Marcare con una crocetta su V le affermazioni ritenute vere e su F le affermazioni ritenute false. Per annullare una risposta già marcata, cerchiarla. Per ognuno dei sei quesiti vi possono essere da 0 a 3 affermazioni vere. Ogni risposta esatta vale +1 punto, mentre ogni risposta sbagliata vale -1 punto.

- 1) Sia A una matrice ridotta a gradini per righe.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } A$ ha la prima riga nulla allora è la matrice nulla.
- \mathbf{V} \mathbf{F} b) Allora il rango di A è pari al numero di righe non nulle.
- **V F** c) Allora A ha un pivot su ogni colonna.
 - 2) Sia X un sottoinsieme linearmente indipendente di uno spazio vettoriale V. Allora
- $\mathbf{V} \quad \mathbf{F} \quad \text{a)}$ esiste una base di V che contiene X.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) esiste una base di V contenuta in X.
- $\mathbf{V} \quad \mathbf{F} \quad \text{c) ogni base di } V \text{ contiene } X.$
 - 3) Sia V uno spazio vettoriale di dimensione n e siano $X = \{x_1, x_2, \ldots, x_n\}$ e $Y = \{y_1, y_2, \ldots, y_n\}$ sottoinsiemi di V. Allora esiste un unico endomorfismo F di V tale che $F(x_i) = y_i$ per ogni $i = 1, \ldots, n$
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) comunque siano } X \in Y.$
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) se e solo se X è una base.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) se e solo se Y è una base.
 - 4) Sia $F: V \to V$ un endomorfismo.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Allora } \operatorname{card}(\operatorname{Spec}(F)) \leq \dim V.$
- $\mathbf{V} \quad \mathbf{F} \quad \text{b) Allora Spec}(F) \text{ non è vuoto.}$
- \mathbf{V} \mathbf{F} c) Se card(Spec(F)) = dim V allora V ammette una base spettrale. relativa a F.
 - 5) Sia (V, \langle, \rangle) uno spazio vettoriale euclideo. Dati $v_1, v_2, v_3 \in V$
- \mathbf{V} \mathbf{F} a) se v_1 è ortogonale a v_2 e v_2 è ortogonale a v_3 allora v_1 è ortogonale a v_3 .
- ${f V} {f F} {f F}$ b) se v_1 è ortogonale a v_2 allora v_2 è ortogonale a v_1 .
- \mathbf{V} \mathbf{F} c) se v_1 è ortogonale a se stesso allora v_1 è il vettore nullo.
 - 6) Sia Ax = b un sistema lineare.
- \mathbf{V} \mathbf{F} a) Se b è il vettore nullo allora il sistema ha solo la soluzione nulla.
- \mathbf{V} \mathbf{F} b) Se b non è il vettore nullo allora il sistema non ha la soluzione nulla.
- \mathbf{V} \mathbf{F} c) Se A è quadrata allora il sistema ha una sola soluzione.

Marcare con una crocetta su V le affermazioni ritenute vere e su F le affermazioni ritenute false. Per annullare una risposta già marcata, cerchiarla. Per ognuno dei sei quesiti vi possono essere da 0 a 3 affermazioni vere. Ogni risposta esatta vale +1 punto, mentre ogni risposta sbagliata vale -1 punto.

- 1) Sia Ax = b un sistema lineare.
- \mathbf{V} \mathbf{F} a) Se b non è il vettore nullo allora il sistema non ha la soluzione nulla.
- \mathbf{V} \mathbf{F} b) Se b è il vettore nullo allora il sistema ha solo la soluzione nulla.
- \mathbf{V} \mathbf{F} c) Se A è quadrata allora il sistema ha una sola soluzione.
 - 2) Sia $F: V \to V$ un endomorfismo.
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) Se } \operatorname{card}(\operatorname{Spec}(F)) = \dim V \text{ allora } V \text{ ammette una base spettrale.}$
- $\mathbf{V} \quad \mathbf{F} \quad b) \text{ Allora } \operatorname{card}(\operatorname{Spec}(F)) \leq \dim V.$
- $\mathbf{V} \quad \mathbf{F} \quad c)$ Allora $\operatorname{Spec}(F)$ non è vuoto. relativa a F.
 - 3) Sia X un sottoinsieme linearmente indipendente di uno spazio vettoriale V. Allora
- $\mathbf{V} \quad \mathbf{F} \quad \text{a) ogni base di } V \text{ contiene } X.$
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) esiste una base di V contenuta in X.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{c}$) esiste una base di V che contiene X.
 - 4) Sia A una matrice ridotta a gradini per righe.
- **V F** a) Allora A ha un pivot su ogni colonna.
- \mathbf{V} \mathbf{F} b) Allora il rango di A è pari al numero di righe non nulle.
- \mathbf{V} \mathbf{F} c) Se A ha la prima riga nulla allora è la matrice nulla.
 - 5) Sia (V, \langle, \rangle) uno spazio vettoriale euclideo. Dati $v_1, v_2, v_3 \in V$
- \mathbf{V} \mathbf{F} a) se v_1 è ortogonale a v_2 e v_2 è ortogonale a v_3 allora v_1 è ortogonale a v_3 .
- $\mathbf{V} \quad \mathbf{F} \quad$ b) se v_1 è ortogonale a se stesso allora v_1 è il vettore nullo.
- ${f V} {f F} {f C}$ c) se v_1 è ortogonale a v_2 allora v_2 è ortogonale a v_1 .
 - 6) Sia V uno spazio vettoriale di dimensione n e siano $X = \{x_1, x_2, \ldots, x_n\}$ e $Y = \{y_1, y_2, \ldots, y_n\}$ sottoinsiemi di V. Allora esiste un unico endomorfismo F di V tale che $F(x_i) = y_i$ per ogni $i = 1, \ldots, n$
- \mathbf{V} \mathbf{F} a) se e solo se X è una base.
- $\mathbf{V} \quad \mathbf{F} \quad \mathbf{b}$) comunque siano $X \in Y$.
- $\mathbf{V} \quad \mathbf{F} \quad$ c) se e solo se Y è una base.