arXiv:1311.6551v1 [math-ph] 26 Nov 2013

AIP/123-QED

A mean-field monomer-dimer model with attractive interaction. The exact solution.

D. Alberici," ] P. Contucci,™P)] and E. Mingione® [
Department of Mathematics, University of Bologna

(Dated: November 27, 2013)

A mean-field monomer-dimer model which includes an attractive interaction among
both monomers and dimers is introduced and its exact solution rigorously derived.
The Heilmann-Lieb method for the pure hard-core interacting case is used to compute
upper and lower bounds for the pressure. The bounds are shown to coincide in the
thermodynamic limit for a suitable choice of the monomer density m. The consistency
equation characterising m is studied in the phase space (h,J), where h tunes the
monomer potential and J the attractive potential. The critical point and exponents
are computed and show that the model is in the mean-field ferromagnetic universality

class.

Keywords: Monomer-dimers systems, attractive interaction, mean field models

2)Electronic mail: diego.alberici2@unibo.it
b)Electronic mail: pierluigi.contucci@unibo.it

)Electronic mail: emanuele.mingione2@unibo.it


mailto:diego.alberici2@unibo.it
mailto:pierluigi.contucci@unibo.it
mailto:emanuele.mingione2@unibo.it

I. INTRODUCTION AND RESULTS

Each way to fully cover the vertices of a finite graph G by non-overlapping dimers
(molecules which occupy two adjacent vertices) and monomers (molecules which occupy
a single vertex) is called a monomer-dimer configuration. Associating to each of those con-
figurations a probability proportional to the product of a factor w > 0 for each dimer and
a factor x > 0 for each monomer defines a monomer-dimer model with pure hard-core
interaction.

Those models were proposed to investigate the properties of diatomic oxygen molecules
deposited on tungsten® or to study liquid mixtures in which the molecules are unequal in
size”. The hard-core interaction accounts for the contact repulsion generated by the Pauli
principle. In order to account also for the attractive component of the Van der Waals po-
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tential among monomers and dimers, one may consider an attractive interaction among

particles occupying neighbouring sites (as it was previously done for single atoms™).
More recently monomer-dimer models on diluted network have attracted a considerable
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attention®# and they have been applied, with the addition of a ferromagnetic imitative

interaction, also in social sciences?.
The partition function describing a general system of interacting monomers and dimers
can be written as

Io I
Za = g xMw‘D|z{’”z2dz3’”d, (1)
De%a

where 21, 2o, 23 > 0 tune the interaction among particles and for a given dimer configuration
D, M is the corresponding number of monomers, I, the number of neighbouring monomers,
1, the number of neighbouring dimers, I,,,4 the number of neighbouring molecules of different
type.

In this paper we investigate a system where the attraction among monomers and among
dimers is stronger than the attraction among molecules of different type, that is 2129 > 232.
And precisely we study the mean-field case, i.e. the model on the complete graph where
each of the N sites is connected with all the others and the particle system is permutation
invariant. Considering the relation 2|D| + M = N induced by the hard-core interaction
among particles, we may study without loss of generality a reduced model given by the

h

parametrisation x = e", w = 1/N, z; = 25 = e’/N 25 = 1. We prove that, at large volumes,

the model turns out to be described by the monomer density m(h, J), i.e. the expectation
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value, with respect to the probability measure introduced by , of the fraction of sites

occupied by monomers.

For pure hard-core interactions, i.e. J = 0, Heilmann and Lieb%” proved the absence
of phase transitions for both regular lattices and in the mean-field case (complete graph)
treated here. Using the relation between the partition function and the Hermite polynomials,
we compute here the thermodynamic limit of the free energy in the pure hard-core case and
use it to solve the attractive case by means of a one-dimensional variational principle in the
monomer density. For a suitable smooth, monotonic, function ¢ mapping R into the interval
(0,1), we find that m(h,J) can be identified among the solutions (at most three) of the

consistency equation

m = g((2m —1)J + h) (2)

characterising the entire phase space of the model. In particular it turns out that m has, in
the (h, J) plane, a jump discontinuity on a curve h = y(J). The curve v, implicitly defined,

stems at

(hes Je) = (% log(2v2 - 2) — i’ m) : (3)

is smooth outside the critical point (h,,J.) and at least differentiable approaching it, more-
over is has an asymptote at h = —1/2 for large values of J. The order parameter m(h, J)
is characterised in a neighbourhood of the critical point by the mean-field theory critical
exponents: B = 1/2 along the direction of v, and § = 3 along any other direction of the
plane (h, J).

The paper is organised as follows: in Section [[]| we introduce and solve the model without
attraction following the methods of Heilmann and Lieb. In Section [[II] we introduce the
model with attractive interaction and we show how to control the thermodynamic limit of
the free energy by means of a one dimensional variational problem. Section [[V] presents
the study of the consistency equation in the (h,J) plane, contains the study of the
implicit equation for the curve v and the computation of critical exponents of the model.
The Appendix contains supplementary material of elementary type that makes the paper

self-contained.



II. MONOMER-DIMER MODEL

Let G = (V, E) be a finite simple graph with vertex set V and edge set £ C {uv =
{u,v}lu#veV}.

Definition 1. A dimer configuration D on the graph G is a set of pairwise non-incident

edges (called dimers):
DCFE and (quD = uwgéDVw;«év).

Given D, the associated monomer configuration is the set of dimer-free vertices (called
MoOnomers):

M(D) = Mc(D) ={ueV|uw¢gDVveV}.

Notice that [.Z(D)| +2|D| = |V].

Definition 2. Let % be the set of all possible dimer configurations on the graph G'. The
monomer-dimer model on G is obtained by assigning a monomer weight x, > 0 to each
vertex v € V and a dimer weight w, > 0 to each edge e € F and considering the following
probability measure on the set Zg:

1

MgD<D):W HeEDwe HUE(%(D)Q:U vDG@G

The normalising factor, called partition function of the model, is
ZgD(wa) = Z HeeD We Hvet///(D) Ly (4>
DePDq

Its natural logarithm log Zx" is called pressure.

Remark 1. If uniform dimer (resp. monomer) weights are considered, i.e. w, =w Ve € E
(resp. z, = x Yv € V), then it’s possible to keep w = wy (resp. & = x) fixed and study
only the dependence of the model on x (resp. w) without loss of generality. Indeed, using

the relation |.Z (D)|+ 2|D| = |V|, it’s easy to check that

2P (x,w) = (w2 2 (s wo) (5)
2 (2, w) = (z/z0)V ZgD(xo’(wao)Q) . (6)



Remark 2. With uniform monomer weights, a direct computation shows that the monomer
density, i.e. the expected fraction of monomers on the graph, is related to the derivative of

the pressure w.r.t. x:

MD |%(D) | MD 3 1Og ZgD
= R MDY = g — .
2. yp e (P) = w5 =

Remark 3. With bounded monomer and dimer weights z < =, < 7, w, < w, the following
bounds for the pressure hold:

log Z}4P (x, W)

logz <
14

_|E w
< loga:%—:—‘/:log(l—i-?).

Proof. The lower bound is obtained from considering only the empty dimer configuration

(i.e. a monomer on each vertex of the graph):
zZge > [ = 2V,

The upper bound is obtained from using the fact that any dimer configuration made of

d dimers is a (particular) set of d edges:

|| |E|
E
2> <Y Card{D € 9, |D| =d} w7V <y (|d|) w7V =
d=0 d=0
=Vl +wz?H)F, O

The following recursion for the partition function, due to Heilmann and Lieb?, is a fun-

damental property of the monomer-dimer model.

Proposition 1. Given a vertex o and its neighbours v, it holds
ZEP(x, W) = x, Z5P (X', W) + Z Wop 250y (X" W) |

where X', w', X", w" are the weights vectors conveniently restricted to the involved subgraphs.

Proof. The dimer configurations on G having a monomer on the vertex o coincide with the
dimer configurations on G' — o. Instead the dimer configurations on G having a dimer on

the edge ov are in one-to-one correspondence with the dimer configurations on G — o — v.



Therefore

Zg° = Z [Teep we Hve//lg(D) Ly

DeYqa
= E eepwe Il zo + E E Teepwe I c.ueipy o

De9q, v~o DEDg,

o€ M (D) oveED
= T, E leepwe Icns ,oy®o + E :wov E :HeeD We [l e (o) To

DE@G*D v~o DE@G*O*’U
MD MD

— ZEO ZG—O + E wov ZG—O—’U . D

v~o

A. The monomer-dimer model on the complete graph

Let Ky = (V, En) be the complete graph over N vertices, that is Viy = {1,..., N}, Ey =
{uv|u,v € Vi, u < v}. Notice |[Ex| = N(N —1)/2.
We work with uniform weights and we want log Zi? = O(N). For this purpose, observing
remark [3, we have to choose z, w such that w/z?> = O(1/N). By remark []] we can fix
without loss of generality w = 1/N and study

BP@) = B 1), @

indeed choosing wy = 1/N in (3)) it’s easy to check that Z}® (z,w) = (wN)N?2 Z¥P(c7/?)
whenever w/x? = ¢/N. Observe that the bounds of remark 3| become

log Z\iP N -1
ogTN(a:) < logz +

) < 10g90+L

log (1+ =k

1 <
0BT = Na?

On the complete graph it is possible to compute explicitly the partition function and
it turns out to be related to the Hermite polynomials. We will give two proofs: the first
one due to Heilmann and Lieb? is based on a recurrence relation and applies also to other

graphs, the second one is based on a simple combinatorial argument.

Theorem 1. The partition function of the monomer-dimer model on the complete graph
KN 18

20 (x) = (\/LN)N Hy(—izVN),

where Hy denotes the N*" probabilistic Hermite polynomial.



