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In this paper we consider long time behavior of a mean curvature flow of non
parametric surface in Rn, with respect to a conformal Riemannian metric.
We impose zero boundary value, and we prove that the solution tends to
0 exponentially fast as t → ∞. Its normalization u

sup u
tends to the first

eigenfunction of the associated linearized problem.

1. INTRODUCTION

In this paper we consider long time behavior of a mean curvature flow
of non parametric surface in Rn, with respect to a conformal Riemannian
metric. Let Ω be a convex domain of Rn and let h a function of class C2(Ω),
such that h ≥costant> 0. If we set g = h(n−1)/2, the mean curvature of the
graph of u with respect to the conformal metric (hδij) is defined as follows

Hg(u) =
1

gn/(n−1)
div

(
gDu√

1 + |Du|2

)
, ε > 0
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and the associated nonlinear evolution equation





ut = gn/(n−1)
√

1 + |Du|2 Hg(u) in Ω× [0,+∞[
u = 0 on ∂Ω× [0,+∞[

u(x, 0) = u0(x) in Ω,
(1)

where Du is the spatial gradient, ut is the partial derivative with respect
to t and u0 is a smooth function.
The flow of a graph by the curvature of its level sets has been intensively
used as a model for image recognition (see for example [26], [28], [2], [19] [25]
for level set evolution in Euclidean metric [3], [16] and [29] in a Riemann
setting). Problem (1) has been proposed in [27] for segmentation of a
given image I0. The process of vision is considered a subjective process,
in which the human visual system completes informations that are not
present in the given image. An initial function, called the point of view
surface u0 : Ω → R, contains the dependence of the observer, and it is
evolved by mean curvature flow with respect to a Riemannian metric hδij

induced by I0. The reconstructed image is the normalization u
sup u of the

solution, hence we study the asymptotic behavior of this quotient.
Problem (1) has been studied mainly in the Euclidean case, when g = 1. It
has been proved in [18] that for general Dirichlet boundary data, a smooth
solution does not exists. If Ω is convex, on the contrary it is well known
that the solution exists and is defined on all Ω × [0,∞[ (see [18], Huisken
[14] for time dependent boundary conditions and Ecker and Huisken [6]).
Besides the solutions of the parabolic boundary value problem, tend to
the solution of the associated elliptic prescribed mean curvature equation.
Analogous arguments ensure in our contest that the solution of (1) exists
for all instant of time, and asymptotically tends to 0, since the boundary
datum is 0. We also refer to by Evans and Spruck in [7]-[10], Giga and Goto
[11], Chen, Giga and Goto [4], Huisken [12]-[13], Ilmannen [15], Soner [30],
Bellettini and Paolini [1] for motions by curvature of compact surfaces and
[31] for asymptotic behavior of graph evolving by curvature of its level set.
More recently the normalized solution of the parabolic equation has been
studied in order to give a week definition of solution of the prescribed mean
curvature equation, in case that the classical one does not exists, see Oliker
and Ural’tseva in [21]-[24] for problem (1) with g = 1, and non convex set
Ω, Lichnewski and Temam [17], Marcellini and Miller [20] for an other flow,
always defined in terms of Euclidean curvature.
Here we assume that Ω is convex, because the domain of an image is in gen-
eral a square, and study the normalized solution of (1), with a technique in-
spired form the idea in [22]. We show that the normalized solution approach
exponentially the first eigenfunction of the operator Lg(u) = div(gDu) with
Dirichlet boundary data in Ω.

2
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Precisely if u : Ω × [0,+∞[→ R denotes the unique solution of (1), our
main theorem is

Theorem 1.1. Let φ1 be the first eigenfunction of the linear operator

Lgu = div(gDu) (2)

in Ω with Dirichlet boundary data u0, and let λ1(> 0) be the corresponding
eigenvalue. Then, there exist constants c, c1 > 0 and ν > 0 depending on
u0 such that

sup
x∈Ω

| exp(λ1t)u(x, t)− cφ1(x)| ≤ c1 exp(−νt) (3)

for sufficiently large t.

Remark 1. 1. The same result is also true with the same proof if the
conformal metric g is substituted with any other Riemannian metric hij ,
induced by an image I0. This means that hij is direct sum of a n−1×n−1
and a 1× 1 matrix.

