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Following a newly introduced approach by Rasetti and Merelli we investigate the possibility to
extract topological information about the space where interacting systems are modelled. From
the statistical datum of their observable quantities, like the correlation functions, we show how to
reconstruct the activities of their constitutive parts which embed the topological information. The
procedure is implemented on a class of polymer models with hard-core interactions. We show that
the model fulfils a set of iterative relations for the partition function that generalise those introduced
by Heilmann and Lieb for the monomer-dimer case. After translating those relations into structural
identities for the correlation functions we use them to test the precision and the robustness of
the inverse problem. Finally the possible presence of a further interaction of peer-to-peer type is
considered and a criterion to discover it is identified.

In a recent paper [1] a new perspective for the general problem of data analysis has been advanced. By probing
the data space encoded as a set of correlation functions, the information content of a phenomenological setting is
embedded into a field theory of data which is based on an underlying topological space. This idea is deeply rooted
into concepts that have originated from theoretical physics. General Relativity, to mention one of the examples, is
the gravitational field theory that describes the motion of particles through space-time where their dynamics is fully
identified by the underlying curvature.

We propose here a very simplified realisation of that program that capitalises on the equivalence of field theories
with classical statistical mechanics [2–4] with the purpose to test it using the inverse problem approach. The models
we consider here are hard-core interacting polymer systems on hypergraphs. The choice of this class of models is
due to the diversity and richness of the phenomena they describe that span from Physics [8], Biology [6], Computer
Science [7, 22, 26], and also Social Sciences [14]. We have in mind, moreover, applications in the the socio-technical
setting of novel communication systems where groups of people are present in chambers like those of the messaging
systems, voip conference calls etc. From a mathematical point of view those are aggregation models of particles that
cannot occupy at the same time more than one state (hard-core constraint): in the specific example of the messaging
systems an individual is either silent, the monomer state, in a two body conversation, the dimer state, in a three
body conversation state called trimer and so on. While the old style phone calls were well described by a standard
monomer-dimer model the novel technologies allow for the contemporary presence of multiple individuals in the same
virtual room thus requiring higher order objects like hypergraphs for the the underlying space and polymers for the
fields that represent the state.

In our model the configurations of the system are determined by the occupation number on the elements of the
hypergraph (vertices, edges and faces) that takes only two values 0 and 1. We limit the analysis to the rank three case
(conversation with maximum three bodies) but the generalisation to higher ranks is straightforward. The model is
assigned by a set of positive weights, the activities, associated to each hyperedge. These weights describe the strength
of connections and identify the topology of the hypergraph trough, for instance, the persistent topology methods
developed in [17, 18], in [19, 20] and used in [24]. A threshold for the activities could be decided, and the hyperedges
below this threshold deleted from the original hypergraph. Instead of studying the topology at an arbitrary threshold,
the persistent topology approach consists in exploring the whole filtration of hypergraphs obtained by varying the
threshold. Quoting [1], “this filtration process identifies those topological features which persist over a significant
parameter range, qualifying them as candidates to be considered as signal, while those that have short-lived features
can be assumed to characterize noise”. Afterwards this topological signal can be used to compare and classify different
datasets.

Our first result is the identification of an iterative relation for the partition function of the model which generalises
the Heilmann-Lieb identity [9]. While this relation is introduced in a hypergraph theoretical setting we show that
it implies a set of identities directly expressible in terms of the correlation functions of the associated probability
measure. They act as a constitutive family of equations for the model that we use in our test. We then proceed to the
inverse problem solution, i.e. we want to answer the following question: from a (full or partial) set of the correlation
functions can we recover the value of the activities for all the hyperedges?

