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Abstract

We study a multi-species spin glass system where the density of each species is kept fixed

at increasing volumes. The model reduces to the Sherrington-Kirkpatrick one for the single

species case. The existence of the thermodynamic limit is proved for all densities values

under a convexity condition on the interaction. The thermodynamic properties of the model

are investigated and the annealed, the replica symmetric and the replica symmetry breaking

bounds are proved using Guerra’s scheme. The annealed approximation is proved to be ex-

act under a high temperature condition. We show that the replica symmetric solution has

negative entropy at low temperatures. We study the properties of a suitably defined replica

symmetry breaking solution and we optimise it within a ziggurat ansatz. The generalized

order parameter is described by a Parisi-like partial differential equation.

Keywords: Multi-species spin glasses, annealed region, replica symmetric solution, replica

symmetry breaking bounds.

1 Introduction

Multi-species spin systems at different densities are often encountered in nature. The bipartite
case without disordered made its appearance since the work on meta-magnets by Cohen and
Kinkaid [1]. When several types of magnetic particles like iron and manganese are diluted into
a nonmagnetic metallic host the Ruderman-Kittel-Kasuya-Yosida interactions generate a multi-
species spin glass phase [2]. The rich complex behaviour emerging from those physical systems
revealed to be useful in a variety of applications ranging from biology to social sciences and
several models were proposed and studied in the mean field approximation without disorder
[11, 9, 10] and with disorder as well [6, 7, 8]. In this paper we introduce and study the multi-
species mean field spin glass model i.e. a system composed by spins belonging to a finite number
of different species and we study its thermodynamic behaviour at fixed species densities. Spin
couples interact through a centered gaussian variable whose variances depend only on the two
species. We rigorously prove bounds for the model pressure and control their properties in a
region of convexity defined in terms of the variance matrix of the interactions, namely when
the interactions within a group dominate the inter-groups interactions (see [4, 6, 8] for a similar
conditions in neural network theory).
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The paper is organised as follows. Section 2 introduces the notations and some technical tools.
Section 3 defines the model and the observables. The thermodynamic limit proof is illustrated
in section 4. Section 5 studies the annealed region with the second moment method. Section
6 considers the replica symmetric bound and shows that at low temperature it has a negative
entropy. Finally section 7 investigate the replica symmetry breaking interpolation within the
ziggurat ansatz, a multi-dimensional generalisation of the Parisi ansatz.

2 Notation and technical tools

Much of the recent progresses in the study of mean field spin glass models is based on methods
and arguments introduced by Guerra in a series of works (see e.g. [12, 13, 14, 15, 5]), constituting
the so called interpolation method. Beyond the original works, the interested reader can found
a detailed and complete exposition with several applications of this method in [16], while in [3]
these techniques are shown at work on the simpler Curie-Weiss model. In order to present a
self-consistent exposition, hereafter we outline briefly the basic ideas.

Let N be an integer, and for i ∈ I = {1, ..., N}, let Ui and Ũi be two families of centered Gaus-
sian random variables, independent each other, uniquely determined by the respective covariance
matrices E(UiUj) = Cij and E(ŨiŨj) = C̃ij . We treat the set of indices i as configuration space
for some statistical mechanics system. Let ai ∈ R

+ for each i ∈ I be an arbitrary (finite) weight.
We define the Hamiltonian interpolating function as the following random variable

Hi(t) :=
√
tUi +

√
1− tŨi,

where t ∈ [0, 1] is the real parameter used for interpolation.

Let us introduce also the so-called quenched measures. First, we define the random partition
function of the system as

Z(t) :=
∑

i

aie
Hi(t),

and the random Gibbs measure as

Gi(t) :=
aie

Hi(t)

Z(t)
.

Then let F : (I × I) −→ R be an observable defined in the duplicated configuration space, we
define the quenched measure as

〈F 〉t := E

(
Ωt(F )

)
, (1)

where
Ωt(F ) :=

∑

i,j

Gi(t)Gj(t)F. (2)

The measure Ωt is called the duplicated random Gibbs measure.
Keeping in mind definition (1), it is possible to prove (see [16]) the following

Proposition 1. Consider the functional

ϕ(t) := E logZ(t) (3)
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then for its t-derivative the following expression holds

ϕ′(t) =
1

2
〈Cii − C̃ii〉t −

1

2
〈Cij − C̃ij〉t. (4)

The generalization to multi-partite systems requires only minor modifications. Suppose that
the system is composed by a finite number S of species indexed by s ∈ S, then |S| = S. Consider
a generic statistical mechanic system as before and assume that:

- the configuration space is decomposed in a disjoint union I =
⋃

s∈S I(s),

- the U ’s are also decomposed in the following way

Ui =
∑

s,p∈S
U

(sp)
i , (5)

where U
(sp)
i is a family of gaussian r.v. such that the covariance matrix is of the form

E(U
(sp)
i U

(s′p′)
j ) = ∆2

spδss′δpp′C
(s)
ij C

(p)
ij (6)

where C
(s)
ij is a covariance matrix defined on I(s) × I(s).

Notice that the covariance matrix defined in (6) is the Schur-Hadamard product of the C
(s)
ij

and then is positive definite. The family of positive parameters (∆2
sp)s,p∈S tunes the interactions

between the various species.