The paper is organized as follows: in section 2 we consider the linearized
problem and we study the asymptotic behaviour of the solutions, by means
of a Moser technique. In section 3, after proving that the solution of prob-
lem (1) exists for every t > 0, we give some asymptotic estimates for its
gradient and we prove Theorem 1.1.

2. THE LINEARIZED PROBLEM: ASYMPTOTIC
BEHAVIOUR OF SOLUTIONS

In this section we prove some Moser’s a priori estimates for smooth solu-
tions of the linearized problem

{
zt − div(gDz) ≤ |f | in Ω× [t0, T ]

z ≤ k∗ on ∂Ω× [t0, T ]. (4)

In particular, if f decays exponentially in L2 or in L∞ norm also the
solution is proved to decay in the same norm.
In order to apply this technique, we recall the usual definition of dyadic
balls: let x0 ∈ Ω, t0, σ ≥ 0 and T such that t0 + σ < T . Let B(ρ) be the
ball of radius % with center x0. Denote by G(%, σ) the set of nonnegative
functions ξ such that

ξ(x, t) ≡ ω(x)Ξ(t), ω ∈ Lip(Ω ∩B(%)), Ξ ∈ Lip[t0, T ];
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ω = 1 on B(%/2) and supp ω ⊂ B(%);

Ξ = 1 on [t0 + σ, T ] and Ξ = 0 for t = t0.

Lemma 2.1. If z is a smooth solution of
{

zt − div(gDz) ≤ |f | in Ω× [t0, T ]
z ≤ k∗ on ∂Ω× [t0, T ], (5)

for some positive constant k∗, then for every k ≥ k∗ and for every ξ ∈
G(%, σ) we have

sup
[t0,T ]

∫

Ak

1
2
(z − k)+ξ2dx +

∫ T

t0

∫

Ak

g|Dz|2ξ2dxdt ≤ (6)

≤
∫ T

t0

∫

Ak

(z − k)2(g|Dξ|2 + ξ2 + |ξξt|)dxdt +
∫ T

t0

∫

Ak

f2ξ2dxdt

where

Ak(t) = {x ∈ B(%) ∩ Ω | z(x, t) > k}
and G(%, σ) is the set of nonnegative functions defined above.

Proof Let t1 ∈ [t0 + σ, T ]. Multiplying the first inequality in (5) by
(z− k)+ξ2, integrating the result and using the fact that z − k ≤ 0 on ∂Ω,
we obtain
∫ t1

t0

∫

Ω

∂t((z − k)2+)
ξ2

2
dxdt−

∫ t1

t0

∫

Ω

div(gD(z − k)+)(z − k)+ξ2dxdt ≤

≤
∫ t1

t0

∫

Ω

|f |(z − k)+ξ2dxdt.

This expression can be treated in a standard way to obtain the desired
inequality, choosing t1 = T .

Lemma 2.2. Let z be a smooth solution of (5) and σ > 0 such that t0+σ <
T . Then for every (x, t) ∈ B(%/2)× [t0 + σ, T ] we have

z(x, t) ≤ 2max{k∗, sup
eQ
|f |, c||(z − k∗)+||L2( eQ)} (7)

where Q̃ = (B(%) ∩ Ω)× [t0, T ] and

c =
(

c1

ρ2σ

)n
4 + 1

2

,
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where c1 is a positive constant independent of ρ and σ.
Moreover, if z ≥ 0, f ≡ 0 and p such that 0 < p < 2 then

zp(x, t) ≤ 2max{(k∗)p, c||(z − k∗)+||Lp( eQ)} (8)

in B(%/2)× [t0 + σ, T ].

Proof The proof of estimate (7) can be carried out as the analogous
assertion in Lemma 4.1 in [22].
The second part of the proof follows for the fist one with an argument
similar to the one contained in [5]. Indeed, if

B%,σ = B% × [to + σ, T ]

from the first part of proof , we have

sup
B%,σ

z2 ≤ (k∗)2 +
c

(%1 − %)2M (σ − σ1)M

∫

B%1,σ1

(z − k∗)2dη, (9)

where % < %1, σ1 < σ and M is a positive constant. If 0 < p < 2 we have

sup
B %

2 ,σ

zp ≤

(k∗)2 +

c

(%2σ)M

∫

B 2
3 %, σ

2

(z − k∗)2dη




p
2

.