We find a positive answer to this question, and propose two numerical methods which can be used to extract activities
from the experimental correlations. The first inversion method is based on the maximisation of the likelihood function
and works through a recursive gradient-descent algorithm partially inspired by the one used for the learning process
in Boltzmann Machines [27]. We tested its performance and found that it converges exponentially at a speed that
does not depend on the size of the hypergraph but is influenced by the magnitude of the activities. In particular
the convergence speed decreases at higher values of the activities, as expected when reaching the full packing regime.
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The second method is based on the maximisation of the pseudo-likelihood function when additional experimental
correlations are known. This has the advantage that it can be applied in a much simpler manner since it provides an
explicit value for the activities. Finally we considered the presence of a further interaction acting among monomers
in the hypergraph. This kind of interaction is to be expected in socio-technical systems, where peer-to-peer effects
are often relevant. We concentrated on the problem of probing the presence of such an interaction from the set of
experimental correlations, and found that the comparison between the two previously introduced inversion methods
provides a good test for the detection of the interaction. Moreover, in the high interaction limit, we show how the
same comparison can also be used to numerically estimate its parameter magnitude.

1. THE THEORETICAL FRAMEWORK

Let H = V ∪ K be a hypergraph of rank 3, that is a set of vertices V and hyperedges K where K = E ∪ F is
an union of edges E and faces F (our notation naturally generalises to arbitrary rank). On this topological space
we consider configurations of polymers, precisely monomers (single particles occupying a vertex), dimers (2-particles
occupying an edge), trimers (3-particles occupying a face). Polymers display mutual hard-core interaction: no region
of the space can be touched by more than one polymer. This constraint induces a notion of admissible configuration.
A suitable way to represent the configurations is to introduce the occupancy variables α =

(
αh
)
h∈H ∈ {0, 1}

H with
the hard-core condition

αv +
∑
e∈E:
e3v

αe +
∑
f∈F :
f3v

αf = 1, v ∈ V. (1)

Notice that because of (1), for any vertex v ∈ V the quantity αv, that represents the monomer occupancy of the vertex
v, is actually a function of the dimer and trimer occupancy variables. It is convenient to introduce the admissibility
characteristic function C : {0, 1}H → {0, 1} defined as

C(α) =

{
1 if (1) holds

0 otherwise
. (2)

To fully specify the model we introduce the polymer activity of each hyperedge, that is a positive number that
measures the propensity of the hyperedge to be occupied by a corresponding polymer. One can show with an
elementary computation that the vertex activities can be reabsorbed into the remaining parameters or factorised out
of the partition function. We denote by ze, e ∈ E the edge activities (or dimer activities) and by zf , f ∈ F the face
activities (or trimer activities). The topological and analytical data, namely H and z, fully determine a probability
measure associated to configurations:

µz(α) =
C(α)

∏
e∈E z

αe
e

∏
f∈F z

αf

f

Z(z)
, α ∈ {0, 1}H (3)

where Z is the normalisation factor usually called partition function. We denote by 〈 · 〉 the average w.r.t. the
probability measure (3).

Defining E(v) the set of edges with one vertex in v and F (v) the set of faces with one vertex in v, one can prove
that the following iterative relation holds:

ZH = ZH−v +
∑

e∈E(v)

ze ZH−e +
∑

f∈F (v)

zf ZH−f (4)

which generalises the Heilmann-Lieb relation for monomer-dimer systems [9, 10]. In eq.(4), H − v denotes the
hypergraph where the vertex v has been removed together with the hyperedges in E(v) ∪ F (v); H − e stands for
H − v1 − v2 where e = {v1, v2}; H − f stands for H − v1 − v2 − v3 where f = {v1, v2, v3}.

