = 0

k+1 → k: r/5 → r

EndWhile

max(h,k) → k: 0 → j: 0 → rr: mod(n,m) → r

While r 6= rr

If j = k Then

r → rr: ad&"|" → ad

EndIf

j+1 → j: intDiv(10*r,m) → c: mod(10*r,m) → r

ad&string(c) → ad

EndWhile

Disp ad

Dallas 2000 – 7

EndPrgm

The following program computes the binary representation of the rational number n/m
(0 < n < m).

rb(n,m)

Prgm

ClrIO

Local g,c,h,r,j,rr,ab

gcd(n,m) → g

If g > 1 Then

n/g→ n: m/g→ m

EndIf

string(n)&"/"&string(m)&" = "&string(intDiv(n,m))&"." → ab

m → r: 0 → h

While mod(r,2) = 0

h+1 → h: r/2 → r

EndWhile

0 → j: 0→ rr: mod(n,m) → r

While r 6= rr

If j = h Then

r → rr: ab&"|" → ab

EndIf

j+1 → j

intDiv(2*r,m)→ c: mod(2*r,m)→ r: ab&string(c) → ab

EndWhile

Disp ab

EndPrgm

The following function equals 1 if x and y are coprime, otherwise equals 0.

co(x,y)

Func

If gcd(x,y) > 1 Then

0

Else

1

EndIf

EndFunc

The following function (Euler’s phi function) computes the number of numbers less than
n and coprime with it.

phi(n)

Func

If isPrime(n) Then

n-1

Dallas 2000 – 8

Else

sum(seq(co(x,n), x, 1, n-1))

EndIf

EndFunc

The following function computes the reciprocal of n modulo m (if n and m are coprime)
and gives 0 otherwise. It is based on Fermat’s little theorem.

inv(n,m)

Func

If gcd(n,m) = 1 Then

mod(n^(phi(m)-1),m)

Else

0

EndIf

EndFunc

Comment: The computation of mod(n(φ(m)−1),m) is quite näıve, and can result in an
overflow. The following version takes advantage of the function pwm (see below) and is
definitely to be used instead.

minv(n,m)

Func

Local k

If gcd(n,m)=1 Then

phi(m)-1 → k: pwm(n, k, m)

Else

0

EndIf

EndFunc

Computation of the extended GCD (Bezout’s formula).

xgcd(n,m)

Prgm

ClrIO

Local xv,xn,sv,sn,tv,tn,q,r

n → xv: m → xn

1 → sv: 0 → sn: 0 → tv: 1 → tn

While xn > 0

intDiv(xv,xn) → q: mod(xv,xn) → r

xn → xv: r → xn

sv-q*sn → r: sn → sv: r → sn

tv-q*tn → r: tn → tv: r → tn

EndWhile

Disp string(xv)&" = "&string(sv)&"*"&string(n)&" +

Dallas 2000 – 9

"&string(tv)&"*"&string(m)

EndPrgm

Computation of the extended GCD (this version stores intermediate results as matrices).

mgcd(n,m)

Prgm

Local w,q,s

[[n,1,0][m,0,1]] → w

While w[2,1] > 0

intDiv(w[1,1],w[2,1]) → q

w[1] → s: w[2] → w[1]: s-q*w[2] → w[2]

EndWhile

Disp string(w[1,1])&" = "&string(w[1,2])&"*"&string(n)&" +

"&string(w[1,3])&"*"&string(m)

EndPrgm

The following function, exactly as inv and minv, computes the reciprocal of n modulo
m (if n and m are coprime) and gives 0 otherwise. It is based on the algorithm for the
computation of the xgcd.

pinv(n,m)

Func

ClrIO

Local xv,xn,sv,sn,q,r

n → xv: m → xn: 1 → sv: 0 → sn

While xn > 0

intDiv(xv,xn) → q: mod(xv,xn) → r

xn → xv: r → xn

sv-q*sn → r: sn → sv: r → sn

EndWhile

If xv = 1 Then

mod(sv,m)

Else

0

EndIf

EndFunc

The following function computes xn modulo m in an efficient way. No number exceeding
(m− 1)2 is involved in the computation.

pwm(x,n,m)

Func

Local z

1 → z: mod(x,m) → x

While n > 0

Dallas 2000 – 10

If mod(n,2) > 0 Then

n-1 → n: z*x → z: mod(z,m) → z

EndIf

n/2 → n: x*x → x: mod(x,m) → x

EndWhile

The following function finds a prime in the arithmetic sequence a + k · b, k ∈ N, starting
from a given k. The numbers a and b are coprime (Dirichlet’s theorem).

dr(a,b,k)

Func

Local p

a+k*b → p

While isPrime(p) = false

p+b → p

EndWhile

p

EndFunc

The following program (due to L. Verardi [6]) displays the prime factorization of an integer
as a two-rows matrix; first row: prime factors, second row: their esponents.

factint(nn)

Prgm

ClrIO

Local fa,lf,po,df,ed,ld,p1,p2

[[1][1]] → fatt

string(factor(nn)) → fa

Disp nn: Disp fa

dim(fa) → lf: 0 → kk

While lf 6= 0

kk+1→kk: instring(fa,"*") → po

If po 6= 0 Then

left(fa,po-1) → df

Else

fa → df

EndIf

instring(df,"^") → ed

If ed 6=0 Then

dim(df) → ld: expr(left(df,ed-1)) → p1: expr(right(df,ld-ed)) → p2

Else

expr(df) → p1: 1 → p2

EndIf

augment(fatt,[[p1][p2]]) → fatt

If po 6= 0 Then

Dallas 2000 – 11

right(fa,lf-po) → fa: dim(fa) → lf

Else

0 → lf

EndIf

EndWhile

subMat(fatt,1,2,2,kk+1) → fatt

Disp fatt

EndPrgm

The following function computes φ(n) using the results of factint.
euler(nn)

Prgm

Local i

factint(nn): nn → ee

For i,1,kk

ee*(1-1/(fatt[1,i])) → ee

EndFor

Disp ee

EndPrgm

Dallas 2000 – 12