For a fixed couple (i, j) we can think at each C
(s)
ij as a component of a vector in the space R

S

and then, thanks to (5) and (6), the covariance matrix of the entire system can be rewritten,
with a little abuse of notation, as a quadratic form in R

S , namely as

Cij = E(UiUj) =
∑

s,p∈S
C

(s)
ij ∆2

spC
(p)
ij =

(
C,∆C

)
, (7)

where C := (C
(s)
ij )s∈S is a vector in R

S and ∆ is the real symmetric matrix defined by the entries

∆ := (∆2
sp)s,p∈S .

Suppose for simplicity that C
(s)
ii =

√
c for some c ∈ R

+ for each i ∈ I, s ∈ S, that is

Cii = c(1,∆1), (8)

where
1 := (1)s∈S .

Under the assumption that an analogous decomposition holds for the Ũ ’s too, then

C̃ij = E(ŨiŨj) =
∑

s,p∈S
C̃

(s)
ij ∆2

spC̃
(p)
ij =

(
C̃,∆C̃

)
, (9)

and
C̃ii = c̃(1,∆1). (10)

In the multipartite framework, by (7,8,9,10), Proposition 1 becomes

3



Proposition 2. Consider the functional defined in (3), then for its t-derivative the following
holds

ϕ′(t) =
1

2
(c− c̃)(1,∆1) − 1

2
〈(C,∆C)− (C̃,∆C̃)〉t. (11)

In order to separate the contribution of the various species, let us introduce the operator Ps

as the canonical projector in R
S .

For any s ∈ S and for any vector u = (u(s))s∈S in R
S , we have that

Ps

(
u
)
:= u(s). (12)

Clearly, for two vectors u,v, the following relation holds

(
u,∆v

)
=
∑

s∈S
Ps

(
u
)
Ps

(
∆v
)
=
∑

s∈S
Ps

(
∆u

)
Ps

(
v
)
. (13)

If we denote by (es)s∈S the canonical basis of RS, the canonical projection can be expressed as
a scalar product, that is

Ps

(
u
)
= (es,u). (14)

Let us recall briefly the Guerra’s RSB scheme. Let Ui be a family of centered Gaussian random
variables uniquely determined by the covariance matrix E(UiUj) = Cij and let us introduce
the integer K, associated to the number of levels of Replica Symmetry Breaking (RSB in the
following). For each couple (l, i) ∈ {1, 2, ...,K} × I, let us introduce further the family of
centered Gaussian random variables Bl

i independent from the Ui and uniquely defined through
the covariances

E(Bl
iB

l′
j ) = δll′B̃

l
ij,

and point out that there is independence between different l, l′ levels of symmetry breaking.
Further, we need some preliminary definitions:
For the average with respect to Bl

i and Ui we use the following notation

El(·) =

∫ ∏

i

dµ(Bl
i)(·), ∀l = 1, ...,K, (15)

E0(·) =

∫ ∏

i

dµ(Ui)(·), (16)

E(·) = E0E1...EK(·). (17)

We need also a sequence of non negative real numbers (m0,m1, ...,mK ,mK+1) with m0 =
0, mK+1 = 1 and we define recursively the following the random variables

ZK(t) :=
∑

i

ωi exp (
√
tUi +

√
1− t

K∑

l=1

Bl
i), (18)

Zml

l−1 := El(Z
ml

l ), (19)

fl :=
Zml

l

El(Z
ml

l )
, (20)
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and the following modified Gibbs states,

ω̃K,t(·) := ωt(·) Ω̃K,t = Ωt(·), (21)

ω̃l,t(·) := El+1...EK(fl+1...fKωt(·)) ∀l = 0, ...,K, (22)

Ω̃l,t(·) := El+1...EK(fl+1...fKΩt(·)) ∀l = 0, ...,K, (23)

〈·〉l,t := E(f1...fKΩ̃l,t(·)) ∀l = 0, ...,K. (24)

Bearing in mind the previous definitions, it is possible to prove (see [12]) the following

Proposition 3. Consider the functional

ϕ(t) = E0 log(Z0(t)), (25)

then for its t-derivative the following relation holds

ϕ′(t) =
1

2
〈Cii − B̂K

ii 〉K,t −
1

2

K∑

l=0

(ml+1 −ml)〈Cij − B̂l
ij〉l,t (26)

where B̂0
ij = 0 and B̂l

ij =
∑l

l′=1 B̃
l
ij.

We discuss now a generalization of the previous scheme for multipartite systems.
Let K be an integer and consider an arbitrary sequence of points Γ := (ql)l=1,...,K ∈ [0, 1]S .
For each triple (l, i, s) with l = 1, 2, ...,K, i ∈ I, s ∈ S, let us introduce the family of centered

Gaussian random variables B
l,(s)
i independent from the Ui and uniquely defined through the

covariances
E(B

l,(s)
i B

l′,(s′)
j ) = δss′δll′Ps

(
∆ul(Γ)

)
Ps

(
C̃l

)
(27)

where, for each value of l, the component of the vector C̃l = (C̃
(s)
l,ij)s∈S , are covariance matrix

defined on I(s) × I(s) and ul(Γ) is an arbitrary vector in R
S which depends on the choice of the

sequence Γ .
Notice that (27) implies independence between two different l(s), l′(s) levels of symmetry breaking
of each s-species. For each l = 1, 2, ...,K and i ∈ I, we can define the following family of random
variables