The previous family of relations (4) for the partition function of the model implies the following topological constraint
relations for the correlation functions. For every edge e = {i, j} and for every observable g that does not depend on
αe, αi and αj it holds:

〈αe g〉 = ze 〈αiαj g〉 . (5)
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Similarly, for every face f = {i, j, l} and for every observable g that does not depend on αf , αi, αj and αl it holds:

〈αf g〉 = zf 〈αiαjαl g〉 . (6)

In particular for g ≡ 1 one obtains an explicit expression of the activities in terms of correlations

ze =
〈αe〉
〈αiαj〉

, zf =
〈αf 〉
〈αiαjαl〉

. (7)

2. THE INVERSE PROBLEM

In the last few years several new ideas and techniques have been developed [5, 21, 25] for the inverse problem of the
Ising model. We will discuss the inverse problem for the class of hard-core polymer models introduced in the previous
section. The general task is to extract the parameters of a given theoretical model from experimental measures on
the observables. The problem clearly displays different features according to the type of data that become available.
In this work we will focus on two experimental database settings. In the first one the dataset is composed by the
empirical densities of dimers and trimers, while in the second one some empirical correlations for the monomers are
also included:

A) the empirical polymer densities, that is 〈αe〉exp for very edge e ∈ E and 〈αf 〉exp for every face f ∈ F ;

B) the previous empirical polymer densities plus the empirical monomer correlations, that is 〈αiαj〉exp for every
edge e = {i, j} ∈ E and 〈αiαjαl〉exp for every face f = {i, j, l} ∈ F .

The symbol 〈 〉exp denotes the empirical average, that is if M polymer configurations α(1), . . . , α(s) are observed

independently then 〈g〉exp ≡ 1
M

∑M
s=1 g(α(s)) .

A. The Kullback-Leibler method

In case A) the Maximum Likelihood Estimation (MLE) can be used. Let us denote by µz and by 〈 〉z respectively
the probability measure defined by (3) and the associated expectation. It is possible to prove (see Appendix) that
the MLE of the polymer activities z∗ = (z∗k)k∈K satisfies the following set of |K| conditions

〈αe〉z∗ = 〈αe〉exp , e ∈ E
〈αf 〉z∗ = 〈αf 〉exp , f ∈ F .

(8)

The set of equations (8) determines implicitly the activities. We approach its solution by means of a gradient descent
algorithm since the Maximum Likelihood function is a concave function. Precisely at step n + 1 (n ≥ 0) we update

the vector of polymer activities z(n) ≡
(
z
(n)
k

)
k∈K as follows

z(n+1) = z(n) − η(n+1) ∇(z(n))√∑
k∈K

(
∂k(z(n))

)2 . (9)

The vector ∇(z) ≡
(
∂k(z)

)
k∈K is the gradient of the Kullback-Leibler divergence DKL(µz|µ∗), defined by:

∂k(z) = −〈αk〉exp − 〈αk〉z
zk

(10)

and it gives to the update step ∆z(n+1) ≡ z(n+1) − z(n) the direction of the gradient of the likelihood function,
or equivalently the direction of minus the Kullback-Leibler divergence gradient (see Appendix for the details). The
positive number η(n+1) tunes the magnitude of the update steps ∆z(n+1). By fixing η(n) ≡ η, the speed of convergence
of relation (9) is linear, while it can be improved by introducing an adaptive learning rate defined iteratively as:

η(n+1) = η(n) exp

γ
∑
k∈K ∆z

(n)
k ∆z

(n−1)
k√∑

k∈K

(
∆z

(n)
k

)2√∑
k∈K

(
∆z

(n−1)
k

)2
 (11)
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γ is a positive parameter to be chosen. The relation (11) is based on the scalar product between two consequent

updates of the activities. If it is positive, which means that the last update steps ∆z
(n)
k , ∆z

(n−1)
k were performed

along similar directions, then the next update ∆z
(n+1)
k will have a greater magnitude. If it is negative, which means

that the last two updates were performed along opposite directions, then we are in proximity of the solution and a
greater precision is needed, so the magnitude of the next update step is diminished.

