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Abstract – A hard-core monomer-dimer mean-field model is considered with the addition of an
attraction potential between similar particles. We find that in the curve where the monomer and
dimer phases coexist, the equilibrium state, due to the lack of gauge symmetry, turns out to be a
superposition with unequal weights. We show, moreover, that at the critical point the number of
monomers has non-Gaussian, quartic exponential, fluctuations.
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Global physical observables in equilibrium statistical
mechanics have, generically, Gaussian fluctuations on each
ergodic component of the phase space. This important
physical fact is theoretically understood on the basis of the
central limit theorem stating that the sum of a large num-
ber (N) of random variables fluctuates around its mean
proportionally to

√
N if they are sufficiently uncorrelated.

The interaction among particles nevertheless may cause,
when the parameters are close to the critical point, the
divergence of the correlation length and the emergence of
different asymptotic behaviours whose type identifies the
universality class of the system under consideration.

In this paper we study a monomer-dimer model where
an attraction among particles is added to the standard
hard-core repulsion. These models were introduced in sta-
tistical mechanics to describe the process of absorption of
monoatomic or diatomic molecules in condensed-matter
lattices [1]. Their interest and impact has progressively
grown in parallel with the successful applications of those
models in physics, like for the liquid mixtures with
molecules of unequal size [2], and beyond. Their thermo-
dynamic behaviour is indeed relevant in biology for studies
on protein design [3], in computer science for the matching
problem [4–6] or for the applications of statistical physics
methods to the social sciences [7].

In physics the contact repulsion generated by the Pauli
exclusion principle, that causes the divergence of the po-
tential energy at short distance, is implemented through
a configurational constraint called hard-core interaction:
two or more particles cannot occupy the same site. When
the energy of a two-particle system is in the binding region
and their distance d is much larger than the equilibrium

distance of their potential (d ≫ deq), the hard core is
the only relevant part of the interaction. Nevertheless
when the distance is larger but close to the equilibrium one
also the attractive component of the van der Waals poten-
tial has to be taken into account among monomers [8,9]
and among dimers [10–13]. As already pointed out by
Peierls [9], the attractive potential may induce a phase
transition in the absorption process that cannot be ex-
plained with the hard-core interaction alone.

The effect of an attractive potential can be embedded
into a pure monomer-dimer model by assigning a higher
probability to those configurations that have neighbouring
sites occupied by similar molecules, either both dimers or
both monomers. This is the same modelling mechanism
which is used in spin systems with ferromagnetic inter-
actions where configurations with neighbouring aligned
spins are favoured with respect to those with opposite
alignments.

Here we focus on a monomer-dimer model with attrac-
tion among similar particles in the mean-field setting, i.e.
on the complete graph where every site interacts with any
other. In particular we investigate how the two phases
(monomeric and dimeric) coexist along the critical line
and how the number of monomers (or dimers) fluctuates
around its mean value found in the exact solution [14,15].
The analogue problem for the mean-field ferromagnet was
investigated by Ellis and Newman in [16]. Building on
the exact formula for the free energy and the monomer
density, we fully characterise the coexistence of phases
with their relative weights in the equilibrium measure. We
find, moreover, that outside the critical line the number of
monomers has Gaussian fluctuations while at the critical
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Fig. 1: Two monomer-dimer configurations on the complete
graph with five sites. These configurations are allowed since
each site is occupied by a single particle (hard-core interac-
tion). Considering also the attractive part of the potential,
the Hamiltonian of the system takes the value −h − 4J at the
first configuration, which is made up of one monomer and two
neighbouring dimers, while it takes the value −3h − 3J at the
second one, which is made up of one dimer and three neigh-
bouring monomers.

point the fluctuations follow an anomalous regime that
scales like N3/4 and converge, in the thermodynamic limit,
toward a quartic exponential distribution. The mathemat-
ical details and proofs can be found in [17]; see also [18]
for slightly extended results.

A monomer-dimer configuration D on a regular graph
G with N vertices is a way to fully cover its edges by
dimers and its vertices by monomers avoiding overlaps
among them (hard-core interaction). We introduce a pa-
rameter h ∈ R representing the monomer field. Moreover,
we take into account an attractive potential by introduc-
ing a coupling J > 0 among similar particles. Precisely
we consider the following Hamiltonian:

HN (D) = −hMN (D) − J IN (D), (1)

where, for a given monomer-dimer configuration D,
MN (D) is the number of monomers and IN (D) is the num-
ber of neighbouring sites occupied by the same particle
kind, either both monomers or both dimers (see fig. 1).

In the present paper we consider the model on the com-
plete graph where the correct normalisation factors that
ensure a well-defined thermodynamic limit (see [19]) are
given by h+ 1

2 log N and J/N . The Hamiltonian (1), with
the previous normalizations, induces a Gibbs probability
measure on the monomer-dimer configurations given by

µN (D) =
1

ZN
exp(−HN (D)), (2)

where ZN is the partition function. We want to describe
the limiting behaviour of the number of monomers MN ,
under the Gibbs measure (2).