Bl
i :=

∑

s∈S
B

l,(s)
i

then by (13) we have that

E(Bl
iB

l′
j ) = δll′

(
ul(Γ),∆C̃l

)
. (28)

Suppose for simplicity that C̃
(s)
l,ii = 1 for each l, i, s, that is

E(Bl
iB

l′
i ) = δll′

(
ul(Γ),∆1

)
.
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Let us introduce the following notations for the average with respect to Bl
i, Ui,

El(·) =

∫ ∏

i

dµ(Bl
i)(·) ∀l = 1, ...,K, (29)

dµ(Bl
i) =

∏

s∈A
dµ(B

l,(s)
i ), (30)

E0(·) =

∫ ∏

i

dµ(Ui)(·), (31)

E(·) = E0E1...EK(·). (32)

Hence, the multi-species analogous of the Proposition 3, is the following

Proposition 4. Consider the functional

ϕ(t) = E0 log(Z0(t)), (33)

then for its t-derivative the following relation holds

ϕ′(t) =
1

2
(1,∆1) −

K∑

l=1

(
ul(Γ),∆1

)
− 1

2

K∑

l=0

(ml+1 −ml)〈
(
C,∆C

)
− B̂l〉

l,t
(34)

where B̂0 = 0 and B̂l =
∑l

l′=1

(
ul(Γ),∆C̃l′

)
.

3 The multi-species mean field spin glass

For each s ∈ S consider the set Λ
(s)
N ⊂ Z such that

⋂

s∈S
Λ
(s)
N = ∅, (35)

|Λ(s)
N | = N (s), (36)

N =
∑

s∈S
N (s). (37)

We consider a disordered model defined by a collection (σ(s))s∈S of Ising variables, meaning that

σ
(s)
i = ±1 for each ∀s ∈ S, i ∈ Λ

(s)
N .

We denote by ΣN the family of possible configurations σ = {σ(s)
i }

s∈S,i∈Λ(s)
N

, then we have

that | ΣN |= 2N . In the sequel the following definitions will be used.

1. Hamiltonian

For every N ∈ N, let {HN (σ)}σ∈ΣN
be a family of 2N gaussian r.v. defined by

HN (σ) := − 1√
N

∑

s,p∈S

∑

i∈Λ(s)
N

∑

j∈Λ(p)
N

J
(sp)
ij σ

(s)
i σ

(p)
j , (38)

6



where the J ’s are Gaussian i.i.d. r.v. such that for every s, p, i, j we have that

E(J
(sp)
ij ) = 0, (39)

and
E(J

(sp)
ij J

(s′p′)
i′j′ ) = δss′δpp′δii′δjj′∆

2
sp, (40)

with ∆2
sp = ∆2

ps.

2. Covariance matrix

The covariance matrix of the system is

CN (σ, τ) := E(HN (σ)HN (τ)) (41)

and, thanks to (39) and(40), a simple computation shows that

CN (σ, τ) =
1

N

∑

s,p∈S
∆2

sp

( ∑

i∈Λ(s)
N

σ
(s)
i τ

(s)
i

)( ∑

j∈Λ(p)
N

σ
(p)
j τ

(p)
j

)
. (42)

To show explicitly the dependence trough the choice of the various sizes we can define for every
s ∈ S the relative density

α
(s)
N :=

N (s)

N
, (43)

and the relative overlap

q
(s)
N (σ, τ) =

1

N (s)

∑

i∈Λ(s)
N

σ
(s)
i τ

(s)
i , (44)

then the covariance matrix can be write in the form

CN (σ, τ) = N
∑

s∈S

∑

p∈S
∆2

spα
(s)
N α

(p)
N q

(s)
N (σ, τ)q

(p)
N (σ, τ). (45)

In the vector notation introduced in Section 2, we rewrite (45) as

CN (σ, τ) = N
(
qN ,∆qN

)
, (46)

where
qN =

(
q
(s)
N (σ, τ)

)
s∈S

(47)

Example 1. For example, in the case of two species, namely S = {a, b}, the covariance matrix
qN is a 2-dimensional vector and ∆ is a 2× 2 matrix defined by the entries

[
α
(a)
N α

(a)
N ∆2

aa α
(a)
N α

(b)
N ∆2

ab

α
(a)
N α

(b)
N ∆2

ab α
(b)
N α

(b)
N ∆2

bb

]
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3. Thermodynamic stability and normalized covariance

We define the normalized covariance by

cN (σ, τ) :=
CN (σ, τ)

N
. (48)

An Hamiltonian is said thermodynamically stable if it exists a constant c̄ < ∞ such that

lim
N→∞

cN (σ, σ) ≤ c̄. (49)

In our case, by (45), we get

cN (σ, σ) =
∑

s,p∈S
∆2

spα
(s)
N α

(p)
N q

(s)
N (σ, σ)q

(p)
N (σ, σ) ≤

∑

s,p∈S
α
(s)
N α

(p)
N ∆2

sp < ∞

and then the Hamiltonian (38) is thermodynamically stable.

