Definizione di limite e di funzione continua

- 1) Dire quali delle funzioni seguenti sono continue:
 - $f:[0,1]\cup[2,3]\to R$ definita da

$$f(x) = \begin{cases} x & se \ x \in [0, 1] \\ \frac{1}{2} & se \ x \in [2, 3]. \end{cases}$$

• $f:[0,3] \to R$ definita da

$$f(x) = \begin{cases} 2x - 1 & \text{se } x \in [0, 2] \\ 7 - x^2 & \text{se } x \in [2, 3]. \end{cases}$$

2) Sia $f:[0,5] \to R$ definita da

$$f(x) = \begin{cases} x & se \ x \in [0, 1] \\ \frac{1}{2} & se \ x \in]1, 5]. \end{cases}$$

Dire quali, fra le affermazioni seguenti, sono vere:

- f é continua
- f non é continua in 1
- f([0,5]) é un intervallo
- f([0,5]) non é un intervallo
- 3) Sia $f:]0, +\infty[\to R$ e supponiamo che esistano $\lim_{x\to 0} f(x) = 3$, $\lim_{x\to +\infty} f(x) = 5$. Dire se le affermazioni seguenti sono vere:
 - esiste $\lim_{n\to+\infty} f\left(\frac{1}{n}\right) = 3$
 - esiste $\lim_{n\to+\infty} f\left(\frac{1}{n}\right) = 5$
 - non abbiamo informazioni sufficienti a garanire l'esistenza del limite della successione $f(\frac{1}{n})$.
- 4) Sia $f:]0, +\infty[\to R$ continua. Dire se le affermazioni seguenti sono vere:
 - esiste $\lim_{x\to+\infty} f\left(\frac{2x^2+5}{x^2-3x}\right)$

- esiste $\lim_{x\to+\infty} f(x)$
- non abbiamo informazioni sufficienti a garanire l'esistenza di $\lim_{x\to+\infty} f\left(\frac{3e^x-5x}{e^x+x^5}\right)$.
- esiste $\lim_{x\to 4} f(x)$
- esiste $\lim_{x\to 0} f(x)$
- 5) Sia $f:[0,+\infty[\to R \text{ e supponiamo che esista }\lim_{x\to+\infty}f(x)=-\infty$. Dire se le affermazioni seguenti sono vere:
 - $\bullet \ f$ e' inferiormente limitata
 - $\mathcal{D}(f)$ é inferiormente limitato
 - $\inf f = -\infty$
 - \bullet Non abbiamo informazioni sufficienti a garantire l'esistenza di minimo per f
 - \bullet Non esiste min f

Teorema degli zeri e dei valori intermedi

Dire se le affermazioni seguenti sono vere

- 1) Sia $f:[3,5] \to R$ continua e tale f(3)=2, f(5)=7 Allora esiste $x \in]3,5[$ tale che f(x)=4.
- 2) Sia $f:[3,5]\cup[6,7]\to R$ continua e tale $f(3)=-2,\,f(7)=5$ Allora
 - esiste $x \in [3, 5]$ tale che f(x) = 4.
 - non sono verificate le ipotesi del teorema degli zeri, quindi non possiamo dire se la funzione si annulla.
- 3) Sia $f:[0,+\infty[\to R\ f(x)=-e^{3x}+x^4+4\cos(x)$. Allora
 - Esiste $\lim_{x\to+\infty} f(x)$
 - \bullet f ha almeno uno zero
- 4) Sia $f:]-\infty, 5[\to R$ continua e tale che esiste $\lim_{x\to -\infty} f(x)=3,$ e f(4)=-2
 - f ha almeno uno zero
 - f non assume il valore 5
 - f assume tutti i valori in] -2,3[
 - $f(]-\infty,4])=[-2,3[$

Teorema di Weiestrass

Dire se le affermazioni seguenti sono vere:

- 1) Sia $f:[0,4] \to R$ $f(x) = e^{-x} + x^8 7$. Allora f ha massimo.
- 2) Sia $f:[0,4[\to R \text{ continua. Allora } f \text{ verifica le ipotesi del teorema di Weiestrass, e quindi ha massimo.}$
- 3) Sia $f:]0, 4[\rightarrow R \ f(x) = \frac{e^x + x^4}{x}$. Allora
 - $\bullet\,\,f$ verifica le ipotesi del teorema di Weiestrass, e quindi ha massiimo
 - $\sup f = +\infty$, quindi f non ha massimo