08/11/2002 00101

Marcare con una crocetta le risposte ritenute corrette e consegnare la scheda al termine della prima ora. Per annullare una risposta già marcata, cerchiarla. Per ogni domanda vi possono essere da 0 a 4 risposte esatte. Per ogni domanda, la somma dei punti per le risposte errate è -2, per le risposte esatte è +2.

- 1) Quali fra le seguenti strutture algebriche godono della proprietà commutativa?
 - A) $({\bf Z}, -)$.
 - B) $(\{A \in \mathcal{M}_3(\mathbf{R}) \mid \det A = 1\}, \cdot).$
 - C) (\mathbf{Q}, \cdot) .
 - D) $(\{1\}, \cdot)$.
- 2) Sia V uno spazio vettoriale reale di dimensione 6. Sia U un suo sottospazio di dimensione 4. Perché V sia somma diretta di U e di un altro sottospazio W occorre che W abbia dimensione
 - A) 1
 - B) 2
 - C) 6
 - D) 0
- 3) Quali fra i seguenti insiemi, con le consuete operazioni di somma e prodotto per scalari, sono spazi vettoriali su **R**?
 - A) L'insieme delle funzioni $f: \mathbf{R} \to \mathbf{R}$ tali che f(0) f(1) = 0.
 - B) $\{A \in \mathcal{M}_3(\mathbf{R}) \mid A \text{ è triangolare alta} \}.$
 - C) $\{(x, y, z) \in \mathbf{R}^3 \mid x^2 + y^2 \le 1\}.$
 - D) L'insieme dei vettori applicati in un punto N dello spazio ordinario e contenuti in una fissata semiretta di origine N.
- 4) Quali delle seguenti applicazioni $T: \mathbf{R}[t] \to \mathbf{R}[t]$ sono lineari?
 - A) $T(a_0 + a_1t + \dots + a_nt^n) = 1 + a_0t + a_1t^2 + \dots + a_nt^{n+1}$.
 - B) $T(a_0 + a_1t + \dots + a_nt^n) = a_0.$
 - C) $T(a_0 + a_1t + \dots + a_nt^n) = 0$.
 - D) $T(a_0 + a_1t + \dots + a_nt^n) = (a_0)^2 + (a_1)^2t + \dots + (a_n)^2t^n$.
- 5) Date due matrici qualunque A e B, se si può effettuare la somma A+B allora si può effettuare
 - A) il prodotto ${}^{t}A \cdot {}^{t}B$.
 - B) la somma ${}^{t}A + {}^{t}B$.
 - C) il prodotto $A \cdot B$.
 - D) il prodotto ${}^{t}B \cdot A$.

08/11/2002 00101

6) Sia $A \in \mathcal{M}_6(\mathbf{R})$. Indichiamo con $\mathbf{a}^1, \dots, \mathbf{a}^6$ le righe di A. Necessariamente det $B = \det A$ se B

- A) ha come prima riga $10\mathbf{a}^1 + \mathbf{a}^2$ e le altre righe sono uguali a quelle corrispondenti di A.
- B) ha come prima riga \mathbf{a}^2 , come seconda \mathbf{a}^1 e le altre righe sono uguali a quelle corrispondenti di A.
- C) ha come prima riga la somma di tutte le righe di A e le altre righe sono uguali a quelle corrispondenti di A.
- D) ha come righe gli opposti delle righe di A.
- 7) Siano X e Y due basi diverse di uno stesso spazio vettoriale V. Allora $X \cup Y$ è
 - A) una base di V.
 - B) un insieme linearmente indipendente.
 - C) un insieme linearmente dipendente.
 - D) un sistema di generatori di V.
- 8) In una matrice quadrata A
 - A) se le righe sono linearmente dipendenti allora le colonne sono linearmente indipendenti.
 - B) se ci sono due righe uguali allora ci sono due colonne uguali.
 - C) $\det A = 0$ se e solo se c'è un elemento nullo sulla diagonale principale.
 - D) se le righe sono linearmente indipendenti allora le colonne sono linearmente indipendenti.
- 9) Sia $\mathbf{R}^2[t]$ lo spazio vettoriale dei polinomi nell'indeterminata t a coefficienti in \mathbf{R} di grado minore o uguale a due. Allora il polinomio $5+6t+7t^2$ ha coordinate rispetto alla base ordinata $(1+t^2,t,t^2)$:
 - A) (5,1,7).
 - B) $(5+5t, t, 7t^2)$.
 - C) (5,6,2).
 - D) $(5+5t^2, 6t, 2t^2)$.