4. Random partition function
The random partition function extends standard partition function for disordered systems and
reads off as

ZN :=
∑

σ

aN (σ,h)e−HN (σ), (50)

where
aN (σ,h) := exp

(∑

s∈A
h(s)

∑

i∈Λ(s)
N

σ(s)
)
, (51)

and h := (h(s))s∈A is a vector which represents an external (magnetic in the physical literature)
field acting in each party separately.
Notice that, to lighten the notation, in the l.h.s. of (50), and in the rest of the paper, we do not
write explicitly the dependence on h. With the same aim, the physical inverse temperature β,
which appears in the standard definition of the partition function, in our case is set equal to 1
with no loss of generality as it can be recovered in every moment simply by properly rescaling
the interactions parameters.

5. Random pressure
The random pressure mirrors the classical thermodynamical pressure of statistical mechanics,
suitably extended to disordered systems and reads off as

PN := logZN . (52)

6. Quenched pressure density
The main thermodynamic observable, whose extremization results in the self-consistencies of the
theory is the quenched pressure density, defined as

pN :=
1

N
EPN =

1

N
E logZN (53)
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7. Thermodynamic limit
In order to preserve averages and avoid distributions, we will be interested -whenever possible-
to the thermodynamic limit of the quenched pressure density, namely

p := lim
N→∞

pN (54)

8. Random Gibbs measure and Gibbs state

For every bounded function f : σ → R we call the Gibbs state the following r.v.

ωN (f) :=
∑

σ

f(σ)GN (σ) (55)

where

GN (σ) :=
aN (σ,h)e−HN (σ)

ZN
(56)

is called Gibbs measure.

9. n-product random Gibbs state

We consider n copies of the configuration space, denoted by σ1, . . . , σn and, for every bounded
function f : (σ1, . . . , σn) → R, we call the random n-Gibbs state the following r.v.

ΩN (f) :=
∑

σ1,...,σn

f(σ1, . . . , σn)GN (σ1) . . . GN (σn) (57)

10. Quenched equilibrium state
Lastly we define

〈f〉 := lim
N→∞

EΩN(f). (58)

4 The thermodynamical limit at fixed densities

In this section we prove, under a suitable condition, the existence of the thermodynamical limit
for the pressure per particle when the species densities are kept constant (54), i.e. the limit of

N → ∞ is defined such that ∀s ∈ S the quantity α
(s)
N = N(s)

N
= α(s) is independent of N . the

main result of this section is the following:

Theorem 1. If the matrix ∆ is positive semi-definite, then

lim
N→∞

pN = sup
N

pN ,

where the limit is taken at fixed densities.
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Notice that, since the relative densities are kept constants, the condition that ∆ is positive
semi-definite is independent of the α’s.

Proof of the Theorem. The strategy of the proof follows classical Guerra-Toninelli argu-
ments. Let us consider two non interacting and i.i.d. copies of the original system defined by
the Hamiltonian (38) of sizes respectively N1, N2. Clearly this implies that we have to consider

∀s ∈ S the relative subsets Λ
(s)
N1

,Λ
(s)
N2

defined by the equations (35),(36),(37) and such that

Λ
(s)
N1

∪ Λ
(s)
N2

= Λ
(s)
N , (59)

Λ
(s)
N1

∩ Λ
(s)
N2

= ∅, (60)

|Λ(s)
N1

| = N
(s)
1 , (61)

|Λ(s)
N2

| = N
(s)
2 , (62)

N
(s)
1 +N

(s)
2 = N (s). (63)

More explicitly, we can define, ∀s ∈ S, the following

Λ
(s)
N = {1, . . . , N (s)}, (64)

Λ
(s)
N1

= {1, . . . , N (s)
1 }, (65)

Λ
(s)
N2

= {N (s)
1 + 1, . . . , N (s)}. (66)

Consider the following interpolating Hamiltonian

HN (σ, t) =
√
tHN (σ) +

√
1− t

(
HN1(σ) +HN2(σ)

)
(67)

where

HN1(σ) = − 1√
N1

∑

s,p∈S

∑

i∈Λ(s)
N1

∑

j∈Λ(p)
N1

J
′(sp)
ij σ

(s)
i σ

(p)
j , (68)

HN2(σ) = − 1√
N2

∑

s,p∈S

∑

i∈Λ(s)
N2

∑

j∈Λ(p)
N2

J
′′(sp)
ij σ

(s)
i σ

(p)
j , (69)

and where J
′(sp)
ij and J

′′(sp)
ij are i.i.d. of J

(sp)
ij .

As usual we consider the interpolating pressure

PN (t) = E logZN (t) = E log
∑

σ∈ΣN

aN (σ,h)e−HN (σ,t), (70)

whose boundaries values are

PN (1) ≡ PN , (71)

PN (0) ≡ PN1 + PN2 , (72)

since ΣN = ΣN1 ∪ ΣN2 and ΣN1 ∩ ΣN2 = ∅.

10



Proposition 5. The t-derivative of the interpolating pressure is

∂

∂t
PN (t) = −N

2
EΩN,t

(
QN

)
,

where

QN (σ, τ) :=
(
qN ,∆qN

)
− N1

N

(
qN1 ,∆qN1

)
− N2

N

(
qN2 ,∆qN2

)
, (73)

and the vectors qN1 ,qN2 are defined as in (47).