Let us start by recalling some preliminary facts
from [14,15]. The pressure of the model (free energy up
to a sign and a scaling factor) in the thermodynamic limit
exists and is obtained as the solution of the following vari-
ational problem:

p = lim
N→∞

1

N
log ZN = sup

m∈[0,1]
p̃(m), (3)

Fig. 2: The critical point (hc, Jc) and the coexistence curve γ.
The coexistence curve is completely contained in the region
ρ1 < ρ2.

where p̃ is given by

p̃(m) = −J m2 + pMD((2m − 1)J + h), (4)

and pMD is the pure hard-core monomer-dimer pressure,
i.e. the limiting pressure at J = 0 and has the following
expression [14,19]:

pMD(ξ) = −
1

2
(1 − g(ξ)) −

1

2
log(1 − g(ξ)) (5)

with g(ξ) = 1
2 (
√

e4ξ + 4e2ξ − e2ξ).
The value m∗ which solves the variational problem in (3)

satisfies the fixed-point equation

m = g((2m − 1)J + h). (6)

It was proved in [14,15] that m∗ represents the monomer
density and is a smooth function for all the values of the
parameters (h, J) with the exception of the coexistence
curve γ (see fig. 2). γ is a differentiable curve in the plane
(h, J) stemming from the critical point

(hc, Jc) =

(
1

2
log(2

√
2 − 2) −

1

4
,

1

4 (3 − 2
√

2)

)
. (7)

The monomer density, moreover, is continuous but not
differentiable at the critical point, while it has a jump dis-
continuity along the rest of the curve γ. Near the critical
point it has the standard ferromagnetic mean-field expo-
nents β = 1/2 and δ = 3 [14,15].

Let us consider the number of monomers MN as a ran-
dom variable with respect to the Gibbs measure (2).

In the uniqueness region, i.e. outside the coexistence
curve γ, the monomer density mN = MN/N is self-
averaging in the thermodynamic limit and converges in
distribution to a Dirac delta at the solution of eq. (6)
maximizing p̃:

mN
D
→ δm∗ . (8)

On the coexistence curve γ instead, there are two different
solutions m1 and m2 of eq. (6) maximizing p̃ and they
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represent, respectively, the dimer and the monomer phase
of the system. The monomer density is distributed as a
convex combination of two Dirac deltas:

mN
D
→ ρ1 δm1

+ ρ2 δm2
, (9)

where ρl = bl

b1+b2
, l = 1, 2, bl = (−λl(2 − ml))−1/2 and

λl = ∂2

∂m2 p̃(ml).
We notice that the Hamiltonian (1) is formally similar

to the Hamiltonian of a mean-field ferromagnet; however,
there are two main differences between these models: in
the monomer-dimer model the configuration space is not a
product space because of the hard-core constraint, more-
over there is not a gauge symmetry (like the spin flip).
One can appreciate the effects of these differences on the
phase transition of the model by observing the statisti-
cal weights ρ1, ρ2. Indeed, in the mean-field ferromagnet,
because of the presence of the spin-flip symmetry, the sta-
tistical weights of the two phases on the coexistence curve
(zero external field) are both equal to 1/2, for any value
of the coupling above the critical one. Conversely, for the
monomer-dimer model, the statistical weights ρ1 and ρ2

are in general different (see fig. 2). Moreover, unlike in the
ferromagnetic case, ρ1,2 depends also on the extra factor
(2−ml)−1/2 that can be related (see [20]) to the presence
of the hard-core interaction.

Monomer-dimer models without the attractive compo-
nent of the interaction (J = 0) have been proved, by Heil-
mann and Lieb [19,21], to have analytic thermodynamic
functions and, as a consequence, their fluctuations are nor-
mal [22]. In our case instead the presence of the attractive
component of the interaction makes the problem highly
non-trivial.

Outside the critical curve γ the number of monomers
MN has normal fluctuations around its mean:

MN − Nm∗

N1/2

D
→

1
√

2πσ2
e−

x
2

2σ2 , (10)

where σ2 = −λ−1 − (2J)−1 > 0 and λ = ∂2

∂m2 p̃(m∗) < 0.
At the critical point instead the second derivative of the
pressure vanishes and the Gaussian regime for the fluctu-
ations does not hold any more. The fluctuations of the
number of monomers are not of order

√
N but larger, i.e.

N3/4. The limiting distribution turns out to be a quartic
exponential:

MN − Nmc

N3/4

D
→

4
√

λc

2 4
√

24 Γ( 5
4 )

e−
λcx

4

24 , (11)

where λc = − ∂4

∂m4 p̃(mc) > 0, mc = m∗(hc, Jc).
We have shown that the addition of an attractive po-

tential in the interaction of a mean-field monomer-dimer
system leads to a critical point with non-Gaussian fluctua-
tions. It would be interesting to extend the present result
to the random-graph case studied in [23,24] or to add a
random monomer activity as in [20,25].

The present result is intended as a first step toward
the study of monomer-dimer systems in finite dimensions,
especially d = 2, 3. There are indeed experimental re-
sults displaying non-Gaussian fluctuations, like, for in-
stance, those for liquid crystals presented in [26] that have
been theoretically understood as induced by finite-size ef-
fects. It would be interesting to investigate whether simi-
lar structures at the critical point could also be found with
mathematically rigorous approaches.
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