First proof. Use the Heilmann-Lieb recursion of proposition [If with o = N

N-1
Z%g(xu 1) - [EZ%J?]_N([L', 1) + Z Z;/(I'E—N—v<x7 1)7
v=1

then observe that for any u, v € Vi the graphs Ky —u, Ky —u— v are isomorphic to Kn_1,

Kn_5 respectively and complete with the initial conditions:
Zi(x, 1) = 2 Z3%_ (x,1) + (N = 1) Z%_ (2, 1)
Zip (@, 1) =z, ZyJ(x,1) =1
Now the probabilistic Hermite polynomials are the solution of the following problem*

Hy(xz) = e Hy_1(z) — (N — 1) Hy_2(x) o)
Hl(.flf) = T, Ho(x) =1
hence it’s easy to check that the polynomials {iN Hy(—ix) } Ney Are the solution of problem
(). Therefore Zy®(z,1) = i"Hy(—ix). Conclude using definition and identity @
with w =1/N, wg = 1. O

Second proof. In general the partition function admits the following expansion

[NV/2]
1
() = 233 (v, 55) = D ewld) N7aM2,
d=0

where cy(d) = Card{D € Pk, , |D| = d}. On the complete graph these coefficients can be
computed with a combinatorial argument. Any dimer configuration D on Ky composed of

d dimers can be built by the following iterative procedure:

e choose two different vertices u and v in V® (it can be done in (lvés)l) different ways)

and marry them by a dimer setting D) := D= U o,
e now exclude the two married vertices setting VE+D .= V) <\ {u, v} ;

repeat for s = 1, ..., d, with initial sets V(Y := Vy, D© := & and finally D := D@,

Thus the number of possible dimer configurations with d dimers on the complete graph is

cN(d):(];[) (N;Q)...(N_Qéd_l))/d!:MNL_!Qd)!Q—d, (10)
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where in the first combinatorial computation one divides by d! as not interested in the order

of the d dimers. Substitute these coefficients in the expansion of the partition function:
[N/2]

N'! —d N 2d
ZNP (x Z A~ 2d)] (2N)~ (11)

Now the probabilistic Hermite polynomials admit the following expansion®:

LN/2] NI
H = —1) e 27 N 12
Comparing and it’s easy to conclude. [

Using theorem , and precisely formula , we explicitly compute the pressure in the

limit N — oo.

Proposition 2. The pressure per particle on the complete graph admits thermodynamaic

limit:
: log Z%D(x) __ . MD
Ve>0 3 ]\:/Llj)nOOT = p"P(z)
and p™* is a analytic function of x > 0, precisely:
P (z) = f(z) (1 —log f(z) —log2) + g(z) (1 —log g(z) + logz) — 1, (13)
1 1
f(z) = 1 (2+ 2 — Vat +42?) €]0, §[ : (14)

1
glx) = 1=-2f(x) = 5(\/934—1—4:1:2—3:2) €10,1] . (15)
Proof. 1t is convenient to set for d =0,...,|N/2]

NI
(2N) 2N My(z) = max  an(d, 7).

an(d,z) = d' (N —2d)! d=0...|N/2]

By formula the explicit expansion of the partition function is

[v/2]
Z]I\\ATD($> = Z aN(da ZL’) )

d=0

hence My(z) < ZN(z) < (§ +1) My(z) and taking the log and dividing by N one obtains

log My (x) < log ZN"(x) < log (§ +1) +logMN(x)
N - N - N N '
—_———
—0

N — o0




Therefore if one proves that (log My)/N — [ as N — oo, it will follow that also
(log ZN°)/N — 1 as N — oo. Let’s study the asymptotic behaviour of (log My)/N .

I. The first step is to understand which is the maximum term of each sum, studying the
trend of ay(d,z) as a function of d € {0, ..., |N/2]}.

Simplifying factorials and powers and isolating d and d?, one finds
an(d,r) < ay(d+1,2) <= 4d* 22N -1+ N2 )d+ N(N —-1-22%)>0 (o)

Solve this second degree inequality in d, finding d < d_(N,z) or d > d(N,z). For N — oo

one may estimate

di(N,z) = fo(x) N+ O(N), with fi(z) = }1(2+x21\/x4+4x2).

Observe that fy(z) > 1/2 while f_(x) < 1/2, hence for N sufficiently large d,(N,z) >
N/2 while d_(N,z) < N/2. Therefore the inequality (¢) with d < N/2 is equivalent to
d < d_(N,z). To resume, for N sufficiently large

an(d,z) < ay(d+1,2) < d<d_(N,z) = f_(2) N+ O(K/N).

II. Now knowing that the maximum term of the sum is the one with index d = dy., =

|d_(N,z)| + 1, compute

My(z) = d:(g??ﬁ/% an(d,z) = ay(dmax, r) = aN(f—(x)N‘l' O(\/N)v :E)
NI (2N)~f@ N+OWN) ;:N-2f(x) N+O(WVN)
(f(z) N+ ONN))! (N —2f(x)N+OKN))!

where f(x) := f_(x). Set also g(z) :=1— 2 f(x). Take the logarithm, divide by N and use

the Stirling formula (in the form log(n!) = n logn —n + O(logn) as n — oo) to find for

N — o0
8 M) _ (1~ f(a) — @) — F@) log N +
f(@) (—logf(x) +1- 10g2) + g(x) (—logg(x) +1 +logx) — 14+ (’)(1%\]) ;

notice that the coefficient of log N is zero, hence

log My (x)
N N—oo

> f(z) (—log f(z) + 1 —log2) + g(z) (—logg(z) + 1 + logz) — 1.

As observed before log ZN\P(z)/N must converge to the same limit and the statement is

proved. O



Remark 4. The limit of the pressure and its derivative admit a simple rewriting, which will
be useful in the sequel. To find it begin observing that the equation g(x) = y can be solved
w.r.t. x by a direct computation, so that the function g is invertible on ]0, co[ with inverse

function ¢g~!(y) = y/v/1 —y for 0 < y < 1. Choosing y = g(z) it follows that

g()

1
r=——>o—, le. = log(l—g(x)) =logg(z)—logz. (16)
V1-g() 2
Remembering that f = (1 — ¢)/2 and using identity (L6]), the expression becomes

1 1
P (x) = =5 (1 —g(x)) — 5 log(1 — g(x))
2 2 17
1 (17)
= —5 (1= g(z)) —logg(z) +logz .
Now use the first of these expressions to compute the derivative (p“P)'(z) = g/g”) %.
Write the derivative of g via its inverse function ¢'(x) = (g,l),l(g(m)) = 2(12_ _99(8))3/2 . Therefore,
substituting and using again ,
z(p)(x) =z /1 —g(x) = g(x) . (18)

II1. IMITATIVE MONOMER-DIMER MODEL

The monomer-dimer model on a graph G is characterised by a topological interaction,
that is the hard-core constraint which defines the space of states Zg (see definition [I).
As proved by Heilmann and Lieb®? this interaction is not sufficient to originate a phase
transition: when the thermodynamic limit of the normalized pressure exists, is has to be an
analytic function of the parameters.

Now we will consider also another type of interaction, as described in : we want that
the state of a vertex conditions the state of its neighbours, pushing each other to behave in
the same way (imitative interaction between sites, attractive interaction between particles
of the same type).

We start making the following

Remark 5. The probability measure associated to a monomer-dimer model on the graph
G = (V, E) can be rewritten in the Boltzmann form by the following parametrization of the

monomer and dimer weights:
Ly = eXp(hi)m)) y  We = exp(hgn) (19)
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with A Y € R for all v € V, e € E. Then it is possible to define the hamiltonian

~HY¥*(D) == > WM 1(we.#(D) + Y hPl(eeD) ¥De D, (20)

veV eelk

where 1(A) is 1 if A is true and 0 otherwise, and rewrite the partition function (4f) as

Y exp(—HE"(D)) .

DePq

Definition 3. As usual let 2 be the set of all possible dimer configurations on the graph
G . The imitative monomer-dimer model on G is obtained by assigning to each vertex v € V
a monomer external field ™ € R and assigning to each edge e € E a dimer eternal field
h{Y € R, a monomer imitation coefficient J™ € R, a dimer imitation coefficient J¥ € R
and a counter-imitation coefficient J™¥ € R and then considering the following probability

measure on the set Zg:

pueP (D) = D exp(—HZ™ (D)) VD€ g,
G
where the hamiltonian is: VD € YDq
—HA™ (D Z hi™ 1(ve.# (D Z R 1 (uv e D)

veV wel
> I i(ues (D), ve# (D) + Y JW L (ug.#(D), vé.# (D)) +
weE welR
> I (ued (D), v M (D)) +1(ug 4 (D), ve.s (D))

uvel
(21)
and the partition function is Zg™ =}, exp(—HE™(D)). As usual log Zg™ is called

pressure.

Remark 6. With uniform monomer field A = h™, the monomer density, i.e. the expected
fraction of monomers on the graph, in the imitative model is the derivative of the pressure

w.r.t. h™:
IMD . Z ‘% IMD(D> _ 9 log ZéiMD
8h(m) |V|
DeDa
In the following remark we show the imitative monomer-dimer model, under the hy-
pothesis of uniform dimer field, depends only on 2 families of parameters (while a priori
we introduced 5 families). Moreover we show that the imitative monomer-dimer model is

related to the Ising model, but it is not trivially equivalent to it because of the topological

lack of symmetry between monomers and dimers.
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Remark 7. Set a,(D) := 1(v € .#(D)). Notice that in the hamiltonian the only
functions of the dimer configuration D that can not be expressed in terms of the {a, ey
are the {1(uv € D)}ywep; indeed, given the configuration of monomers, the configuration of
dimers in general is not determined in a unique way.