Proof of the proposition. The computation of the t-derivative works essentially in the
same way exploited in Proposition 1 with the following identifications:

i → σ, ai → aN (σ,h), Ui → HN (σ), Ũi → HN1(σ) +HN2(σ)

The key ingredient is that the diagonal term vanishes by the condition N = N1 +N2.�

Combining the Fundamental Theorem of Calculus and the previous proposition we have that

PN − PN1 − PN2 = −N

2

∫ 1

0
dtEΩN,t

(
QN

)
. (74)

To finish the proof is sufficient to show that

Proposition 6. If the matrix ∆ is positive semi-definite, then

QN (σ, τ) ≤ 0 (75)

for every σ, τ and N .

Proof of the proposition. First at all, we write some fundamental relations.
By definitions (44), (64), (65), (66) we have that ∀s ∈ S the following hold

N (s)q
(s)
N (σ, τ) =

N(s)∑

i=1

σ
(s)
i τ

(s)
i =

N
(s)
1∑

i=1

σ
(s)
i τ

(s)
i +

N(s)∑

N(s)+1

σ
(s)
i τ

(s)
i

then

q
(s)
N (σ, τ) =

N
(s)
1

N (s)
q
(s)
N1

(σ, τ) +
N

(s)
2

N (s)
q
(s)
N2

(σ, τ).

Now we observe that by (??) we have that

N
(s)
1

N (s)
=

N
(s)
1

N1

N

N (s)

N1

N
=

α(s)

α(s)

N1

N
=

N1

N
,

and in a similar fashion
N

(s)
2

N (s)
=

N2

N
,

then ∀s ∈ S the following holds

q
(s)
N (σ, τ) =

N1

N
q
(s)
N1

(σ, τ) +
N2

N
q
(s)
N2

(σ, τ). (76)
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In vector notation we can write

qN =
N1

N
qN1 +

N2

N
qN2 . (77)

It’s easy to see that if ∆ is a positive semi-definite, real, symmetric matrix, hence the function

x →
(
x,∆x

)

defined for x ∈ R
S is convex and the conclusion follows straightforwardly from the relation (77).�

This proposition, combined with equation (74) gives immediately the superaddivity property
of the pressure. As a consequence, since the quenched pressure density is bounded from the
annealed one (see section 5), then by Fakete’s lemma we get the statement of the Theorem.�

5 The annealed bound

As a first analysis we can study the annealed approximation for the pressure and investigate in
which case it is exact. Using Jensen inequality and the concavity of the function x → log(x) we
define the annealed approximation as a bound, i.e.

pN =
1

N
E logZN ≤ 1

N
logEZN = pAN . (78)

We can easily write pAN as

pAN =
1

N
log
∑

σ

Ee−HN (σ) =
1

N
log
∑

σ

e
1
2
CN (σ,σ) =

1

N
log
∑

σ

e
N
2
(1,∆1)

= log 2 +
1

2
(1,∆1). (79)

We define the ergodic regime as the region of the phase space in which

lim
N→∞

1

N
E logZN = lim

N→∞
1

N
logEZN = pA = log 2 +

1

2
(1,∆1). (80)

For this purpose we can use the second moment method checking when

E(Z2
N )

E2(ZN )
≤ C < ∞ (81)

for some constant C ∈ R, uniformly in N . Since

E(Z2
N ) = E

∑

σ,τ

e−HN (σ)−HN (τ) =
∑

σ,τ

e
1
2
E(HN (σ)+HN (τ))2

=
∑

σ,τ

eN((1,∆1)+(qN ,∆qN )) = E
2(ZN )2−2N

∑

σ,τ

eN(qN ,∆qN ) (82)

and using the gauge transformation τ
(s)
i → σ

(s)
i τ

(s)
i ,

E(Z2
N )

E2(ZN )
= 2−2N

∑

σ,τ

eN(mN (τ),∆mN (τ)) = 2−N
∑

τ

eN(mN (τ),∆mN (τ)), (83)
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where we define mN (τ) =
(
m

(s)
N (τ)

)
s∈S

, with m
(s)
N (τ) = 1

N(s)

∑N(s)

i=1 τ
(s)
i . If det∆ > 0 we can

linearize the quadratic form with a gaussian integration

E(Z2
N )

E2(ZN )
=

2−N

√
det∆

∫
dz

2π
e−

1
2
(z,∆−1z)

∑

τ

e
√
2N(mN (τ),z)

=
1√

det∆

∫
dz

2π
e−

1
2
(z,∆−1z)

∏

s∈A
coshN

(s)

(√
2N

N (s)
z(s)

)

=
1√

det(∆)

∫
dz

2π
e−

1
2
(z,∆−1z)e

∑
s∈S N(s) log cosh

(√
2N

N(s)
z(s)

)

(84)

and, using the inequality log cosh(x) ≤ x2

2 , we obtain

E(Z2
N )

E2(ZN )
≤ 1√

det(∆)

∫
dz

2π
e−

1
2
(z,∆̂z), (85)

where we have defined
∆̂ = ∆−1 − 2α−1 (86)

and the diagonal matrix α = diag({α(s)}s∈S). Thus we have just proved the following