Then

sup
B %

2 ,σ

zp ≤
(

J

(
2
3

)) p
2

(
(k∗)p +

c

(%2σ)M

∫

B%, σ
3

(z − k∗)pdη

)
(10)

where the function J is defined by

J(s) =

(
(k∗)2 +

c

(%2σ)M

∫

Bs%,(1−s)σ

(z − k∗)2dη

)
·

·

(k∗)p +

c

(%2σ)M

∫

B 2
3 %, σ

3

(z − k∗)pdη



− 2

p

,

for every s such that 1
3 ≤ s ≤ 2

3 .
We will prove that J

(
2
3

)
is above bounded by a constant independent of %

and σ. Now, for every t, s such that 1
3 ≤ s < t ≤ 2

3 we have

J(s) ≤
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≤
(k∗)2−p(k∗)p + c

(%2σ)M supBs%,(1−s)σ
(z − k∗)2−p

∫
Bs%,(1−s)σ

(z − k∗)pdη

(
(k∗)p + c

(%2σ)M

∫
B 2

3 %, σ
3

(z − k∗)pdη

) 2
p

≤

(11)

≤

(
(k∗)2 + c

(%2σ)M (t−s)3M

∫
Bt%,(1−t)σ

(z − k∗)2dη
) 2−p

2
(k∗)p

(
(k∗)p + c

(%2σ)M

∫
B 2

3 %, σ
3

(z − k∗)pdη

) 2
p

+

+

(
(k∗)2 + c

(%2σ)M (t−s)3M

∫
Bt%,(1−t)σ

(z − k∗)2dη
) 2−p

2 c
(%2σ)M

∫
Bs%,(1−s)σ

(z − k∗)pdη

(
(k∗)p + c

(%2σ)M

∫
B 2

3 %, σ
3

(z − k∗)pdη

) 2
p

≤

≤

(
(k∗)2 + c

(%2σ)M (t−s)3M

∫
Bt%,(1−t)σ

(z − k∗)2dη
) 2−p

2

(
(k∗)p + c

(%2σ)M

∫
B 3

2 %, σ
3

(z − k∗)pdη

)−1+ 2
p

≤
(

1
(t− s)3M

J(t)
) 2−p

2

.

We thus have

log J(s) ≤ 2− p

p
(−3M log(t− s) + log J(t))

for every t and s. ¿From this inequality we can conclude, as in [5], that
J( 2

3 ) ≤ constant independent of % and σ.

Consider now the linearized problem




ut = div(gDu) + f in Ω× [t̄, +∞[
u = 0 on ∂Ω× [t̄,+∞[

u(x, t̄) = ũ0 in Ω.
(12)

Lemma 2.3. Let φ1 be the first eigenfunction of the operator Lgu = div(gDu)
in Ω with Dirichlet data and let u0, f be orthogonal to φ1 in L2 norm. Sup-
pose also that

||f(·, t)||L2(Ω) ≤ c exp (−2βt), for t ≥ t̄

for some constant β 6= λ2
2 , where λ2 is the second eigenvalue of the operator

Lgu = div(gDu). If u is a smooth solution of (12) then for every t ≥ t̄ we
have

||u(·, t)||2L2(Ω) ≤ c exp (−2γt), (13)
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∫ t+1

t

∫

Ω

|Du(x, s)|2g(x)dxds ≤ c exp (−2γt), (14)

where γ = min{2β, λ2}.
Proof Let us first note that for any t ≥ t̄ the function u(·, t) is orthogonal
to φ1, indeed

∂t

∫

Ω

uφ1dx =
∫

Ω

utφ1dx =
∫

Ω

φ1div(gDu)dx +
∫

Ω

fφ1dx =

= −
∫

Ω

gDφ1Dudx =
∫

Ω

div(gDφ1)udx = λ1

∫

Ω

uφ1dx.

Moreover,
∫

Ω

uφ1dx|t=t̄ =
∫

Ω

ũ0φ1dx = 0

so that ∫

Ω

u(x, t)φ1(x)dx = 0

for every t ≥ t̄. By definition of λ2, it follows that

λ2||u(·, t)||2L2(Ω) ≤
∫

Ω

|Du(x, t)|2g(x) dx for any t ≥ t̄.