08/11/2002 00110

Marcare con una crocetta le risposte ritenute corrette e consegnare la scheda al termine della prima ora. Per annullare una risposta già marcata, cerchiarla. Per ogni domanda vi possono essere da 0 a 4 risposte esatte. Per ogni domanda, la somma dei punti per le risposte errate è -2, per le risposte esatte è +2.

- 1) Quali fra le seguenti strutture algebriche sono dotate di elemento neutro?
 - A) (\mathbf{Z}, \cdot)
 - B) $(\{A \in \mathcal{M}_3(\mathbf{R}) \mid \det A = 0\}, \cdot)$
 - C) $(\{0\},+)$
 - D) (\mathbf{Q}, \cdot)
- 2) Sia V uno spazio vettoriale reale di dimensione 6. Siano U e W suoi sottospazi entrambi di dimensione 3. Se $U \cap W$ contiene solo il vettore nullo, allora
 - A) U + W = V.
 - B) $U + W \subseteq V$, $U + W \neq V$.
 - C) U = W.
 - D) $V \subseteq U + W$, $V \neq U + W$.
- 3) Quali fra i seguenti insiemi, con le consuete operazioni di somma e prodotto per scalari, costituiscono spazi vettoriali su R?
 - A) L'insieme delle funzioni $f: \mathbf{R} \to \mathbf{R}$ tali che f(0) + f(1) = 0.
 - B) $L(\{A \in \mathcal{M}_5(\mathbf{R}) \mid \det A = 1\}).$
 - C) $\{(x, y, z) \in \mathbf{R}^3 \mid xy = 0\}.$
 - D) L'insieme dei vettori applicati in un punto N dello spazio ordinario e che formano un angolo di 60 gradi con una fissata retta r passante per N.
- 4) Quali delle seguenti applicazioni $T: \mathcal{M}_2(\mathbf{R}) \to \mathcal{M}_2(\mathbf{R})$ sono lineari?

 - A) $T(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. B) $T(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = \begin{pmatrix} a^2 & b^2 \\ c^2 & d^2 \end{pmatrix}$. C) $T(A) = \begin{pmatrix} trA & 0 \\ 0 & 0 \end{pmatrix}$.

 - D) $T(A) = A \cdot A$
- 5) Date due matrici qualunque $A \in B$, se si può effettuare il prodotto riga per colonna $A \cdot B$ (cioè se la coppia (A, B) è conformabile) allora si può effettuare
 - A) il prodotto ${}^{t}A \cdot {}^{t}B$.
 - B) la somma A + B.
 - C) il prodotto $B \cdot A$.
 - D) il prodotto ${}^{t}B \cdot {}^{t}A$.

08/11/2002 00110

6) Sia $A \in \mathcal{M}_5(\mathbf{R})$. Indichiamo con $\mathbf{a}^1, \dots, \mathbf{a}^5$ le righe di A. Sia B la matrice tale che: la prima riga di B è uguale a $\mathbf{a}^1 - \mathbf{a}^2$, la seconda riga di B è uguale a $\mathbf{a}^1 + \mathbf{a}^2$, e le rimanenti righe di B sono uguali alle corrispondenti righe di A. Allora det B è uguale a

- A) 0
- B) $\det A$.
- C) $2 \det A$.
- D) $-\det A$.
- 7) Siano X e Y due basi diverse di uno stesso spazio vettoriale V. Allora $X \cap Y$ è
 - A) una base di V.
 - B) un insieme linearmente indipendente.
 - C) un insieme linearmente dipendente.
 - D) un sistema di generatori di V.
- 8) In una matrice quadrata A
 - A) se le righe sono linearmente dipendenti allora le colonne sono linearmente dipendenti.
 - B) se A è triangolare, $\det A = 0$ se e solo se c'è almeno un elemento nullo sulla diagonale principale.
 - C) se ci sono due righe uguali allora ci sono due colonne uguali.
 - D) se le righe sono linearmente indipendenti allora le colonne sono linearmente dipendenti.
- 9) In \mathbb{R}^3 , rispetto alla base ordinata ((1,0,0),(0,-1,0),(0,0,1)), il vettore (5,-3,7) ha coordinate:
 - A) (-3,5,7).
 - B) (3,5,7).
 - C) (5,3,7).
 - D) (5, -3, 7).