Theorem 2. In the convex region, defined as det∆ > 0, as soon as ∆̂ is positively defined, the
pressure of the model does coincide with the annealed approximation, i.e.

p = lim
N→∞

1

N
E logZN = lim

N→∞
1

N
logEZN = pA = log 2 +

1

2
(1,∆1). (87)

Remark 1. Note that such a region does exist and can be viewed as an high temperature region.
The two regions det∆ > 0 and ∆̂ > 0 have a non-zero measure intersection, because, while the
first is a condition on the relative size of the covariances, the latter is related to their absolute
amplitude. Indeed once fixed α and ∆ satisfying det∆ > 0, we can rescale all the covariances
with a parameter β, which play the role of the inverse temperature of the system, i.e. ∆ss′ →
β∆ss′, ∀s, s′ ∈ S, leaving the relative sizes unaltered and the condition det∆ > 0 is still satisfied,
such that ∆̂ → β−S∆−1 − 2α−1 is positively defined for β small enough 1.

6 The Replica Symmetric bound

We know from the mathematical theory of Sherrington Kirkpatrick model that the whole in-
formation about the model is encoded in its covariance matrix. In particular, the study of the
replica symmetric solution can be viewed as a comparison between the normalised covariance
matrix and a trial parameter. In order to define the replica symmetric solution in the multi-
species case, as outlined in Section 2, we can think the overlap as a vector in R

S and then the
normalised covariance matrix can be viewed as quadratic form:

cN =
(
qN ,∆qN

)
.

1Since ∆ is positively defined then also ∆
−1. Defining a = maxs α

(s) and ρ the smallest eigenvalue of ∆−1,

then, for any non-null vector z, (z, ∆̂z) ≥ (β−Sρ− a)(z, z) > 0 if βS < ρ/a.
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The idea is then to compare the overlap vector with a trial vector,

qtrial :=
(
q(s)
)
s∈S

∈ R
S
+. (88)

More explicitly, we want to construct an interpolating Hamiltonian such that the derivative of
the interpolating pressure is proportional to

(
(qN − qtrial),∆(qN − qtrial)

)
= cN − 2

(
qN ,∆qtrial

)
+
(
qtrial,∆qtrial

)
. (89)

We can define the trial replica symmetric solution as

pRS(qtrial) := log 2 +
∑

s∈S
α(s)p(s)(qtrial) +

1

2

(
(1− qtrial),∆(1 − qtrial)

)
, (90)

where

p(s)(qtrial) :=

∫
dµ(z) log cosh

(√ 2

α(s)
Ps

(
∆qtrial

)
z + h(s)

)
, (91)

and
z ∼ N (0, 1).

The main result of this section is the following

Theorem 3. The following sum rule holds

pN = pRS(qtrial)−
1

2

∫ 1

0
EΩN,t

(
(qN − qtrial),∆(qN − qtrial)

)
. (92)

Moreover, if the matrix ∆ is positive semi-definite, then the following bound hold

pN ≤ pRS(qtrial), (93)

whose optimization gives
pN ≤ inf

qtrial

pRS(qtrial). (94)

Proof of the Theorem. Clearly the only result to be proved is (92), the rest follows
straightforwardly and the strategy is to apply the interpolation scheme outlined in Section 2.1.
To this task, let us consider the following interpolating Hamiltonian

HN (σ, t) :=
√
tHN (σ) +

√
1− tHN (σ,qtrial) (95)

with
HN (σ,qtrial) :=

∑

s∈S
H

(s)
N (σ(s),qtrial) (96)

where HN (σ) is the Hamiltonian of the model defined in (38) and H
(s)
N (σ,qtrial) are two inde-

pendent one-body interaction Hamiltonian, defined as

H
(s)
N (σ(s),qtrial) := −

√
2

√
Ps

(
∆qtrial

) 1√
α(s)

∑

i∈Λ(s)
N

J
(s)
i σ

(s)
i (97)
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where Ps is the canonical projection operator in R
S introduced in Section 2 and the J ’s are

Gaussian i.i.d. r.v., independent of the other r.v., such that for every s, i we have that

E(J
(s)
i ) = 0 (98)

and
E(J

(s)
i J

(s′)
i′ ) = δss′δii′ . (99)

After simple computations, we get

E

(
H

(s)
N (σ(s),qtrial)H

(s′)
N (τ (s

′),qtrial)
)
= 2Nδss′Ps

(
∆qtrial

)
Ps

(
qN

)
,

and then, by (13), the covariance matrix of the trial Hamiltonian becomes

E

(
HN (σ,qtrial)HN (τ,qtrial)

)
= 2N

∑

s∈S
Ps

(
∆qtrial

)
Ps

(
qN

)
= 2N

(
qN ,∆qtrial

)
.