Put ψ(t) = ||u(·, t)||2L2(Ω). Multiplying equation in (12) by u, integrating
over Ω and using the hypothesis on f , we obtain

∫

Ω

ut udx = −
∫

Ω

gDuDudx +
∫

Ω

fudx ≤ −λ2ψ
2(t) + c exp (−2βt)ψ(t)

(15)

so that
1
2
∂tψ

2(t) ≤ −λ2ψ
2(t) + c exp (−2βt)ψ(t).

We immediately deduce:

∂tψ(t) + λ2ψ(t) ≤ c exp (−2βt) for t ≥ t̄.

Then for any t ≥ t̄

ψ(t) ≤ exp (−λ2t)
(

exp (λ2t̄)ψ(t̄)− c

λ2 − 2β
exp (λ2 − 2β)t̄

)
+
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+
c

λ2 − 2β
exp (−2βt).

This implies estimate (13). Assertion in (14) is obtained by integrating
(15) from t to t + 1 and using (13).

Lemma 2.4. Suppose that conditions of Lemma 2.3 are satisfied except for
the L2 estimate of f which is replaced by

sup
Ω
|f(·, t)| ≤ c exp (−2βt) for t ≥ t̄.

Then, for every t ≥ t̄ + 1
2

sup
Ω
|u(·, t)| ≤ c exp (−γt)

where γ = min{2β, λ2}.
Proof The proof is a easy modification of the argument found in Lemma
5.3 in [22] and follows by Lemma 2.1 and Lemma 2.2.

3. THE NONLINEAR EQUATION
3.1. L∞ gradient estimate and existence theorem

The object of this subsection is to prove the classical solvability of problem
(1).

Theorem 3.1. There is a unique solution u ∈ C∞(Ω × [0,∞[) of the
problem (1).

Proof It is well known that the solvability of the problem (1) reduces
to the apriori-estimates of the gradient. Let us show that the classical
structure conditions stated for example in [18] are satisfied.
Let u be a C2,1 solution of

−ut + g

n∑

ij=1

(
δij − uiuj

1 + |Du|2
)

uij + 〈Dg, Du〉 = 0

in Ω. (Here and in the following we indicate by ui and uij the partial
derivatives ∂u

∂xi
and ∂2u

∂xixj
, respectively).

Let φ be a strictly increasing function in C3([0, 1], [m, M ]) to be chosen
later, and ω = φ′′(ū)

(φ′(ū))2 . Then the function ū = φ−1(u), is a solution of

−ūt + g

n∑

ij=1

(
δij − uiuj

1 + |Du|2
)

ūij +
1
φ′

(〈Dg,Du〉+ ω E) = 0, (16)
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where E is the Bernstein function, defined by

E =
n∑

ij=1

g

(
δij − uiuj

1 + |Du|2
)

uiuj =
g|Du|2

1 + |Du|2 .

It is proved, for example in [18], that the function v̄ = |Dū|2, is a solution
of

−v̄t +
n∑

ij=1

aij v̄ij +
n∑

i=1

biv̄i + c0 E v̄ ≥ 0, (17)

where aij = g
(
δij − uiuj

1+|Du|2
)
, for i, j = 1, . . . , n, bi are suitable regular

functions and

c0 =
ω′

φ′
+ Aω2 + B,

A = −1 +
2

1 + |Du|2 , B =
1 + |Du|2
|Du4|

n∑

ij=1

∂

∂xj

(
gi

g

)
uiuj .

Since A is negative if |Du| > 1, if ω is a negative constant then c0 is
negative. Hence, with this choice of function φ, by the maximum principle
it follows

sup
Ω×[0,+∞[

|Du|2 ≤ max

{
max φ′

min φ′
sup
∂pΩ

|Du|2, 1
}

.

In order to estimate sup∂pΩ |Du|2, it is sufficient to observe that Ω is a
convex set and a barrier function can be chosen in the form

v(x) = f(〈ν, x0 − x〉),

where ν is the outer normal and f a suitable function.