But if we consider only uniform dimer field A{) = h'“, using the identities |D| = w =

%(|V! — > D), W ue Hve M) =ayo, LW ug Hvd )= (1-a,)(l—aq,) =
1—ay —ay+ayay, W ued vt H) = a,(1 —,) = a, — a,on, we obtain:
H'™(D) = C' + ) Myo,(D) + Y J,, au(D) (D) (22)
veV wweE
where we set:

b= pem lh(d) _ Z JO 4 Z Jmd = J 4 J@ _ g Jand)
v v 2 ? . uv uv uv ?

u~v u~v

1
"= ShOWV |+ > IW.

uwveE
Now set 0,(D) = 2a,(D) — 1 € {—1,1}. To draw a parallel with the Ising model, we
can rewrite the hamiltonian 1) as a function of {0, }yey. Using a, = %(O'U + 1), oy, =

i(auov + 0, + 0, + 1), we obtain:

— HYP(D) = C" +) Myjou(D) + Y _ Ji,0u(D)ay(D), (23)
veV uvelR
where we set:

B = —h’ Z h<m> h<d> 4+ Zj(m) _Z‘]ﬁ)’

u~v u~v u~Y

1 1
J// = = J/ = J(m) J(d) J(md)
uv 47w 4 ) + - 1w 5 Ju ,

"= O+%Zh; =N, ZW Zh<d)|v|+}1 > J;;;wi >

veV quE vGV uwwek wek

Now consider the usual hamiltonian of the Ising model on the graph GG

_HEN () = Zhggv + Z J! o,o, Yoe{-1,1}".

veV wwek

From identity , it follows immediately that

Z5" = Y exp(-HAYP(D)) = Y Card{D € Y, o(D) = o} exp(—HE™(0)) ™",

Deq oe{£1}V

12



that is, setting v(o) := Card{D € Yg, 0(D) = o} = number of possible dimer configurations

with positions of the monomers given by the 1’s in o,
ZIGMD — 60” ZIGSING <V>IC§1NG (24>

where Z5™¢ = Zae{il}V e~ HE™ () and (frsme .= Zae{ﬂ}V f(o) e—HIGSING(U)/ZIGSING.

We will see that in the case of complete graph the correct normalisation gives to the param-
eters C” and h” a non trivial dependence on the volume, which can be viewed as the effect
of the hard core interaction on the entropy of the system and shows that the exact solution

we are about to derive cannot be trivially related to the mean-field ferromagnet.

A. Imitative monomer-dimer model on the complete graph

Now we study the imitative model on the complete graph Ky = (Vy, Ey) with uniform
parameters h™ = h™ pY = p@O J = Je 0 J = JO Jed = JmD for all v € Vi, e €
Ex.

Remember that the correct normalisation for the monomer dimer model is given by the
dimer weight w/N, that is dimer field Y — log N. Further for the imitative model we will
see that the normalisations J™ /N, J@ /N, J=D /N are also required. Hence we consider

the following hamiltonian: VD € Pk,

—HY™(D) =" "1(ve.#(D)) + (h —logN) Y~ 1(weD) +

veV weE
%u;ﬂn(ue///w), ves (D)) + %wzdmww% vE-A (D)) +
L S e A (D), v M(D)) +1(ug A(D), v M(D))
weE
© (25)
and the associated partition function Zy™ := ZDE@G exp(—Hy"(D)).

Remark 8. Given a dimer configuration D on the graph Ky, denote the fraction of vertices
covered by monomers by
|- (D)

my (D) = N € [0,1].

On the complete graph the hamiltonian of the imitative model admits a useful rewriting,

which shows that it depends on a dimer configuration D only via the quantity my (D).

13



Precisely: VD € Pk,

1
—NH}\“,“D(D) = amy(D)* + by my(D) + cn (26)
with
1
— (™ (@) _ 9 jmd)
a 2(J +J JmD)
log N A N -1 1
by = hoew T (J@ _ jmd)y (m) @ _ 9 jmd)
N 2 2 A AR Ay AC A T

logNjL h® N N —1
2 2 2N
To prove it, it suffices to rewrite the hamiltonian as in expression and then observe

J

CN ‘=

1

that on the complete graph % ZUeVN a, = my, % ZuveEN OOty = % Nmi — Lmy.

Remark 9. We need to re-state the results of Section [[]| using the hamiltonian form intro-
duced in this section. The partition function ZN°(z) of the monomer-dimer model on the

complete graph defined by can be rewritten with a slight abuse of notation as

2 = Y exp (h|#(D) ~log N |D])

DG.@KN
1 1
= Z exp N ((h+ §logN)mN(D) — ilogN) :
DEQKN

where the monomer and dimer weights have been rewritten as x = e, w = 1/N = ¢~ 18%,
Using this notation proposition [2| and remark |4 can be re-stated as follows. The pressure

per particle on the complete graph admits thermodynamic limit:
log ZN"(h)

: — MD
VheR EIA};mOO—N pMP(h)

where p"" is an analytic function of h, precisely:

pMD(h) — _1 _29(h)

~ Llog(1 —g(n)) = 2

g(h) = % (Veth +4e2h — 2ty (28)

log ZMP (k)
N

—logg(h) + h (27)

MD

Note that, since h +— is a convex function and its limit pMP is differentiable, also

the monomer density (see remark [2|) converges, and precisely

0 log Z§°
MD __ Y N MDY/ __

The properties of this function g which will be needed in Section [[V] are studied in the
Appendix.
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Thank to the previous remarks, in the case J™ 4+ J@ —2J™ > () the imitative model can
be exactly solved. Our technique is the same used by Guerra*’ to solve the ferromagnetic

Ising model on the complete graph.

Theorem 2. Let h™, b, Jm  JO o Jomd e R such that J™ + J& — 2] > (0. The
pressure per particle of the imitative monomer-dimer model on the complete graph defined

by hamiltonian admits thermodynamic limit:

1 ZIMD
i

This limit satisfies a variational principle:

p™P = sup p(m) ,

m

where the sup can be taken indifferently over m € [0,1] or m € R, and

1 1
Blm) i= = ST 4 T = 2J"0) m? 4+ DAY 4 T

+ pMD( (J(m) + J(d) _ 2J(md)) m —+ h™ lh(d) _ J(d) + J(md) )
2

where the function pM® is defined by , (@

Proof. The proof is done providing a lower and an upper bound for the pressure per particle.
[LowerBound] Fix m € R. As (my(D) —m)? > 0, clearly my(D)? > 2mmy(D) — m?.

Hence by remark [§ using that by hypothesis a > 0,

—HY"(D) = N (amy(D)* + by my(D) + cy) >

> N ((2am + by) my(D) —am?+ cy)
thus
ZR® = Y exp(~HEP(D)) > Y exp N((2am + by) my(D) — am® + ex) =
D D
= Nwm 730 (i (m))

where the last equality is due to remark |§| and Yy (m) == —3(J™ + J@ —2J@) m? 4 Ip@ 4
N1 J@ and ay(m) = (J 4 JO = 2J0D) gy 4yl — B Nd ((j) _ jomay (e 4
J@ — 9 jmdy
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[UpperBound] Set Ay := Im(my) = {0, +,. ..

,NT 1}. Clearly, writing d for the Kro-
necker delta, ZmeAN Ommn(py = L and F(my(D)?) Opmmy(p) = F(2mmn(D)—m?) 6y my (D)

for any real function F. Hence by remark [§]
5m,mN(D) eXp<_H]I\I}/ID<D)) = 5m,mN(D) exp N(amN(D)2 + bN mN(D) + CN) —
= 6m,mN(D) exXp N(<2Cbm + bN) mN(D) — am2 + CN)
thus

ZWP =) Y Smmy(p) exp(~HY(D)) =

D mceAyn
— Z Z O mn (D) eXpN((Qam+bN) my (D) —am2—|—cN) <
D meAyn
< Z Z expN((2am+ by)my(D) —am?+cy) =
meAn D
= Z eNim 3P (an(m)) < (N +1) sup {eN ™0 Z¥P (ay(m))} .
meAN mG[O,I]

Therefore putting together lower and upper bound we have found:
sup {eN I Z3P (an(m))} < ZRP < (N +1) sup {N™0 Z¥P (ay(m))} .
me0,1] me(0,1]

Then, taking the logarithm and dividing by N,

log Z® log ZN° (an(m) log(N + 1
g4y sup {’yN(m)+ N( ( )} < g( )

0< — >
=T N ey N =T N v

MD
Now for any N € N the pressure h — %(h) is a convex function, hence as N — oo the

conver log Zy () MP(h) of k|9[i if '
gence ——4——= — p™°(h) of remark (9] is uniform in h on compact sets.
Moreover notice that as N — oo, ay(m) — a(m) := (J™ + J@ = 2J®D)m + p™ —

JO 4 J@D and yy(m) — y(m) == —5(J™ + JO = 2J@D)m?2 4 1p@ 4 2 J@ uniformly in

(d>

m. Therefore, exploiting also the fact that p“® is lipschitz,

() + log Z}(}D](VaN(m))

» v(m) + p(a(m))

N—o00
where the convergence is uniform in m on compact sets. As a consequence also

sup {yv(m) + logZ%D]gmm))} > sup {y(m) + p"(a(m))} .

me[0,1] N=oo  pmefo,1]

This concludes the proof. O
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IV. ANALYSIS OF THE SOLUTION OF THE IMITATIVE
MONOMER-DIMER MODEL ON THE COMPLETE GRAPH

In this section we study the properties of the solution given by theorem We set
At =: h, A =0, J™ = J9 = J >0, J" = 0in (25); that is we consider the

hamiltonian

—HY"(D) :=h Y _ 1(ve# (D)) —logN > 1(uweD) +

vGVN webkN (29)
= Z L(ue#(D),ve.#(D)) + L(u¢.#(D),v¢.#(D))] .