The recursion stops when the value of the activities z(nf ) is sufficiently close to the exact MLE solution of the
inverse problem z∗. In our case we used two different stopping criteria. The first one can be used only when testing
the performance of the algorithm on a priori known models, since it requires the exact values of the activities. In this
case a value of precision εf > 0 is chosen, and the recursion stops when the maximum relative error over the set of
activities is less than εf :

ε(nf ) = max
k∈K

∣∣∣∣∣z∗k − z
(nf )
k

z∗k

∣∣∣∣∣ < εf . (12)

The second criterion can be applied when solving the inverse problem on experimental data, since it does not assume
the knowledge of the exact value of the activities. Again a final precision value ε̂f > 0 is chosen, and the recursion
stops as soon as the set of equations (8) is satisfied with precision less than ε̂f :

ε̂(nf ) = max
k∈K
| log〈αk〉z(nf ) − log〈αk〉exp| < ε̂f . (13)

Numerical tests. In order to assess the reliability and stability of this method we performed numerical tests on
the speed of convergence of the algorithm (9) to the solution of the equation (8) on random hypergraphs.

In particular we made use of a class of random hypergraph which represents the extension of the notion of Erdős-
Rény random graph. This choice allows us to test the performance of our algorithm over different topologies. Moreover,
real-world data are often constituted by many similar instances of the model, whose topologies can be considered as
extracted from some random distribution (see [14] for instance).

We observed that the convergence of the algorithm is exponentially fast in the number of iterations n (Figure 1).
Moreover the distribution of the speed of convergence does not seem to depend on the number of vertices N in the
random hypergraph (Figure 2). Anyway we stress the fact that the larger N is, the longer it takes to compute each
step of the algorithm, since the evaluation of 〈αk〉z(n) is more demanding. On the contrary the speed of convergence
depends on the intensity of the activities (Figure 3). In particular in the limit of large polymer activity the exponential
rate of convergence vanishes.

Precisely, to obtain these results, we have generated data as follows:

• A random hypergraph H = V ∪K over N vertices is generated by placing each hyperedge independently. Each
2-edge is present with probability 2c1/(N − 1) and each 3-edge with probability 6c2/(N − 1)(N − 2).

• An activity zk is assigned to each hyperedge k ∈ K. For simplicity when generating the dataset we chose zk = z
constant for all k ∈ K. Details of this choice are specified in each case.

• All the possible monomer-dimer-trimer configurations α = (αk)k∈K on the hypergraph are computed. We assign
to each configuration its probability and we evaluate the expectations 〈αk〉z.

The gradient descent algorithm was then applied, using as input parameters 〈αk〉exp = 〈αk〉z. Clearly, this choice

entails that z solves eq. (8) and the recursion converges to the value z∗ = z. We set z
(0)
k = 1 for all k ∈ K and

γ = 0.2. We used eq. (12) as stopping criterion setting εf = 10−10.

B. The effects of an imitative perturbation

It is important to notice that in case B) the number of observables is two times the number of degrees of freedom
of the model defined by (3), since the dataset contains the empirical polymer densities 〈αk〉exp and the empirical
monomer correlations 〈

∏
v∈k αv〉exp while the model is determined only by the activities zk, k ∈ K.

A possible way to deal with this overdetermined case is to consider the Maximum Pseudo-Likelihood Estimation
(MPLE). This method can be seen as an approximation of the MLE where the joint distribution is replaced with a
suitable conditional probability: we look at the probability to observe an occupied hyperedge conditionally on the
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Figure 1: Relative error ε(n) = |z(n)k − zk|/zk of the gradient descent algorithm versus number of iterations n (red curve,
linear-log scale). The convergence is exponentially fast in the number of iterations: to test this hypothesis we performed a

linear fit (blue line) according to the relation log ε(n) = −An+ B. We chose a random hypergraph with N = 15, c1 = c2 = 1
and zk = 0.5 for all k ∈ K. The fit is performed on the data after removing the initial 20% of iterations.

states of all the others. It can be proven (see Appendix) that the MPLE of the activities z∗∗ satisfies the following
set of |K| conditions

〈αe〉exp = z∗∗e 〈αiαj〉exp , e = {i, j} ∈ E
〈αf 〉exp = z∗∗f 〈αiαjαl〉exp , f = {i, j, l} ∈ F .