In the follow subsections we will prove asymptotic estimate of a normalized
solution of (1) stated in Theorem 1.1.
First, we prove uniform convergence to zero of the solutions as t → +∞
and a priori C0− asymptotic estimates. Next, we establish a boundary
and a globally gradient asymptotic estimate and finally we give the proof
of Theorem 1.1.
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3.2. Asymptotic estimate of the solutions

Proposition 3.1. If u is the solution of problem (1) in Ω× [0,∞[ then u
uniformly converges to zero in Ω as t → +∞.

Proof Write equation in (1) as

ut√
1 + |Du|2 = div

(
gDu√

1 + |Du|2

)
.

Multiplying by ut, integrating the result over Ω× [t1, t2], 0 < t1 < t2 < +∞
and taking account vanishing of ut on ∂Ω×]0,∞[, we get

∫ t2

t1

∫

Ω

u2
t√

1 + |Du|2 dxdt =
∫ t2

t1

∫

Ω

utdiv

(
gDu√

1 + |Du|2

)
dxdt =

= −
∫ t2

t1

∫

Ω

gDutDu√
1 + |Du|2 dxdt = −

∫ t2

t1

∫

Ω

d

dt
g
√

1 + |Du|2dxdt =

= −
∫

Ω

g
√

1 + |Du|2dx |t2t1≤ c,

where the constant c depends on g and on supΩ×[0,∞[ |Du|. Thus

∫ t2

t1

∫

Ω

u2
t√

1 + |Du|2 dxdt ≤ c (18)

and then, there is a sequence (tk)k such that tk → +∞ and

r(tk) :=
∫

Ω

u2
t√

1 + |Du|2 dx |t=tk
→ 0 as k → +∞.

We note that r(t) → 0 as t → +∞. Indeed, because of the boundness of
ut, utt and Dut, also the function dr

dt is bounded. Consequently if there
exists a sequence tk → +∞ such that r(tk) ≥ c for every k, then r(t) ≥ c

2
in a neighborhood of fixed length of each tk, contradicting the integrability
of r in R.
We consider any sequence (tk)k, tk → +∞ and the sequence (uk(·))k ≡
(u(·, tk))k. Now r(tk) → 0 as k → +∞, by Hölder inequality we get

∫

Ω

∂tuk√
1 + |Duk|2

dx ≤ (r(tk)|Ω|) 1
2 → 0 as k → +∞,
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where | · | indicate the Lebesgue measure on Rn.
Consequently, by equation (1) and the boundness of uk, we have

−
∫

Ω

g
|Duk|2√

1 + |Duk|2
dx =

∫

Ω

uk∂tuk√
1 + |Duk|2

dx → 0 as k → +∞.

Then, uk weakly converges to zero in W 1,2(Ω). But, it is uniformly bounded
and uniformly continuous, then by Ascoli-Arzelá theorem it is uniformly
convergent to zero. Thanks to the arbitrariness of (tk)k the function u(·, t)
uniformly converges to zero in Ω as t → +∞.

Proposition 3.2. If u is a solution of the problem (1) and λ1 is the first
eigenvalue of the linear operator Lgu = div(gDu) in Ω with Dirichlet
boundary condition, then there exists t̄ > 0 such that for every λ < λ1

we have

sup
Ω
|u(·, t)| ≤ c(λ) exp(−λt) for every t ≥ t̄.

Proof Let Ωs be a tubular neighborhood of the domain Ω at a distance s >
0 small enough so that ∂Ωs is still smooth. Let γs, φs be, correspondingly,
the first eigenvalue and the first eigenfunction of the operator Lg in Ωs.
Since Ω ⊂ Ωs, the function φs is positive in Ω̄, then we may assume it to
be normalized so that infΩ φs = 1 in Ω. Fix any λ ∈]0, γs[ and consider the
function

ωs(x, t) = Asφs(x) exp (−λ(t− ts)),

where As = supΩ u(·, ts) and ts is a positive constant to be chosen later. If
t > ts then

Lωs :=
∂ωs

∂t
−

√
1 + |Dωs|2 d

dxi

(
g∂iωs√

1 + |Dωs|2

)
=

{
[−λ + γs]φs +

A2
sφ

s
i φ

s
jφ

s
ij exp (−2λ(t− ts))

1 + A2
s|Dφs|2 exp (−2λ(t− ts))

}
As exp (−λ(t− ts)) ≥

≥ (−λ + γs −A2
s|φs

i φ
s
jφ

s
ij |)As exp (−λ(t− ts)).

