1. Esercizi

Esercizio 1 Provare che, se Ω e' un aperto di \mathbb{R}^n e $u \in C^2(\Omega, \mathbb{R})$, allora esiste

$$\lim_{r\to 0}\frac{2n}{r^2}\Big(u(x)-\int_{\partial B(x,r)}u(y)d\sigma(y)\Big)=-\Delta u(x)$$

Esercizio 2 Se Ω e' un aperto di \mathbb{R}^n , una funzione continua $u:\Omega\to\mathbb{R}$ si dice superarmonica in Ω se per ogni r>0 tale che $\overline{B(x,r)}\subset\Omega$ e per ogni funzione v armonica in B(x,r), e coincidente con u sulla frontiera di B(x,r) si ha $u\geq v$. Provare le affermazioni seguenti:

• Se u e' superarmonica in Ω , allora per ogni sfera $\overline{B(x,r)}\subset\Omega$ e per ogni $z\in\overline{B(x,r)}$ si ha

$$u(z) \ge \int_{\partial B(x,r)} K(z,y) u(y) d\sigma(y)$$

dove K e' il nucleo di Poisson del cerchio.

- Se u e' superarmonica in Ω , allora per ogni sfera $\overline{B(x,r)}\subset\Omega$ si ha $u(x)\geq \ f_{\partial B(x,r)}\,u(y)dy$
- Se u e' superarmonica in Ω , allora per ogni sfera $\overline{B(x,r)}\subset\Omega$ si ha $u(x)\geq \int_{B(x,r)}u(y)dy$
- Se u e' di classe C^2 , e' superarmonica in Ω , se e solo se $\Delta u \leq 0$
- $\bullet\,$ Se ue' superarmonica soddisfa il principio di massimo forte
- ullet Se u e' armonica allora u e' anche superarmonica
- Se u v sono superarmoniche $\min(u, v)$ e' superarmonica

Esercizio 3 Sia $\overline{B}(0,1)$ sottinsieme di \mathbb{R}^n . Sia $u \in C^2(B(0,1),\mathbb{R}) \cap C(\overline{B}(0,1),\mathbb{R})$ soluzione di

 $-\Delta u = f \in C^2(B(0,1),\mathbb{R}) \cap C(\overline{B}(0,1),\mathbb{R}) \text{ in } \Omega, \quad u = g \in C(\partial B(0,1),\mathbb{R}) \text{ su } \partial B(0,1)$

Provare che esiste una costante C > 0 tale che

$$\max_{B(0,1)} |u| \le C(\max_{\partial B(0,1)} |g| + \max_{B(0,1)} |f|)$$

Esercizio 4 Sia $\Omega=]0,1[^2.$ Provare che Ω verifica la proprieta' della sfera esterna.

Esercizio 5 Sia $\Omega =]-1,1[^2-]0,1[^2.$ Provare che Ω non verifica la proprieta della sfera esterna.

Esercizio 6 Sia $\Omega=\{(x,y,z)\in\mathbb{R}^3:2x^2+3y^2< z<4\}$. Allora il seguente problema di Dirichlet ha soluzione unica:

$$\Delta u = f \in C^2(\bar{\Omega}, \mathbb{R}) \cap C(\bar{\Omega}, \mathbb{R}) \quad u_{|\Omega} = g \in C(\partial\Omega, \mathbb{R}).$$

Esercizio 7 Indicati (x, y) gli elementi di \mathbb{R}^2 , consideriamo l'operatore $L = \partial_{xx}u$. Provare che in ogni punto della frontiera dell'insieme seguente, e' possibile determinare una barriera per l'operatore L:

$$\{(x,y) \in \mathbb{R}^2 : -1 < x + y < 1, -1 < x - y < 1\}$$

1