(14)

We observe two important features: the analogy between (14) and the exact relations (7) and the fact that these
relations provide an explicit form for the activities.

Another way to exploit the additional information given by the empirical monomer correlations is to modify the
model defined in (3) by introducing a new family of parameters J = (Jk)k∈K that tune the monomer correlations:

µz,J(α) =
C(α)

∏
k∈K z

αk exp
(∑

k∈K Jk
∏
v∈k αv

)
Z(z, J)

, α ∈ {0, 1}H . (15)

We denote by 〈·〉z,J the average with respect to this probability measure. While this fact could appear as a mere
technical device, it has instead a deep phenomenological meaning: the monomers can indeed directly interact beyond
the hard-core repulsion, a situation largely expected in socio-technical systems due to the peer-to-peer effect among
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Figure 2: Exponential rate of convergence A of the gradient descent algorithm versus number of vertices N . The number of
vertices ranges from 5 to 20. The distribution of the velocity of convergence does not seem to depend on the number of vertices.
Anyway we stress the fact that the larger N is, the longer it takes to compute each step of the algorithm. For each value of N
we performed 60 trials on different random hypergraphs, taking always c1 = c2 = 1 and zk = 0.5 for all k ∈ K. To test the
accuracy of the exponential fit we computed the correlation coefficient R: its average value and standard deviation over these
960 tests are R = −0.945± 0.023.

individuals. In other words in the experiments the presence of a coupling J between monomers cannot be excluded a
priori. For this reason in this second part of our work we have generated the empirical polymer densities and empirical
monomer correlations according to a perturbed distribution µz,J .

The following extension of the Heilmann-Lieb identity for the partition function of the measure (15) holds:

ZH = Z∗H−v +
∑
k∈K
k3v

zk ZH−k , v ∈ V (16)

where in the partition function Z∗H−v a monomer activity eJu∼v :=
∏
k∈K, k3u,v e

Jk is introduced on every vertex u
which was connected to v. We call hypertree a hypergraph H such that, after having removed the edges included in
some face, its line graph is a tree. On hypertrees the relation (16) provides the following useful estimate:

〈αk〉z,J
〈
∏
v∈k αv〉z,J

=
zk∏

h∈K,
|h∩k|>0

eJh
θk , k ∈ K (17)
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A

Figure 3: Exponential rate of convergence A of the gradient descent algorithm versus polymer activity z (log-linear scale). The
activity is the same for each hyperedge (zk = z ∀ k ∈ K) and takes values z = 10h, h = −1,−0.9, . . . , 1, excluding h = 0 which
is by default the starting point of our algorithm. The distribution of the rate of convergence depends on the intensity of the
activity : it is constant for z ≤ 10−0.2, then for 10−0.1 ≤ z ≤ 100.6 it splits in two regions, and for z ≥ 100.6 only the slower
region survives and the rate of convergence decreases to zero. For each value of z we performed 40 trials on different random
hypergraphs, taking always N = 20, c1 = c2 = 1. The underlying hypothesis of exponential convergence is supported by the
correlation coefficient R = −0.968± 0.028 over these 800 tests.

where the term θk goes to 1 as zp e
−Jp vanishes for every polymer p ∈ K at distance 1 from k, and even better:

1 ≤ θk ≤
∏
v∈V,
v∼k

(
1 +

∑
p∈K,

p3v, |p∩k|=0

zp
∏
q∈K,

q3v, |q∩k|=0

e−Jq
)
. (18)

As said before, we have generated data 〈αk〉exp, 〈
∏
v∈k αv〉exp according to the distribution (15) in the presence of

an interaction J 6= 0: the quantities 〈αk〉z,J and 〈
∏
v∈k αv〉z,J have been computed exactly on random hypergraphs,

following a procedure analogous to Section 2 A. Starting from these data we have computed the MLE and MPLE as if
the interaction was not present. We guessed that while the two resulting estimates z∗ and z∗∗ of the activities agree
in case J = 0, they may differ when J 6= 0, and thus they may be used to probe the presence of an interaction. To
make this guess more precise, we performed the following test, which could be applied also to real data.