Because of Proposition 3.1, the function As converges to 0 as t → +∞ and
choosing ts sufficiently large we obtain

Lωs ≥ 0 in Ω× [ts, +∞[.
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Since ωs > 0 on ∂Ω and ωs ≥ u in Ω × {ts}, applying the maximum
principle we get

|u(x, t)| ≤ ωs(x, t) ≤ c exp (−λt) in Ω× [ts, +∞[.

3.3. Asymptotic estimate of the gradient of the solutions

Proposition 3.3. Under the same assumption of Proposition 3.2 there
exists t̄ > 0 such that for every λ < λ1 we have

sup
∂Ω

|Du(·, t)| ≤ c(λ) exp(−λt) for every t ≥ t̄.

Proof Arguing as in [22], we define a function ω on Ωδ × [T − 1,∞[,
Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ}, such that
(i) ω ≥ 0 on ∂Ω × [0,∞[, ω(x, t) ≥ |u(x, t)| for every x ∈ Ω such that
d(x, ∂Ω) = δ;
(ii) Lω ≥ 0 in Ωδ×]T − 1,∞[.
We can choose the barrier function ω in such a form

ω(x, t) = c1 [f(d(x)) + p(t)] exp(−λt)

where d is the distance from ∂Ω, f ∈ C2(R) such that f(0) = 0, 0 < f ′ ≤ 1,
f ′′ < 0 and p(t) = [(T − t)+]2. Moreover, δ is small enough so that
d ∈ C2(Ω̄δ).
In the following, to compute Lω, we use the fact that gd2

i = 1. Now,

Lω := ωt −
√

1 + |Dω|2 d

dxi

(
h

n
2 ωi√

1 + |Dω|2

)
=

= ωt − h
n
2 +1∆hω − h

n
2−1〈Dh, Dω〉+

1
2
h

n
2

ωi

1 + |Dω|2
d

dxi

(|Dω|2) =

= c1e
−λt

[
−λ(f + p) + pt − h

n
2 +1f ′∆hd− h

n
2−1 f ′′

1 + c2
1exp(−2λt)(f ′)2h−1

+

+h
n
2

(f ′)3〈D(h−1), Dd〉
1 + c2

1exp(−2λt)(f ′)2h−1
− h

n
2−1f ′ 〈Dh, Dd〉

]
.

Then, with the same arguments in [22], for a suitable choice of δ, T and f ,
which depends also on the metric g and on its gradient, we obtain (i) and
(ii), so that from maximum principle

|u(x, t)| ≤ c1(λ)d(x) exp(−λt).
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Since, u = 0 on ∂Ω, we get the desired estimate.

Proposition 3.4. Under the same assumption of Proposition 3.2 there
exists t̄ > 0 such that for every λ < λ1, we have

sup
Ω
|Du(·, t)| ≤ c(λ) exp(−λt) for every t ≥ t̄.

Proof First, we prove that, for some positive constant β sufficiently
small, we have

sup
Ω
|Du(·, t)| ≤ c exp (−β(t− t̄)) for t ≥ t̄. (19)

As in the proof of Theorem 3.1, the function v̄ = |Dū|2 satisfies inequality
(17)

−v̄t +
n∑

i,j=1

aij v̄ij +
n∑

i=1

biv̄i + c0Ev̄ ≥ 0.

Thanks to Proposition 3.2 the oscillation of u is small, for t sufficiently
large, and the number c0 is negative (see Theorem 1.1 in [18]), so that

L̄v̄ ≡ v̄t −
n∑

i,j=1

aij v̄ij −
n∑

i=1

biv̄i ≤ 0 for any t ≥ t̄. (20)

Let x̄ ∈ Rn such that, for every x ∈ Ω the first component of x − x̄ is
nonnegative, and consider the function

w(x, t) = A exp(−βt) (2− exp(−µ(x− x̄)1))

where the constants A, β, and µ are to be chosen later. We have

A−1 exp(βt + µ(x− x̄)1)


wt −

n∑

i,j=1

aijwij −
n∑

i=1

biwi


 =

= [1− 2 exp(−µ(x− x̄)1)]β +
(

1− u2
1

v2

)
g µ2 + b1µ.