Lastly we define the interpolating pressure as

pN (t) :=
1

N
E log

∑

σ

aN (σ,h)e−HN (σ,t). (100)

Proposition 7. The boundary values of pN (t) are

pN (1) = pN , (101)

pN (0) = log 2 +
∑

s∈S
α(s)p(s)(qtrial), (102)

Proof of the proposition. The boundary value at t = 1 it’s obvious, on other hand at
t = 0 the sum over the σ’s and the disorder average factorize in the space of species, then we
can compute separately each contribution to the interpolating pressure.�

The key result is the following

Proposition 8. The t-derivative of pN (t) is

∂

∂t
pN (t) =

1

2

(
(1− 2qtrial),∆1

)
− 1

2
EΩN,t

(
cN − 2

(
qN ,∆qtrial

))
. (103)

Proof of the proposition. The proof is a simple application of Proposition 11, with the
identifications i → σ, ai → aN (σ,h), Ui → HN (σ), Ũi → HN (σ,qtrial).
The conclusion is a straightforward computation.�

Finally, combining Proposition 7 and 8 and keeping in mind (89) we complete the proof of
the Theorem.�
The optimization of (94) on qtrial, gives a system of S coupled self consistent equations, i.e.
∀p ∈ S

∑

s∈S
∆ps

[∫
dµ(z) tanh2

(√ 2

α(s)
Ps(∆qtrial)z

)
− q(s)

]
= 0, (104)
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This system admits a unique solution as soon as det(∆) 6= 0, thus whenever det(∆) > 0,
pRS(qtrial) has a minimum in qtrial = q̄ satisfying ∀s ∈ S

q̄(s) =

∫
dµ(z) tanh2

(√ 2

α(s)
Ps(∆q̄)z

)
= 〈Ps(q)〉t=0 (105)

The last equalities can be easily checked thanks to the factorizability of the one-body problem
at t = 0. In other words, the value of qtrial minimizing the overlap’ s fluctuations of the original
model (at t = 1) is just the overlap’s mean of the interpolating one-body trial at t = 0.

Let show now how the replica symmetric bound violate the entropy positivity at low temper-
atures. Mirroring the historical scenario for mono-partite spin-glasses, we can easily check that
the replica symmetric expression for the pressure (94) is not the exact solution of the model in
the low temperature region by studying the behavior of the entropy. We can define it as the
non-negative quantity

s(∆) = lim
N→∞

sN (∆) = − 1

N
E

∑

σ

GN (σ,∆) log(GN (σ,∆)), (106)

where GN (σ,∆) = Z−1
N (∆)e−HN (σ,∆) is the Boltzmann measure. Notice that, unlike before, we

have write explicitly the dependance on the matrix ∆ . Since sN (∆) = pN (∆)− 1
N
〈H(σ)〉N , we

can write

s(∆) = p(∆)− d

dλ
p(λ∆)|λ=1. (107)

Now we can define sRS(∆) = pRS − d
dλ
pRS(λ∆)|λ=1. We can easily show that if the amplitude

of the covariances is large enough, sRS(∆) is strictly negative. Indeed, we have the following

Proposition 9. In the regime of large covariances (low temperatures), the RS-entropy is strictly
negative, i.e.

lim
β→+∞

sRS(β∆) < 0,

for any choice of ∆ with (det(∆) > 0) and α, where β ∈ R
+ play the role of the inverse

temperature.

Proof of the proposition: Using its definition

sRS(β∆) = pRS(β∆, q̄)− ∂

∂λ
pRS(λβ∆, q̄)|λ=1.

We note that, using (105), in the limit β → +∞, the optimized order parameters q̄ → 1.
Explicating the derivative it is easy to see that

lim
β→+∞

sRS(β∆) = lim
β→+∞

−β2

2
((1− q̄),∆(1− q̄)) ≤ 0
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Finally we can state that the limit is strictly negative, using again (105) and noting that

lim
β→+∞

β(1 − q̄(s)) = lim
β→+∞

β

∫
dµ(z)

(
1− tanh2

(
β

√
2

α(s)
Ps

(
∆q̄
)
z
))

= lim
β→+∞

1√
2

α(s)Ps

(
∆q̄
)
∫

dµ(z)z tanh
(
β

√
2

α(s)
Ps

(
∆q̄
)
z
)

=

∫
dµ(z)|z|√
2

α(s)Ps

(
∆1
) > 0 �.

The existence of a negative RS-entropy regime is a clear signal that the model is not always
replica symmetric (certainly it is RS inside the annealed region defined in Theorem 2) but there
exists a region in which the pressure p(∆) is strictly lower than its RS bound pRS(∆).

7 The Broken Replica Symmetry bound

In the mono-partite spin-glass model, as explained for instance in [12], the RSB interpolation
is defined trough a non-decreasing, piecewise constant function x(q) : [0, 1] −→ [0, 1] which
represents the order parameter of the model. A smart use of Proposition 3, lead to the proof
that the Parisi’s solution is an upper bound for pressure of the Sherrington-Kirkpatrick model.
One of the key points of the proof of this remarkable achievement, is that the function x(q)
intrinsically defines a non decreasing sequence (ml)l=0,...,K+1, thus enabling the control of the
sign of the r.h.s. of (26). In the multipartite case, keeping in mind Proposition 4, the core idea
is to define the order parameter as a piecewise constant, right continuous, function

x(u) : [0, 1]S → [0, 1], (108)

such that the corresponding sequence (ml)l=1,...,K is non decreasing.
The explicit construction of the order parameter is the following. We choose the sequence Γ,
which leads to Proposition 4, as

Γ = (ql)l=0,...,K :=
(
q
(s)
l

)
s∈S,l=0,...,K

∈ R
S
+ (109)

such that for each s ∈ S, we have

0 = q
(s)
0 ≤ q

(s)
1 ≤ · · · ≤ q

(s)
K−1 ≤ q

(s)
K = 1.