This choice can be done without loss of generality. Indeed, as shown by remark [7 the
general hamiltonian rewrites as b’ . 1(v € A) —logN 3}, cp. L(uww € D) +
J'IN Y ey Lu € A, v € A), up to a constant, for suitable /', J'. Now applying the
invertible linear change of parameters J' =2 .J, k' = h — J, we obtain the hamiltonian ([29)).
The associated partition function is denoted Z3™ (h, J). By theorem

log Z{"°(h, J)
N N—o0

p™P(h,J) = sup p(m,h,J)
where the sup can be taken indifferently over m € [0,1] or m € R, and

~ J
p(m,h,J) = —Jm?® + 5+ P ((2m —1)J + h) (30)

with the analytic function p™” defined by , .

Thus we want to study the following variational problem:
mazimize p (m, h, J) with respect to m € [0,1] (€ R)

and in particular we are interested in the value(s) of m = m*(h,J) € [0,1] where the

maximum is reached, because of its physical meaning that we will explain in remark [I1]

Remark 10. Remembering that (pM”)" = g, one computes

gﬁz (m,h,J) = =2Jm + 2J g((2m — 1)J + h) (31)
g;; (m,h,J) = =2J + (2J)* ¢'((2m — 1)J + h) (32)

Since 0 < g < 1, it follows that for every J >0, h € R

op op

h,
am(m J)>0 Vme]—o00,0], I

(m,h,J) <0 Vmell,o0]. (33)
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Therefore p (-, h, J) attains its maximum in (at least) one point m = m*(h, J) €10, 1], which

satisfies

9p

3 (m,h,J)=0 ie. m=g((2m—1)J+h), (34)
0°p h,J) <0 i "((2 —1J—|—h<1 (35
55 (., J) < ie. ¢((2m—1)J+h) < 5. )

The following remark explains the physical meaning of the maximum point m*.

Remark 11. Let m*(h, J) denote a point maximizing the function m + p(m, h, J) on [0, 1],
that is

p™MP(h,J) = p(m*(h,J),h,J).
Assume the function h — m*(h, J) is differentiable. Then h — p™P(h, J) is differentiable
and, using equation for m*(h, J), identity and (pMP)" = g, one finds

apIMD
Oh

(h,J) = m*(h, J). (36)

In other terms m* is the thermodynamic limit of the monomer density of the imitative

monomer-dimer model on the complete graph (see remark @ Indeed by theorem , exploit-

. . . log Z}VMD
ing convexity of the function h — —FF—,

0 log Z\'™ op™P .

IMD __ N =m

"NCOT O N Now  Oh

A. Solutions of the consistency equation m = g((2m - 1)J+ h): classification,

regularity properties, asymptotic behaviour.

As a first step we study all the stationary points of the function m — p(m,h,J): by
remark [10] one of them will be the global maximum point we are interested in.

The stationary points are characterized by equation 7 which can not be explicitly
solved. Anyway their number and a rough approximation of their values can be determined
by studying inequality , which admits explicit solution.

The next proposition displays the intervals of concavity/convexity of the function m +—

p(m,h,J). Set

1
Joi= ———— ~ 14571 (37)

4(3 —2v2)
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Proposition 3. For 0 < J < J. and h € R

0?p
E%Qmmﬂ<iOVmeR.
For J > J. and h € R
P b 1) <0 iff m < ¢i(h,J) or m > ¢a(h, J)
a3 5 N, N, ’

om? >0 iff ¢u(h,J) <m < ¢a(h,.J)

where fori=1,2

(@t =Y FC—ogh/@y 2 t4
CI/LQ(J) = 1 (39)
2J

Observe that ¢1(h, J) < ¢o(h,J) for all h € R, J > J. and equality holds iff J = J. (since
al(Jc) = CZQ(JC)).

Proof. Tt follows from the expression through a direct computation done in lemma

of the Appendix, taking £ = (2m — 1)J + h and ¢ = % : ]

Using the previous proposition we can determine how many, of what kind and where the
stationary points of p (-, h, J) are.

Proposition 4 (Classification). The equation i m has the following properties:

1. If 0 < J < J. and h € R, there exists only one solution m(h,J). It is the mazimum
point of p(-,h,J).

2. If J > J. and ¥o(J) < h < 1(J), then there exist three solutions my(h,J), mo(h,J),
mo(h, J). Moreover my(h,J) < ¢1(h,J) and mo(h,J) > ¢o(h,J) are two local maz-
imum points, while ¢1(h,J) < mqo(h,J) < ¢o(h,J) is a local minimum point of
B ).

3. If J > J. and h > 1(J), there exists only one solution ma(h, J). Moreover my(h, J) >
¢o(h, J) and it is the mazimum point of p (-, h,J).

4. If J > J. and h = 1(J), there exist two solution my(h,J), mo(h,J). Moreover
my(h, J) = ¢1(h, J) is a point of inflection, while ma(h, J) > ¢a(h, J) is the mazimum
point of p (-, h,J).

19



5. If J > J. and h < 1y(J), there exists only one solution mq(h, J). Moreover my(h, J) <
o1(h, J) and it is the mazimum point of p (-, h, J).

6. If J > J. and h = o(J), there exist two solutions my(h,J), ma(h,J). Moreover
ma(h, J) = ¢a(h, J) is a point of inflection, while my(h, J) < ¢1(h, J) is the mazimum
point of p(-,h,J).

Here ¢1, ¢o are defined by (38), while fori=1,2 and J > J,
1 1
vi(J) = J+ élogai(J) — 2Jg(§10gai(J)) , (40)

where a; and g are defined respectively by (39) and ([28). Observe that o(J) < 1(J) for
all J > J. and equality holds iff J = J..

1 max pt. m2(h,J)

Tc , | 5
| h .-T,_:,_,_,_,_,_,_,
| a 2 local max pts. m1(h,J), m2(h,J)
1local min pt. m0(h,J)
" 1 max pt. m(h,J) N
\\W\.\\
1 max pt. m1(h,J) w2

Figure 1. Number and nature of the stationary points of the function m +— p(m,h,J) in the

regions of the plane (h,J).

Proof. Fix h € R, J > 0 and to shorten the notation set G(m) := g—i(m, h,J), observing it
is a continuous (smooth) function.

e Suppose J < J.. By proposition 3| G’(m) < 0 for all m € R and equality holds iff (J = J.
and m = ¢y (h, J.) = ¢2(h, J.) ). Hence G is strictly decreasing on R. On the other hand by
[B3), G(m) < 0 for all m < 0 and G(m) > 0 for all m > 1. Therefore there exists a unique
point m (m €]0,1[) such that G(m) = 0.

e Suppose J > J.. By proposition |3, G is strictly decreasing for m < ¢y(h,J), strictly
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increasing for ¢1(h,J) < m < ¢o(h,J) and again strictly decreasing for m > ¢o(h,J). On
the other hand by (33, G(m.) > 0 for some point m; < ¢;(h,J) and G(m_) > 0 for some
point m_ > ¢9(h, J). Therefore:

(3 (aunique) my €] — oo, ¢1(h, J)] s.t. G(my) =0) < G(¢p1(h,J)) <0;
(3 (aunique) my € [Pa(h, J), 00 s.t. G(mg) =0) < G(pa(h,J)) > 0;

(El (aunique) my € [¢1(h, J),¢2(h, J)] s.t. G(m0> = O) = G(¢1(h, J)) <0, G(¢2(h, J)) >0.

And now, using identity and definitions ,

G(p1(h, J)) (5)0 < g((2¢1(h, J) = 1)J + h) (i) o1(h, J) < h < ¢i(J)

and similarly G(¢po(h, J)) (>) 0 & h (>) Po(J) .
The first e allows to conclude in case 1., while the second e allows to conclude in all the

other cases. Notice that the nature of the stationary points of p (-, h,J) is determined by

. . . 925 . . ..
the sign of the second derivative 51 studied in proposition O
ssel BMNY)
%0 Blmihnd) 5 : = 4>
/ | \\ J<do - h> i)
o / : X
/ N\
/'/ \\\\
/ :
mif,J) m 1(h.J) o2(hd)  m2hd)  m
o i 0 Bmh,d) o
Bmb.J) g% RN 7
g // \\ s J>de Vi
08 J>Jo ! <h <yl f
e // | w2 <h< i@
&
P T
. // : b \
‘ 3 : N s
i i N VR
SUh ) =mih ) =mithd)  o2hd)  m2hd) mih) s S Amo(,h’J) /A S m2(;:’J)
- i . R Py 2(h,J) m

A
3 08 0 m

Figure 2. Plots of the function m +— p(m,h,J) for different values of the parameters h,J. In

particular cases 1., 3., 4., 2. of proposition [4] are represented.
A special role is played by the point (h,, J.), where we set
1 1
he = () = o) = 7 log(2v2 = 2) = 7 ~ —0.3441, (41)
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indeed in the next sub-sections it will turn out to be the critical point of the system. It is

also useful to define

me = ¢1(he, J.) = ¢a(he, J.) = 2 —V/2 ~ 0.5857 , (42)

1
§oi= (2me = et he = 5 log(2v/2 — 2) ~ —0.0941 . (43)

The computations are done observing that a;(J.) = as(J.) = 2v/2 — 2 and g(3 log(2v2 —

2)) =2 — 2.