• The gradient descent algorithm (9) is executed using as input 〈αk〉exp = 〈αk〉z,J . If the algorithm converges, its
limit is a vector of activities z∗ such that:

〈αk〉z∗ = 〈αk〉z,J , k ∈ K . (19)
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We set z
(0)
k = 1 and γ = 0.2. We used eq. (13) as stopping criterion setting ε̂f = 10−5, together with a bound

for the number of iterations that stops the recursion at n = 5000 even if the precision ε̂f has not been reached
yet.

• The closed inversion formula (14) is applied, as if the coupling potential was not present:

z∗∗k =
〈αk〉z,J

〈
∏
v∈k αv〉z,J

, k ∈ K . (20)

• We study the parameter

δ =
1

|K|
∑
k∈K

(
log z∗∗k − log z∗k

)
. (21)

For zero coupling potential δ is close to zero, since both z∗∗k and z∗k equal the true value of the activity zk (up
to the precision of the gradient descent algorithm).

We observed that δ, together with the precision ε̂, can indeed be used as a test-parameter to understand whether
the real system obeys a pure hard-core interaction or there are other types of non-negligible interactions. In fact it
allows to distinguish between the following three regimes (Fig. 4):

• For J < 0 the gradient descent algorithm is not guaranteed to converge in the prescribed number of iterations
since the precision ε̂ ranges from 10−5 to 100. The value of δ is negative and its modulus grows linearly with J .

• For 0 < J < J0 the convergence of the gradient descent method is attained. The parameter δ is close to zero,
positive, and shows a non-monotonic behaviour in J .

• For J > J0 the convergence of the gradient descent method becomes abruptly poor and for J sufficiently large
ε̂ is larger that 101. δ is positive and exhibits a large variance over different random hypergraphs.

When J is positive and sufficiently large, we propose a method to estimate its value. Compare the relations (17) for
the measure µz,J with the exact relations (7) for the measure µz. It becomes clear that if the experimental parameter
ρk ≡ log

(
〈αk〉exp/〈

∏
v∈k αv〉exp

)
shows a correlation with the number of hyperedges intersecting k, νk ≡ Card{h ∈

K, |h ∩ k| > 0}, then the system presents other interactions beyond the hard-core one. In particular in the case of
constant J and z, the equation (17) gives

ρk(z, J) ≈ log z − J νk , k ∈ K (22)

when J Card{q ∈ K, q 3 v, |q ∩ k| = 0} is sufficiently large with respect to log zp, for all hyperedges p intersecting k
and all vertices v neighbouring k. Therefore J and z can be found by performing a linear fit between ρk and νk (Fig. 5).

Aknowledgments The authors are deeply indebted to Mario Rasetti for inspiring this work and for many illumi-
nating discussions. We also thank Massimo Ferri, Giovanni Petri, Federico Ricci-Tersenghi, Alina Ŝırbu and Francesco
Vaccarino for interesting discussions.

Appendix

We shortly present here the Maximum Likelihood and the Maximum Pseudo-Likelihood Methods. The general
framework is the following: fix the hypergraph H and assume the model is described by an unknown value of the
activities z to be determined. Consider a set of M observations of polymer configurations ᾱ = {α(s)}s=1,...,M , where

α(s) = (α
(s)
k )k∈K and α

(s)
k encodes the presence/absence of a polymer on the hyperedge k in the sth experimental

observation. Suppose that ᾱ is a set of independent observations sampled from the same probability distribution µz,
for a certain value of the activities z = z∗.

We use two standard methods that give an optimal value z∗ to fit the dataset ᾱ: the maximum likelihood estimation
(MLE) and the maximum pseudo-likelihood estimation (MPLE). Let us briefly recall these methods.

