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Abstract – A monomer-dimer model with an attractive interaction that favors a phase separation
between monomers and dimers is exactly solved in the mean-field case. With the identification
of a suitable variational principle the free energy is computed in the large volume limit using
the Heilmann-Lieb pure hard-core ansatz. The monomer density, that turns out to be the order
parameter of the model, is shown to have a first-order phase transition along a coexistence curve.
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Monomer-dimer models were originally introduced
to study the properties of diatomic oxygen molecules
deposited on tungsten [1] or liquid mixtures with
molecules of unequal size [2]. In these models the con-
tact repulsion generated by the Pauli exclusion principle
is realised through a topological constraint, the hard-core
interaction, which forbids particles (monomers or dimers)
to occupy the same site. In order to take into account also
the attractive component of the van der Waals potential,
one has to consider an attractive interaction [3–6] among
dimers (as was previously done for single atoms [7,8]).
An attractive potential can be added to a pure monomer-
dimer model by assigning a higher probability to those
configurations that have neighbouring sites occupied by
similar molecules, either dimers or monomers. In this way
those configurations where clusters of monomers are sep-
arated from clusters of dimers are favoured and a phase
separation between monomers and dimers is expected to
occur. The same modelling mechanism is used to study
ferromagnetic systems where configurations with neigh-
bouring aligned Ising spins are favoured and islands of
positive spins are separated from those of negative spins
at low temperatures.

Our work stems from the seminal contribution of Heil-
mann and Lieb [9,10], where the absence of phase transi-
tion in the case of pure hard-core dimer interaction was
proved. While the addition of randomness on the topo-
logical structure of the graph was rigorously proved to
induce no phase transitions for a large class of mean-field
models [11], the addition of an attraction among similar
particles is believed to generate a phase transition [3,7].

Heilmann and Lieb [5] indeed proved that, for certain
finite-dimensional lattices, the attraction among dimers
with the same orientation induces a phase transition.

In this letter we study the monomer-dimer model with
attraction among similar particles in the complete graph
and we find its exact solution. We compute the free energy
in the thermodynamic limit as well as the order parameter
of the theory which turns out to be the monomer density.
We find that the model undergoes a first-order phase tran-
sition with the expected mean-field critical exponents.

The result we present here provides the first exact so-
lution of a monomer-dimer system with an additional at-
tractive interaction. Beside representing the mean-field
approximation of physical theories in the lattice, our re-
sult is also interesting for the so-called matching problem
in computer science [12–14] or for the newly emerging in-
terdisciplinary applications of statistical-physics methods
to the social sciences [15].

A monomer-dimer configuration on a finite graph G is
a way to cover its edges by dimers and its vertices by
monomers avoiding overlaps among them. In order to in-
troduce an attractive interaction among similar particles,
we start by observing that without loss of generality, for
a regular graph G, the Hamiltonian of the model depends
only on two parameters, h and J > 0. Its values on each
configuration can be expressed as

−HG ≡ hM + JIm, (1)

where M is the number of monomers and Im is the number
of couples of neighbouring monomers. This can be easily
seen observing that, on any graph G, a general model

10001-p1



D. Alberici et al.

Fig. 1: (Colour on-line) The function p̃ plotted vs. m, for differ-
ent values of the parameters J and h. The considered values
of (J, h) are, respectively, (1, −0.9), (3.5, −2), (3.5, −2.1365),
(3.5, −2.3).

with attractive potential among particles is defined by the
Hamiltonian

−HG = hmM + hdD + JmIm + JdId + JmdImd, (2)

where D is the number of dimers, Id is the number of links
between couples of dimers, Imd is the number of links be-
tween couples of molecules of different type. The param-
eters hm, hd tune, respectively, the presence of monomers
and dimers; the parameters Jm, Jd, Jmd tune, respec-
tively, the attraction among monomers, among dimers and
among different molecules. Denoting by N , L respectively
the number of sites and links of the graph, it holds

M + 2D = N, Id + D + Im + Imd = L; (3)

hence the Hamiltonian (2) can be expressed, up to a con-
stant, using only three parameters:

−HG ≡ h′

mM + J ′

mIm + J ′

dId (4)

with h′

m = hm − 1

2
hd + 1

2
Jmd, J ′

m = Jm − Jmd and
J ′

d = Jd − Jmd. When the graph is regular of degree r,
it holds also

2Im + Imd = rM ; (5)

therefore the Hamiltonian (4) turns out to be, up to a
constant, eq. (1) with h = h′

m−rJ ′

d+ 1

2
J ′

d and J = J ′

m+J ′

d.
For the mean-field model, in order to have a well-defined

thermodynamic limit (see [9]), the correct normalisation
of the parameters in (1) with respect to the number of
sites N is given by h + 1

2
lnN and J/N . The attractive

nature of the potential among molecules of the same type
is ensured by the condition J ≥ 0.