Remark 12. We notice that m, is the (unique) solution of equation for h = h. and
J = J., that is m(he, J.) = m.. Indeed a direct computation using shows

g((QmC - 1)Jc + hc) = g(gc) = M.

Observe that as a consequence m, is a solution of equation for all (h,J) such that
h—he=(1-2m.)(J — J.).

In the next proposition we analyse the regularity of the solutions of equation .

Proposition 5 (Regularity properties). Consider the stationary points of p (-, h, J) defined
in proposition|[f: m(h, J), mi(h, J), mo(h, J), ma(h, J) for suitable values of h,J. The func-
tions

(
m(h,J) if 0<J<J., heR
ma(h, J) if J>Je, h<in(J)
\
(

m(h,J) if 0<J<J.,, heR
pia(h, J) = ¢ ; (45)
ma(h, J) if J > Jo, h> ()

\

m(h,J) if 0<J<.J.,, heR
po(h, J) == : (46)
mo(h,J) Zf J > J., 1/12(J)§h§¢1((])

have the following properties:
i) are continuous on the respective domains;

ii) are C™ in the interior of the respective domains;
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iii) fori=0,1,2 and (h,J) in the interior of the domain of u;

0 0 -
%p(ﬂl(f% J),h, J) = i, WP(,Ui(h, J)7h7 ‘]) - _:ui(l _:ui)v (47)
U 2pi (1 — pui) Opi o O

Proof. i) First prove the continuity of ;. Observe that by propositions , :

e for (h,J)in Dy :={(h,J)|(0< J < J,heR)or (J>J, h <)}, ui(h,J) is

the only maximum point of p (-, h, J) on the interval [0, 1] ;

e for (h,J)in Dy := {(h,J)|J > J., h <y (J)}, pi(h,J) is the only maximum point
of p(-,h,J) on the interval [0, ¢1(h, J)].

Hence by proposition continuity of the functions p and ¢; implies continuity of the
function pq on the sets Dy and Dy. As Dy and Dy are both closed subsets of R x R, , by

the pasting lemma i is continuous on their union
DiUDy = {(h,J)|(0<J<J,heR)or (J>J, h<iy(J))}.

A similar argument proves the continuity of py and p.

i1) Now prove the smoothness of pi1, 2, fio in the interior of their domains. Set G(m, h, J) :=

g—i(m, h,J). As just seen m = uy(h, J), pa(h, J), po(h, J) are continuous solutions of
G(m,h,J) =0,

for values of h,J in the respective domains. Observe that G € C*(R x R x R) and by
propositions it can happen

%(mahaj):() JZJC>(m:¢1(h7‘])0rm:¢2(h7‘]))
om 2N =
G(m,h,J)=0 G(m,h,J)=0
J2J07m2¢1(hyj) JZvam:¢2(h7J)
<~ or
h =1 (J) h=1s(J)

m = py(h, J) can fall only within the first case, while m = ps(h, J) can fall only within the
second case. Therefore by the implicit function theorem (corollary , 1, fho, po are C*
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on the interior of the respective domains.
ii) Let i = 0,1,2 and (h, J) in the interior of the domain of ;. Using (30), (p*)' = g and
the fact that y,(h, J) satisfies equation (34), compute

a 8/~Lz MDY/ 8#,
__2J8h 2(2J8h+1)_m’
and similarly %'ﬁ(,ui, h,J) = u? — ;.
Using the fact that u;(h, J) satisfies equation compute
Op; 0 o Ol
i ml«m“ )J+h) = ¢ (2w UJ+m)u+2Jmﬂ
Lo g(@m -1+ h)

oh  1-27g(2m—1)J+h)

and similarly 7 8’“ = (zlizj)g?(((;z“_l)lji;;) . Then observe that ¢ =2¢(1—g¢)/(2—g) (identity

in the Appendix), hence since y;(h, J) satisfies equation

g ((2mi = 1)J + h) "
substituting this in the previous identities concludes the proof. O

To end this subsection we study the asymptotic behaviour of the stationary points of

p(-,h,J) for large J.

Proposition 6 (Asymptotic behaviour). Consider the stationary points my(h, J), mo(h, J),
ma(h, J) defined in proposition[] for suitable values of h, J.

i) For all fired h € R

1
(h J) 0, mg(h,J) — 1, m()(h,J) — =

J—o0 J—00 J—o0 2

i1) Moreover for all fired h € R

Tmy(hyJ) —— 0, J(1—ma(h,J)) — 0.

J—00 J—o0

iii) And taking the sup and inf over h € [1o(J), Y1 (J)]

supmy(h,J) —— 0, 1nfm2(h J) — 1.
h

J—00 J—o0
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Proof. 1) First observe from the definition that ¢9(J) = —o0, ¥y (J) — 00 as J — oo.
Hence for any fixed h € R there exists J > 0 such that 1,(J) < h < ¢;(J) for all J > J.
This means that the limits in the statement make sense.

Now remind that by proposition , for J > J
ml(h, J) < gbl(h, J) < m()(h, J) < qbg(h, J) < m2(h, J) .

Observe from the definition that ¢q(h, J) — %, oo(h, J) — % as J — oo. It follows
immediately that also mg(h, J) = 3 as J — oc.
Moreover definition entails that J (1 —¢1(h, J)) = oo, J(¢a(h, J)—1) = 00 as J — oo.

Exploit the fact that my(h, J) is a solution of equation ([34):
mi(h,J) = g((2mi(h,J) = 1) J +h) < g((2¢1(h,J) —1)J + h) =
1
where also the facts that the function g is increasing and g(§) — 0 as £ — —oo are used. As

by remark (10| m; takes values in 0, 1], conclude that m;(h,J) — 0 as J — oo. Similarly
it can be shown that mg(h, J) — 1 as J — oo.

i) Start observing that, by a standard computation from the definition , Eg(=¢) — 0
and £ (1—g(&)) — 0 as £ — +oco. Then exploit the fact that, for fixed i and J sufficiently
large, m; = my(h, J) is a solution of equation ([34)):

Jmy = Jg((2m1 —1)J +h) =

(1 =2my)J —h) g(—= (1 =2m)J +h)  hg(—(1—2m)J+h) 0 hO
= + —+— =0,
1—2my 1—2my Jooo 1

1
using also that m; — 0 as J — oo by 7). Similarly it can be shown that J (1 —mgy) — 0

as J — oo.

iii) Start observing that, by a standard computation from the definition , —J+(J) —
—o0 and J + 9(J) — o0 as J — oo. Then exploit the fact that, for J > J. and
h € [¢o(J), ¢1(J)], m1 = mq(h, J) is a solution of equation (34)):

sup mq = sup g((2mi —1)J+h) < g((2m1 — 1)J + i (J)) =
he[p2,11] he[2,11]

=g(2Jm — J+ ¢ (J)) — 0,

J—o0

using also the facts that ¢ is an increasing function, g(§) — 0 as £ — —oo, and Jmy; — 0

as J — oo by ). Similarly it can be shown that infycpp, 4,1 me — 1 as J — oo. O
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B. The “wall”: existence and uniqueness, regularity and asymptotic behavior

In the previous subsection we studied all the solutions of equation , that is all the
stationary points of m +— p(m,h,J). One of them is the point where the global maximum
is attained and, because of theorem [2] and remark [11], we are interested in this one.
Consider the points m, my, mg, msy defined in proposition 4] and look for the global maximum

point of m +— p(m,h,J):

e for 0 < J < J.and h € R, m(h,J) is the only local maximum point, hence it is the

global maximum point;

e for J > J.and h < 9s(J), my(h,J) is the only local maximum point, hence it is the

global maximum point;

e for J > J. and h > 11(J), ma(h,J) is the only local maximum point, hence it is the

global maximum point;

e for J > J. and ¢9(J) < h < 11(J), there are two local maximum points m4(h, J) <

ma(h, J), hence at least one of them is the global maximum point.

To answer which one is the global maximum point in the last case, we have to investigate

the sign of the following function
A(h,J) = 5(m2(h, J), h, J) —ﬁ(ml(h, J), h, J) (49)

for J > J. and 1o(J) < h <y (J).
Proposition 7 (Existence and Uniqueness). For all J > J. there exists a unique h = y(J) €

[0a(J), 1 (J)| such that A(h, J) = 0. Moreover

<0 if J>J., a(J) <h<~(J)
A(h, J)

S0 i T e y(T) < h<n(d)

Proof. Tt is an application of the intermediate value theorem. Fix J > J.. It suffices to

observe that

i. A(¢a(J),J) < 0, because for h = 15(J) the only maximum point of the function
ﬁ( ) ha J) is ml(h7 J)a
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ii. A(z/q(J), J) > 0, because for h = 1(J) the only maximum point of the function
ﬁ( ) ha J) is mQ(h7 J)a

iii. h— A(h,J) is a continuous function, by continuity of p, my, my (see proposition [f));

iv. h+— A(h,J) is strictly increasing; indeed it is C™ on |io(J),91(J)[ by smoothness
of p, m1, my (see proposition [f) and, by formula ([47),
0A 0 0

%(h, J) = %ﬁ(mz(h, J),h,J) —%ﬁ(ml(h, J),h,J) =
= mg(h,J)—ml(h,J) > ¢2(h,J>—¢1(h,J) > 0
for all b €]o(J), 1 (J)]. O

1 local {global) max pt.

% ) " 2 local max pts.
the global max pt. is m2(h,J)

» he

Y

2 local max pts.
“\\the global max pt. is m1(h,J)

yo

Jo A
- 2o

Figure 3. v separates the values of h, J for which my(h, J) is the global maximum point from those
for which mg(h, J) is the global maximum point of m +— p(m,h,J). As mi(h,J) < ma(h,J), this

entails a discontinuity of the global maximum point m*(h, J) along the “wall” T.