The optimal estimate z∗ in the MLE sense maximizes the likelihood function defined as

L(z; ᾱ) =

M∏
s=1

µz(α
(s)) . (23)
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Figure 4: On top: Parameter δ = 1
|K|
∑
k∈K(log z∗∗k − log z∗k) made by using the analytic inversion formula and the gradient

descent method, as if the imitative interaction was not present, versus imitative potential J . A value δ < 0 reveals that J < 0.
On the other hand, the order of magnitude of δ and its variance grow abruptly when J crosses a positive critical value.
On bottom: Precision ε̂ = maxk∈K | log〈αk〉z∗− log〈αk〉z,J | of the gradient descent algorithm built as if the imitative interaction
was not present, versus imitative potential J (linear-log scale). The convergence is always reached for J close to 0, while it is
never reached for J larger than a critical value.
The polymer activity and the imitative potential are the same for each hyper-edge: zk = z, Jk = J ∀ k ∈ K. For each value of
J we performed 20 trials on different random hypergraphs, taking always N = 20, c1 = c2 = 1 and z = 0.5 (blue), z = 1 (red),
z = 2 (green).
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Figure 5: On top: parameter ρk = log〈αk〉/〈
∏
v∈k αv〉 versus νk = Card{h ∈ K | |h∩k| > 0} for every hyperedge k in a random

hypergraph (blue dots). The polymer activity and the coupling are the same for each hyperedge: zk = z, Jk = J ∀ k ∈ K. The
test is performed on a random hypergraph taking N = 25, c1 = c2 = 1, z = 1 and different values of J : J = 0.023, J = 0.3684,
J = 0.5296. The relation between ρk and νk is linear for J sufficiently large: a linear fit (red line) is performed according to
the relation ρk = −ανk + β. The reliability of this fit is tested by plotting the correlation coefficient R versus J .

On bottom: relative errors σJ =
∣∣α−J
J

∣∣ (red) and σz =
∣∣∣β−log z

log z

∣∣∣ (blue), versus J . According to the relation (22), the slope of

the fit α is used as an estimate of the coupling J , when J is sufficiently large.
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Standard computations show that logL(z; ᾱ) is a concave function in the variables log z and it attains its maximum
at the point z∗ satisfying the following system of |K| equations:

〈αk〉z∗ = 〈αk〉exp , k ∈ K = E ∪ F , (24)

where 〈αk〉exp ≡ 1
M

∑M
s=1 α

(s)
k is the experimental average value of the presence of a polymer in the hyperedge k. This

approach naturally fits the experimental situation where the available data are the set of empirical polymer densities.
Let us observe that the likelihood function L(z; ᾱ) is strictly related to the Kullback-Leibler divergence of the measure
µz from the empirical measure µ∗, defined as

DKL(µz|µ∗) =
∑
α

µ∗(α) log
µ∗(α)

µz(α)
(25)

where µ∗(α) ≡ 1
M

∑M
s=1 δ(α = α(s)) . Precisely the following relations holds:

1

M
logL(z; ᾱ) = −DKL(µz|µ∗) + C (26)

with C =
∑
α µ
∗(α) logµ∗(α) .

Now let us consider the pseudo-likelihood instead of the likelihood. The optimal estimate z∗ in the MPLE sense
maximizes the pseudo-likelihood function defined as

LP (z; ᾱ) =

M∏
s=1

∏
k∈K

µz
(
α
(s)
k

∣∣α(s)
6=k
)

(27)

where, for a given sample s and hyperedge k, α
(s)
6=k encodes the experimental observation of a polymer on all the

hyperedges different from k. It is possible to show that LP attains its maximum at the point z∗∗ explicitly defined
by the following |K| conditions:

〈αk〉exp = z∗∗k
〈∏
v∈k

αv
〉
exp

, k ∈ K = E ∪ F , (28)

where α
(s)
v denotes the experimental observations of a monomer on the vertex v in the sth trial and 〈

∏
v∈k αv〉exp ≡

1
M

∑M
s=1

∏
v∈k α

(s)
v is the empirical monomer correlation of the vertices in k.
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