The pressure (free energy up to a sign and a rescaling
factor) of the model in the thermodynamic limit is

p = lim
N→∞

1

N
lnZN , (6)

where ZN is the partition function on the monomer-dimer
configurations with Hamiltonian (1), conveniently normal-
ized as described before. From the technical point of view

Fig. 2: (Colour on-line) The coexistence curve Γ, its asymptote
and the critical point (Jc, hc) represented on the half-plane
(J, h).

our main result is the identification of the following vari-
ational principle: considering m ∈ [0, 1] one has

p = sup
m

p̃(m), (7)

where the function p̃ is

p̃(m) = −
J

2
m2 + pMD(Jm + h), (8)

and pMD is the pressure for the pure hard-core monomer-
dimer model, i.e. pMD(ξ) = − 1

2
(1 − g(ξ)) − 1

2
ln(1 − g(ξ))

with g(ξ) = 1

2
(
√

e4ξ + 4e2ξ − e2ξ). The explicit expression
for pMD can be derived (see [16] for the details) by an iter-
ative equation found by Heilmann and Lieb in [9]. Using
their ansatz, together with a variational principle devel-
oped within mean-field theories (see Guerra [17]), one can
prove the two finite-volume lower and upper bounds

pIMD
N ≥ −

J

2
m2 + pMD

(

Jm + h −
J

2N

)

∀m ∈ R,

pIMD
N ≤

ln(N +1)

N
+sup

m

{

−
J

2
m2+pMD

(

Jm+h−
J

2N

)}

,

which immediately entail eq. (7) when the thermodynamic
limit is considered.

The solution of the model reduces then to identify the
value m∗ that maximises p̃ (the structure of this function
is shown in fig. 1). Such value is found among the solutions
of the consistency equation

m = g(Jm + h), (9)

that include, beside the equilibrium value, also the unsta-
ble and metastable points. It is possible to prove (see [16]
for details) that m∗ (which represent the monomer den-
sity) is a smooth function for all the values of the param-
eters (J, h) with the exception of a coexistence curve Γ
(see fig. 2). Γ is a differentiable curve in the half-plane
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(J, h) which stems from the critical point

(Jc, hc) =

(

3 + 2
√

2

2
,

1

2
ln(2

√
2 − 2) −

2 +
√

2

2

)

(10)

and admits the asymptote

h +
1

2
J +

1

2
= 0. (11)

It is possible to show that the function m∗ is continuous
but not differentiable at the critical point, while it has a
jump discontinuity along the rest of the curve Γ.

The monomer density at the critical point is

mc = 2 −
√

2. (12)

The behaviour of m∗ near the critical point is charac-
terised by the following expansion:

(ξ − ξc)
3 − κ (J − Jc)(ξ − ξc) − Jcκρ = O

(

(ξ − ξc)
4
)

,

where we have used the notations

ξ = Jm∗ + h, κ =
3Jc

2J
(2 − mc),

ρ = h − hc + mc(J − Jc).

The critical exponents of m∗ in the critical point, along
the line of equation a(h − hc) = b(J − Jc) for a, b ∈ R not
both zero, are

m∗ − mc ∼

⎧

⎪

⎪

⎨

⎪

⎪

⎩

± CΓ(J − Jc)
1

2 , if b/a = −mc and J ≥ Jc,

Cb/a(J − Jc)
1

3 , if b/a ̸= −mc and a ̸= 0,

C∞ (h − hc)
1

3 , if a = 0,
(13)

where

CΓ =
1

Jc

√

3(2 − mc),

Cb/a =
1

Jc

3

√

3

2
Jc(2 − mc)

(

mc +
b

a

)

,

C∞ =
1

Jc

3

√

3

2
Jc(2 − mc).

One can prove that the line determined by b/a = −mc

coincides with the tangent of Γ at the critical point.

It would be interesting to investigate whether a simi-
lar method works also for the finite-dimensional cases for
which an exact solution is known for the pure hard-core
interaction, like the dimer (only) model in two dimensions
(see [18]).
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