Remark 13. By the previous results the global maximum point of m +— p(m, h, J) is
m(h,J) if 0<J<J., heR
m*(h,J) =< my(h,J) if J>J., h<~y(J) (50)
mao(h,J) if J>J., h>~(J)
where the function 7 is defined by proposition [7] Set also
Li={(h,J)| J>Je, h=~(])}, T:=TU/{(heJo)}. (51)
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Notice that proposition [7| guarantees that there is only a curve I' in the plane (h, J) where
the global maximum point of m +— p(m,h,J) is not unique. We leaved the function m*
undefined on T'.

By proposition [5|it follows that the function m* is continuous on its domain (R x R, ) ~\ T
and it is C* on (R x R,) ~ T'. The behaviour of m* at the critical point (h., J.) will be

investigated in the next subsection.

Now we investigate the main properties of the curve I', which we call “the wall”. Extend

the function v defined by proposition (7| by

- () if T >,
() = . (52)
h. if J=J,
Proposition 8 (Regularity properties). The function 7 is C* on |J,,00[ and (at least) C*

on [J.,00[. In particular
Y(J) =1=mi(v(J),J) —ma(y(J),J) VJ>Je,

and

F'(J) =1-2m, = —(3-2V2).

Proof. I. First prove that the function v € C*(].J,, o0[).
By proposition [7| for all J > J., h = (J) is the unique solution of equation

A(h,J) =0

where A is defined by ([49). Moreover ¥5(J) < v(J) < ¢1(J). Observe that A is C* on
{(h, )| J > J., ¥o(J) < h < 1(J)} by smoothness of p and mq, ms on this region (see
proposition . And furthermore, as shown in the proof of proposition ,

OA
%(h,J) #0 V(h,J)st. h=~(J).

Therefore by the implicit function theorem (corollary B2), v € C*(]J., 00[). Now

MG D) =0 = 0= -5 AGW),T) = TG, DA )+ 9o (6), )
> ) == G
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by formulae (47) 22 = my —my and %5 = (m3 — ma) — (m? — my) ; therefore

V(J) = 1= (ma+m) (v(J),J) .
II. Now prove that the extended function ¥ € C'([J,, 0o]) .
First observe that 7 is continuous also in J., indeed:

o(J) <y(J) < (J) VI >J, = lim y(J)=h,

J—=Je+

by definition of A, and continuity of 1, ¥5. Then observe that

Y (J) = 1= (my+my) (v(J),J) m 1—2m,

because m(he, J.) = m. (remark and the functions py, ps defined in proposition |5 are
continuous. By an immediate application of the mean value theorem, this proves that there

exists 7'(J.) = 1 — 2m,. O

Proposition 9 (Asymptotic behavior). The function 7 has an asymptote, precisely

1) —— =

J—00 2

Proof. I. Consider the function A defined by . The first step is to prove that A(h, J) —
OasJ — 00, h = —% . Use identities , and the fact that for fixed h and J sufficiently
large my = my(h, J), my = ma(h, J) satisfy equation (34)), in two different ways:

~ 1—

p(my,h,J) = —Jmi+ g — le — logg((2m1 - 1J+ h) +(2my —1)J +h,
~ J 1-
p(mQaha J) = _Jm§+§_ 2m2

—logmg + (2mg — 1)J + h .
Hence, reminding that m; — 0 and ms — 1 as J — oo by proposition |§| part i),
A(h,J) = p(ma,h,J) —p(ma, b, J) =
= J(=mj+2ms+mi — 2my) +logg((2ms — 1)J + h) + % +o(1),

Set 0 := —m3 + 2my + m? — 2m; and & := (2my — 1)J + h and prove that in general

Jo+logg(§) —— h; (53)
J—o00
in particular it will follow that for h = —%
1
A(_i’ J) J—o0 0. (54)



Now proving is equivalent to prove exp(Jd)g(§) — exp(h) as J — oo; and using
definition (28

Jé I e 4 4e2€ — 2 B Ve2(T3+28) 1 42(J5+E) _ oJo+2¢ \
e’g(§) = e 5 — a —

because, since Jm; — 0 and J (1 —ms) — 0 as J — oo by proposition [f] part i),

J6+26 = J(—(1—ma)>+mi—2my —1)+2h —— —c0,

J—o0
Jo+&=J(—(1—ma)*+mi)+h — h.
J—o0
II. Remember that by definition of ~ in proposition [7]

A(y(J),J) =0 YJ>J.; (55)

hence using will not be hard to prove that v(J) — —1 as J — co. Let € > 0. By
there exists J. > J. such that

A(-g D <e VI (56)

Now by the mean value theorem for all J > J. and h € [1o(J), ¥1(J)],

1 1
A(h,J)—A(—=, J)| > h+=1.
} <’> ( 2’ )’_[wz( |ah >H +2‘
Furthermore by identity and proposition |§| part iii)
1nf S J)| = inf mo—mq)(-,J) >
) ‘ 8h N = i, e =m0 )
> inf wJ) —  su my (-, J) — 1.
[2(1)41(J)] ma( ) [wz(J»El(J)] 1) J=o0
Therefore there exist J such that
1 _

Choosing h = ~(J) in (57)), by (55), one obtains that for all J > max{.J, J.}
1 1
WD)+ 5| < 2[A0(), T) = A(= 5. )| < 2. m
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C. Critical exponents

As observed in remark [13] the global maximum point m*(h, J) is a continuous function
on (R x R*) N\ T, but it is smooth only outside the critical point (h., J.). In this section we
study the behaviour of the solutions of equation near the critical point, with particular
interest in the function m*.

As usual the notation f = O(g) as © — xy means that there exists a neighbourhood U
of zp and a constant C' € R such that |f(z)| < C'|g(z)| for all z € U. The notation f ~ g
as © — xo means that f(x)/g(z) — 1 as x — z¢. Finally f = o(g) as © — x¢ means that
f(z)/g(x) — 0 as x — xq.

We call critical exponent of a function f at a point zy the following limit

i 10817 (@) = Fla)

z—zo  log |z — x|

The main result of this section is the following:

Theorem 3. Consider the global mazimum point m*(h, J) of the function m — p(m,h,J)

defined by (@)

i) m* is continuous on (Rx R )\T and smooth on (R xR, )\T, where T = TU{(h,, J.)}
and the “wall” curve T is the graph of the function ~y defined by proposition [7

ii) The critical exponents of m* at the critical point (he, J.) are:

log [m*(8(J), ) = m.| 1

= ]_. = —_
P I log(J — J.) 2

along any curve h = §(J) with 6 € C*([J.,0]), 6(J.) = he, §'(J.) =1 —2m, (i.e. if

the curve is tangent to the “wall” in the critical point);

log |m*(6(J), J) — m.|

E lim _ !
Y log |J — J.| 3
1 * —

Z = lim log [m*(h, 6(h)) — me| _ 1
0  h—he log |h — he| 3

along any curve h = §(J) with 6 € C*(Ry), 6(J.) = he, §'(J.) # 1 — 2m, or along a
curve J = §(h) with 6 € C*(R), §(h.) = J., §(he) =0 (i.e. if the curve is not tangent

to the “wall” in the critical point).
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i) Denote by m*(h*,J) := limp e m*(W,J). The critical exponent of m*(h*,J) and
m*(h~,J) at the critical point (he, J.) along the “wall” h = ~v(J) is still

5 Bl O ] L
T Jo+ log(J — J.) 2

. log|m*(v(J)",J) —me[ 1

— ]_ — —
P I log(J — J.) 2

Proof. As observed in remark [I3], the global maximum point m* is expressed piecewise using
the two local maximum points p1, po and inherits their continuity property outside I' and
their regularity properties outside I'. Thus part i) of the theorem is already proved by
proposition [f

The proof of the other parts of the theorem, regarding the behaviour of m* at the critical
point (he, J.), is given in several steps. We start with the following lemma which will be

useful in the whole subsection to bound the behaviour of the solutions of equation (34]).
Lemma 1. Consider the inflection points ¢1, ¢ of p defined by @ Their behaviour at
the critical point (he, J.) along any curve § € C([J., o0|), with §(J.) = h., is

$1(6(J), J) — my $2(8(J), J) — me
J—Je J=Jet J—Je J=Jet

where C = v/2/(2J.) > 0.

Proof. For i = 1,2 and J > J, definition (38)), observing that (2m. — 1)J = —h. + (2m, —
) (J—J.) + &, gives

J(¢:(6(J), J) —m,) = %log ai(J) — & — (6(J) = he) — (2me — 1)(J — J,) .

Now the definition may be rewritten as

wl) = @1 =2 ) FA(G— )T -5

Thus, exploiting log(x + y) = logz + log(1 + y/x) = logx + y/z + O((y/z)?) as y/x — 0,
5 logb(J.) = & and logb(J) differentiable at J = J,

1 logb(J) — logb(J..)
2 (J—J.)

VJ—=J.+0(J—J)

%logai(J)—ﬁc = %% J—Je+0( = J)

(J=Je) F
1 ¢(J)
T20()
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To conclude put things together and use also ¢ differentiable at J..:

g 80U J) —me _ glogail)) —&  6(J) — he — (2me — 1)\/J = J.

T —Je NI JT— 7.
_:F%%+O(\/J—Jc)m>i{‘/§. O

In the following proposition we find the fundamental equation characterizing the be-

haviour of the solutions of equation (34)) near the critical point (he, J.).

Proposition 10. Here for h € R, J > 0 let m = m(h, J) be any solution of the consistency

equation .'
=g((2m —1)J +h) .