Choose µ so that
(

1− u2
1

v2

)
g µ > |b1|
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and β small enough so that β ≤ λ and

L̄w > 0 ≥ L̄v̄.

Put also A = c exp(βt̄), then

|v̄(x, t)| ≤ c exp(−β(t− t̄)) = A exp(−βt) ≤ w on ∂Ω× [t̄, +∞[

and

|v̄(x, t̄)| ≤ A exp(−βt̄) ≤ w(x, t̄) in Ω.

It follows from the maximum principle that

|v̄(x, t)| ≤ w(x, t) ≤ 2c exp(−β(t− t̄)) in Ω× [t̄,+∞[.

Estimate (19) is proved.
Choose t0 > t̄, and T = t0 + 1 then, by definition of v̄ and from the second
part of Lemma 2.2, with p = 1, we get

|Du(x, t0)|2 ≤ c|v̄(x, t0)|2 ≤ c max{sup
∂Ω

v̄, ||v̄||L1(Ω̄×[t0+ 1
2 ,T ])} ≤

≤ c max{sup
∂Ω

|Du|2, ||Du||2
L2(Ω̄×[t0+ 1

2 ,T ])} ≤

from Proposition 3.3 and Lemma 2.3

≤ c exp(−2λt).

Then the proposition is proved.

3.4. Proof of main theorem
We are now ready to give the
Proof of Theorem 1.1 Write u as a sum of the L2(Ω)-projections on φ1

and on its orthogonal complement H1, that is

u = ū + ũ, ū = (u, φ1)φ1,

((·, ·) is the inner product in L2(Ω)), then ũ is solution of the problem




ũt = div(gDũ) + f̃ in Ω× [t̄, +∞[
ũ = 0 on ∂Ω× [t̄,+∞[

ũ = u− ū in Ω× {t̄},
(21)

where

f̃ = f − (f, φ1)φ1, f = − uiujuij

1 + |Du|2 g.
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Indeed, multiplying equation ut = div(gDu)+f by φ1 and integrating over
Ω we get

∫

Ω

utφ1dx = −
∫

Ω

gDφ1Dudx +
∫

Ω

fφ1dx =

= λ1

∫

Ω

uφ1dx +
∫

Ω

fφ1dx.

Then

φ1∂t

∫

Ω

uφ1dx = φ1λ1

∫

Ω

uφ1dx + φ1

∫

Ω

fφ1dx = (22)

=
(∫

Ω

uφ1dx

)
div(gDφ1) + φ1

∫

Ω

fφ1dx.

So that ūt = div(gDū) + f̄ . Analogously for ũ.
¿From Proposition 3.4, the function f̃ satisfies

sup
Ω
|f̃(·, t)| ≤ c exp(−2βt), for every t ≥ t̄

with β = λ < λ1, and, by Lemma 2.4 we obtain that

sup
Ω
|ũ(·, t)| ≤ c exp (−γt), for every t ≥ t̄, (23)

where γ = min{2λ, λ2} > λ1. On the other hand, from (22), we have

ū(x, t) = e−λ1(t−t̄)

(
(u(·, t̄), φ1) +

∫ ∞

t̄

e−λ1(t̄−τ)f1(τ)dτ

)
φ1(x) + r(x, t),

(24)

where

f1(t) = (f(·, t), φ1),

r(x, t) = −φ1(x)
∫ ∞

t

e−λ1(t−τ)f1(τ)dτ.

By Proposition 3.4, the function f1 is once again bounded by the function
c exp(−2λt) and since, 2λ > λ1, we get

|r(x, t)| ≤ c

2λ− λ1
exp(−2λt).
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Finally, from this inequality, and (23), (24), we obtain

u(x, t) = ū(x, t) + ũ(x, t) = ce−λ1tφ1(x) + r(x, t) + ũ(x, t) =

= ce−λ1tφ1(x) + O(e−2λ) as t →∞.

This gives the conclusion of the theorem with

c = e−λ1 t̄

(
(u(·, t̄), φ1) +

∫ ∞

t̄

e−λ1(t̄−τ)f1(τ)dτ

)

and

µ = min{2λ− λ1, λ2 − λ1}.

Theorem 1.1 implies that the model which motivates this study exhibits
a non-linear behavior for short period of time and it’s able to reconstruct
correctly the image in this period.
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