Then m is continuous at (he, J.) and furthermore, setting £ := (2m — 1)J + h, it satisfies
(€= &) =1 (J = J) (€ = &) — kap(h, J) + O((§ = &)*) =0 (58)
as (h,J) = (he, J.), where we set k1 =32 (2 —m,), Ky :=3 J7°2 (2 —m,.) and
p(h,J):=h—h.+ (2m.—1)(J — J.) . (59)

Proof. I. First show that m is continuous at (h., J.). Exploit equation for m(h, J) and
use continuity and monotonicity of g: as (h,J) — (he, J.)

limsupm(h, J) = limsup g((2m(h, J) — 1) J + h) = g((2limsupm(h, J) — 1) J. + k) ,
liminf m(h, J) = liminf g((2m(h, J) — 1) J + h) = g((2liminf m(h, J) — 1) J. + he) .

Thus lim sup m(h, J) and lim inf m(h, J) are both solution of equation 1 = g((2u+1)J.+he).
But this solution is unique by proposition [ and it is m. by remark [I2] Therefore

limsup m(h,J) = liminf m(h,J) = m,..
(h,J)=(he,Jde) (h,J)—=(he,Je)
II. Make a Taylor expansion of the smooth function g at the point . (see , ) By

identities (A2)), (A3)), (A4) and since g(&.) = m. it is easy to find

9(&) = me+ % (€—&) - m (€= &) +0((€ - &) (60)

as & = &. Now choose £ := (2m — 1)J + h. Then ¢(§) = m and

g_gc:p(hvj)_l_z](m_mc)v (61)
where p(h,J) := h — h.+ (2m, — 1)(J — J.). Now follows from ([60). L
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Hereafter we will exploit equation and lemma |1 in order to obtain results on the

behaviour near the critical point. Next corollary gives a first bound for the critical exponents.

Corollary 1. Here for h € R, J > J. let m = m(h,J) be any solution of the consistency
equation .
1) There ezist r1 > 0, C; < oo such that for all (h,J) € B((hc, Jc),rl) with J > J,

m —me| < Cy(|h—he|s +|J = J|5) .

2) Assume that m pointwise coincides with one of the local mazimum points mq, ma (see
proposition . There exist ro > 0, Cy > 0 such that for all (h,J) € B((hC,JC),TQ) with
J > J. and h = 6(J) for some § € C([J.,0|), 6(J.) = h.

Im—me| > Cy|J — J|2 .

Proof. 1) Set & := (2m — 1)J + h. By proposition [10] £ satisfies equation (58), which can

be treated as a third degree algebraic equation in & — &.:

J/

-~

=:p q

(5 - 50)3 —R1 (J - Jc) (’5 - gc) —hka p(h’ J) + O((g - €c>4) =0.
—_——— N ~

Analyse the real solutions of this equation. Set A := (£)? 4 (§)? and observe that (£)* > 0

while (£)? < 0 as we are assuming .J > J,.

i. If A > 0, the only real solution of is
=& =up +u- with ug = ¢ —gi@/Z.
On the other hand

A>0 = (5) =0((

NN

?) = a=o(()).
Therefore, reminding also definition ,

)

hence § — & = O((h — hc)%) +0O((J - Jc)%) because (€ — &)3 7 —= 0 as (h, J) = (he, J.) .
it. If A =0 or A <0 there are respectively two or three distinct real solutions of and,

Wl

& =0((3)") = O((h—ho)s) +O((J = J.)3) + O((€ — £)3)

NN

from their explicit form, it is immediate to see that they all satisfy

).

N|=

¢-& = 0(ff-5) = o(7- 1)
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Conclude that for any possible value of A,
§—&=0((h—h)3) +O((J = J)%) .

Now, as observed in , E—&=h—h.+ 2m.—1)(J—J.)+2J (m —m,.). Therefore also
m—me=O((h— hc)%) +0((J - JC)%) , and this concludes the proof of the first statement.

2) Now consider the two maximum points m;, mo. By proposition
my < ¢1 < 2 <o

where ¢1, ¢o are the inflection points defined by . Hence applying lemma [1| one finds:

My — M, P2 — M, me — My me — 1

> — C, >
as J — J.+ and h = §(J) with §(J.) = h. and ¢ differentiable in J.. And this proves the

— ',

second statement. O

The next lemma tells us in which region of the plane (h,.J) described by figure [1| a curve
passing through the point (A, J.) lies.

Lemma 2. Let § € C*([J,,00]) such that §(.J.) = h., §'(J.) =: a. There exists r > 0 such
that for all J €J., J. + 1]

o ifa=1-2m, ¥(J)<d(J)<i(J);
o ifa<1—2m, 0(J) <tp(J);
o ifa>1—2m, 6(J)>i(J).

Proof. 1. Observe that a;(J) is continuous for J > J. and smooth for J > J.. Moreover

g'(3loga;(J)) = 55 by definition and lemma , and g(3loga;(J.)) = g(&) = me by
definition and remark Then differentiating definition at J > J.,

1

Ui(J) = 1~ 29(3loga())) +

Hence an immediate application of the mean value theorem shows that for i = 1,2 there

exits ¥i(J.) =1 —2m,.



II. Differentiating definition at J > J. shows that aj(J) — —oo, ay(J) — +oo as
J — J.+, while a;(J) = 2v/2 — 2 as J — J,. Hence

" _ 1 a(J) 1 aiJ) +oo fori=1
W) = —9GlsalN) T = 37wy Tous

—oo0 fori=2

The result is provided comparing the first order Taylor expansions at J. with Lagrange

remainder of v, 1, and 9. ]

The next proposition describes the behaviour near (h,,J.) of the two local maximum

points 1, pe defined in proposition . The proof of part i) of the theorem (3| follows imme-
diately.

Proposition 11. Let (h, J) — (he, J.) along a curve h = 6(J) with 6 € C*(R,), §(J.) = he,
§'(J.) =: « or along a curve J = §(h) with § € C*(R), 6(h.) = Je, §'(h.) =0, then

(

_O<J_J6>

D=

ifh=0(J),a=1—2m. and J > J,

p(hy J) =me ~ § Co (J—J)5  ifh=6(J), a <1—2m,

Coo (h—he)s  if J =6(h)

\
p

C(J—J)2 ifh=0(J), a=1—2m. and J > J,

pa(h, J) —me ~ € O, (J—J)3  ifh=06(J), a>1—2m,

Coo (h—he)s if J =0(h)

\

where C' = ﬁ V3(2—-—m.), Cy = i {’/%JC(Q —me)(2m.—14+a),Cyx = ﬁ /3J.(2 —m,) .

To complete the cases, along the line h = h. + (1 —2m.)(J — J.), when J < J,
:ul(hv J) = Mz(h, J) = Me.

Proof. Fix (h,J) on the curve given by the graph of § and in the rest of the proof denote
by m a solution of the consistency equation , ie.m= g((Qm - 1)J+ h). Furthermore

when necessary m is assumed to be a local maximum point of p. Set £ := (2m — 1)J + h.

By proposition [L0} £ — & — 0 as (h, J) — (he, J.) and it satisfies (58)). Solve this equation

in the different cases.
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i) Suppose h = §(J) with & = 1 — 2m,.. Hence h — he = (1 — 2m.)(J — J.) + O((J — J.)?).

Observe that by ,
p(h, J) = O((J = Jo)*) and €—& =2J(m—m)+O((J - J.)%) .
Hence equation becomes
(=& —r(J =) (€= &) +O((J = 1)°) +O((§ —&)*) =0.
Observe that if J > J, by corollary [1] part 2),
(J = Jo)2 = 06— &) ;
therefore when J > J. the previous equation rewrites
(€ =€) =m (] = L) (€= &) +O((§ = &)") =0
This one simplifies in
=& o (-&)P°—m(J—J)+0(E-&)) =0,
giving £ = &, or, as we are assuming J > J.,
E—& = VR (J=J)E+O((E - &)?) -

This entails

ﬂ

Njw

m—mf:iE%UFLﬁ+O«JﬂUﬂ+O«m—mJ

)

and dividing both sides by m — m, since (m —m,)z — 0, one finds

\/K/_l
j:W(J_Jc)

SIS

m—me ~

(62)

it) Suppose J = d(h) with &'(h.) = 0. Hence J — J. = O((h — hc)?). and give

p(h,J)=h—h.+O((h—h,)?) and &—& =2J(m—me)+h—he+O((h—he)?).

Hence equation becomes

(=€) —ra(h—he) + O((h—he)*) + O((€ = &)*) = 0.
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giving

ol

€& = Yra (h—h)3 +O((h—he)3) + O((6 - &)3) .

This entails

3 1
m-—m, = \g? (h—he)s +O((h— hc)%) + O((m — mc)%)
and dividing both sides by m — me, since (m —m.)3 — 0, one finds
3
m—me ~ \/“_Q(h—hc)%. (63)

2J

iti) Suppose h = 6(.J) with a # 1 —2m,. Hence h—h, = a (J — J.)+ O((J — J.)?). Observe
that by (59),

p(h,J) = (a+2m. — 1)(J — J.) + O((J — 1.)?) .

E—=¢=2J(m—m.) + (a+2m.—1)(J — J.) —I—O((J— JC)Q).

Hence equation becomes

(& J/

-~

-q

(6—E&)° =r1 (J = o) (€=E&) —ha (a+2m, — 1) (J = Jo) + O((J = Jo)*) + O((€ — &)*) = 0.
—_———— ~

=:p

This third order equation has A := (2)*+(£)? > 0 for |J — J.| small enough, indeed if J < J,
then p > 0, while if J > J,. then by corollarypart 1) (E=&)'=0((J - Jc)g) =o(J —J.)

hence
qg=—ro(a+2m.—1)(J—J)+o(J-J) =

(5)7+(5) = %(wzzc—1>2<J—Jc>2<1+o<1>>—’;—;<J—Jc>3 > 0.

Then, using Cardano’s formula for cubic equations: & — &, = uy + u_ with
3/ 4 [rd\2 P\3 /4 q pi
— _ 1 :i: 2 1 el — 3/ 1 Z|Z 1 O 12 .
hence

-6 = V=1 +O(|5]) =
— Vra(a+2me—1) (J = J)5 +O((J = J.)

wlro
[N

) +O((€—€)3) +O((J - 1)

) |
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This entails

ke (a+2m.—1)
B 2J

ol

(J = J)5 +O((J = J.)2) + O((m —m,)

)

m — me

and dividing both sides by m — m,, since (m — mc)% — 0, one finds

ko (@ +2m, — 1)
2J

(J—J.)5 . (64)

m — me

Now by propositions [4] [5] and lemma [2], 1y and po are solutions of the consistency equation
defined near (h,,J.) along the curves h = 06(J) respectively with o« < 1 — 2m, and

a > 1—2m,.. Moreover for a« =1 — 2m, and J > J. sufficiently small, by lemma [I]
fo —Me > o —m >0 while p3 —m. < ¢ —m.<0.

These facts together with , , allow to conclude the proof. n

The previous proposition describes the critical behaviour of the local maximum points
along curves of class C?. Notice that “the wall” % belongs to C*([J., 00[) N C°°(]J., o0])
by proposition , but we did not manage to prove that it is C? up to J.. Anyway we are
interested in the behaviour along this curve of discontinuity, which separates two different

states of the system, therefore we will study it in the following proposition.

Proposition 12. Consider the “wall” curve h = 7(J) defined by (@ and proposition @
There exist r > 0, Cy < oo, Cy > 0 such that for all J €|J., J. +1|.
p2(¥(J), J) — me <0, Cy< me — i (¥(J), J) <0

J =T VI =
Proof. Observe that by definition, on the curve h = 7(J), J > J., both the local maximum
points py(h, J), pa(h, J) exist.

Cy <

As ¥ € CY([J.,00[) (see proposition [§), the existence of the lower bound Cy > 0 is
guaranteed by corollary |1 part 2).

Only the existence of an upper bound C'; < oo has to be proven. Fix J > J. and shorten
the notation by m; = m;(3(J), J) = i (7(J), J) and & = (2m; —1) J+~(J) for i = 1,2. By
proposition &1, & satisfy equation . The Taylor expansion with Lagrange remainder
of 7 is (see proposition

Y(J) = he+ (1 =2m.) (J = Jo) +~"(J)(J = J.)*, with J €]J., J[;
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notice v”(.J) (J—J.)? is not necessarily a O((J —J.)?), because we do not know the behaviour

of v as J — J., but for sure it is a o(J — J..) as J — J,.

Thus (see identities (59)), (61))):

p(h, J) =~"(J)(J = Jo)* and & — & =27 (mi —me) +"(J) (] = J.)*
and equation becomes:

(& = &) — k1 (J = Jo) (& — &) — k2?"(J) (J = L) + O((& — &)") =0,

which entails

= W V'(J) (T = J)? (1+ o(1))+

+ O((m; —me)*) =0. (65)
Distinguish two cases.
1) IE~"(J) (J = Jo)* = O((m; — m.)*) (along a sequence), then rewrites

R1

(27)

(J = Jo) (m; —me) + O((m; —me)*) =0, (66)

(mi - mC)B -

which, dividing by m; — m,. and solving, gives

N

hence m; —me ~ /r1/(2J) (J — J,)'/2, proving the result (along the sequence).
2) Now suppose (m; —me)* = o(v"(J) (J — J.)?) (along a sequence), then rewrites

R1

. (QJ)Q (J - ch (ml - m0>j(2/<j]2>3 7/,(j) (J - JC)2 (1 + 0(1)) =0. (67)

g v

=:p iq

Claim A := (£)*+ (£)® < 0. Suppose by contradiction A > 0. Then the cubic equation (67)

(m; — mC)S -

has only one real solution: for ¢ = 1,2

m; —me = uy +u_  with uizi/—g 112/(%)24_(%)3,

Observe that ¢ and p are written only in terms of J, so that u, 4+ u_ at the main order do

not depend implicitly on m;. Therefore m; — m,. and my — m, must have the same sign for
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every J > J,. small enough. But this contradicts proposition [4] and lemma [}, which ensures
that in a right neighbourhood of J.

mo — Mg > ¢g —me >0 while m; —m. < ¢pg —m. <O0.

This proves A < 0. And now adapting to equation the step di. of the proof of corollary
[l A <0 entails (along the sequence)

m—m, = O((J - J.)?) .
This completes the proof of the proposition. O

To conclude the proof of theorem [3 the part iii), regarding the behaviour of m* at (he, J.)

along the “wall” curve I', is a consequence of the previous proposition. Indeed
m*(y()", ) = me(v(]), J), m (v(J)7, T) = ma(y(J), )

for all J > .J., by proposition [7] and continuity of m;y, ma. O

APPENDIX
A. Properties of the function g

We study the main properties of the function g defined by , which are often used in
the paper. Remind

1
g(h) = = (Veth +4e2h —e*) VheR.

2
Standard computations show that ¢ is analytic on R, 0 < ¢g < 1, limy_o, g(h) = 0,

log(2v/2—2)
2

limy, o0 g(h) = 1, g is strictly increasing, g is strictly convex on | — oo, | and strictly

concave on [w, oo, g(%) =22
Solving in h the equation g(h) = k for any fixed k €10, 1[, one finds the inverse function:

1. k2
k) = =1
g (k) = Flog —

vk €]0,1] . (A1)

It is useful to write the derivatives of ¢ in terms of lower order derivatives of ¢ itself. For

the first derivative, think g as (¢7!)~! and exploit (A1):

1 _ 2k(1—k) _ 2g(h) (1 —g(h))
(971 (k) |k=giry 2=k |k=g(n) 2 — g(h) (A2)

g'(h) =
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Then for the second derivative, differentiate the rhs of (A2)) and substitute (A2) itself in the

expression:

b 29 g(1—g)\ 29 (1-29)+(g)
9_2_9(1 29+ - ) 7 : (A3)

The same for the third derivative: differentiate the rhs of (A3) and substitute (A3 itself in

the expression:

1
=9y (29"1—-2g+4)—4(d)?+¢
_9"(2-4g+3g)—4(g)?
— S _

Lemma Al. Forc>6— 4\/5,

"

29/ (1-2g)+ (g’)2) _
2 (A4)

Jd)<c VEER.
For0<c§6—4\/§,

<c iff £ < jloga_(c) or &> %logay(c)

q'(€) ,
>c iff 3loga_(c) < & < 35 logay(c)
where
—(*+8—4) + (2—c)Vc2—12c+ 4
ax(c) == :

4c
Proof. Investigate for example the inequality ¢'(£) < ¢. By (A2) clearly 0 < ¢’ < 2, hence

the inequality is trivially true for ¢ > 2 and false for ¢ < 0.
Using identity (A2]) one finds

g<c & 2¢—2+c)g+2c>0;

this is a second degree inequality in g with A = ¢ — 12¢ + 4.
If 6 — 4v/2 < ¢ < 6 + 4V/2, it is verified for any value of g.
If instead ¢ < 6 —4v/2 or ¢ > 6 + 4\/§, it is verified if and only if

4(6) < 2+c—\/c42—12c—|—4:: s () or g€)> 2—|—c+\/c42—120+4:: 54(c) .

1

For 0 < ¢ <2, s+(c) €0, 1] hence one can apply ¢g—*, which is strictly increasing:

£<gi(s-(c)) or £€>g ' (s4(c)) .
This concludes the proof because identity (Al]) and standard computations show that

7 (52(0)) = 5 loga (o). 0
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B. Technical results about implicit functions

We report some useful technical results, omitting the proofs.

The following proposition is a particular case of Berge’s maximum theorem.

Proposition B1. Let f:[0,1] x R* = R and c: R™ — [0, 1] be continuous functions.

1. The following function is continuous:

F:R"XR™ >R, F(z,y) = ter[%lacé)}f(t,x)

ii. Suppose that for all z,y € R™ the function t — f(t,x) achieves its mazimum on

[0, c(y)] in a unique point. Then also the following function is continuous:

T:R"xR™—1[0,1], T(z,y)= argmax f(t,z)

t€0, c(y)]

The next proposition is a partial statement of Dini’s implicit function theorem. Then we
give two simple corollaries which are used in the paper.

Proposition B2. Let F': R" x R — R be a C* function. Let (xqg,y0) € R" X R such that

OF

F(x07y0):0a a_y(x07y())7é0

Then there exist 6 > 0, € > 0 and a C* function f: B(x¢,0) — B(yo,€) such that for all

(ZL’,y) S B(‘IU)(S) X B<y07€)
Flr,y)=0 & y=f(z).
Corollary B1. Let F': R" xR — R be a C* function. Let ¢ : R* — R be a continuous

function such that for all x € R™

oF

F(z,¢(z)) =0, i (z,¢(z)) #0.

Then ¢ € C*(R™).
Corollary B2. Let F : R®* x R — R be a C* function. Let a,b: R® — R be continuous
functions, a < b. Suppose that for all x € R™ there ezists a unique y = ¢(x) € la(z),b(x)]

such that
F(z,0(x)) =0.

F
Moreover suppose that for all x € R™, 88— (z,¢(z)) #£0. Then ¢ € C=(R").
Y
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