Roughly speaking Γ defines a path with K steps in [0, 1]S which is non decreasing in each
direction.
Clearly we take (m0, ...,mK+1) such that 0 = m0 ≤ m1 ≤ · · · ≤ mK ≤ mK+1 = 1.
If we denote by θ(·) the right continuous Heaviside function, we define the functional order
parameter as

x(u) :=

K∑

l=0

(ml+1 −ml)
∏

s∈S
θ(u(s) − q

(s)
l ) (110)
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where u = (u(s))s∈S is vector in [0, 1]S .
The function x defines an S-dimensional shape, that in the case of S = 2, looks like a ziggurat2:
this can be easily understood trough the following relations, for each p ∈ S we have that:

x(u)
∣∣∣
u(p)=q

(p)

l′
=

l′∑

l=0

(ml+1 −ml)
∏

s 6=p

θ(u(s) − q
(s)
l ).

In particular we can compute, for each p ∈ S, the marginal values of x

x(u(p)) := x(u)
∣∣∣
u(s)=1,s 6=p

=

K∑

l=0

(ml+1 −ml)θ(u
(p) − q

(p)
l ).

In the RS solution, as explained in Section 4, a crucial role is played by the action of the
matrix ∆ on the trial vector parameter. For this reason, it is useful to introduce, for each s ∈ S
and l = 0, . . . ,K, the following quantity:

Q
(s)
l =

2

α(s)
Ps

(
∆ql

)
(111)

which is a non decreasing sequences in l, in other words for each l ≥ l′ we have that

Q
(s)
l −Q

(s)
l′ =

2

α(s)
Ps

(
∆(ql − ql′)

)
≥ 0. (112)

To complete the picture we need to introduce a transformed order parameter, roughly speaking
the transformation (111) on the order parameter (110), namely

x∆(u) :=

K∑

l=0

(ml+1 −ml)
∏

s∈S
θ(u(s) −Q

(s)
l ) (113)

defined for u ∈ ×s∈S [0, Q
(s)
K ].

We define the trial RSB pressure as

pRSB(x) := log 2 +
∑

s∈S
α(s)f (s)(0, h(s))− 1

2

∫

Γ̃
x(u) ∇u

(
u,∆u

)
· du (114)

where, for each s ∈ S, f (s)(u(s), y) is the solution of the following Parisi’s PDE

∂f (s)

∂u(s)
+

1

2

∂2f (s)

∂y2
+

1

2
x∆(u(s))

(∂f (s)

∂y

)2
= 0 (115)

where x∆(u(s)) is the marginal value of the transformed order parameter and the boundary
condition is

f (s)(Q
(s)
K , y) = log cosh(y). (116)

The integral in (114) is a line integral on an arbitrary path Γ̃ in the plan u, starting from 0 and
ending in 1, such that all the points (ql)l=0,...,K belong to Γ, in other words Γ ∈ Γ̃.

The main result of this section is the following

2Ziggurats are pyramid-like structures found in the ancient Mesopotamian valley and western Iranian plateau.
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Theorem 4. The following sum rule holds

pN = pRSB(x)−
1

2

K∑

l=0

(ml+1 −ml)

∫ 1

0
dt
〈
(qN − ql),∆(qN − ql)

〉
N,l,t

. (117)

Moreover if the matrix ∆ is positive semi-definite we have the following bound

pN ≤ pRSB(x),

and the optimization gives
pN ≤ inf

x
pRSB(x).

Proof of the Theorem. It is enough to show that (117) holds, then we have straightforward
conclusions. The strategy is to apply the RSB interpolation scheme introduced in Section 2.
We define the interpolating Hamiltonian as

HN (σ, t) :=
√
tHN (σ) +

√
1− t

K∑

l=1

H l
N (σ,ql), (118)

with
H l

N(σ,ql) :=
∑

s∈S
H

l,(s)
N (σ(s),ql), (119)

where HN(σ) is the original Hamiltonian and, for each l, H
l,(s)
N (σ(s),ql) are two independent

one-body interaction Hamiltonian, defined as

H
l,(s)
N (σ(s),ql) := −

√
2

√
Ps

(
∆(ql − ql−1)

) 1√
α(s)

∑

i∈Λ(s)
N

J
l,(s)
i σ

(s)
i (120)

where the J ’s are Gaussian i.i.d. r.v., independent of the other r.v., such that for every l, s and
i we have that

E(J
l,(s)
i ) = 0 (121)

and
E(J

l,(s)
i J

l′,(s′)
i′ ) = δll′δss′δii′ . (122)

After simple computations, we get

E

(
H

l,(s)
N (σ(s),ql)H

l′,(s′)
N (τ (s

′),ql)
)
= δll′δss′2NPs

(
∆(ql − ql−1)

)
Ps

(
qN

)

and then by (13) the covariance matrix of the trial Hamiltonian becomes

E

(
H l

N (σ,ql)H
l′
N (τ,ql′)

)
= δll′2N

∑

s∈S
Ps

(
∆(ql − ql−1)

)
Ps

(
qN

)
= δll′2N

(
(ql − ql−1),∆qN

)
.

We can introduce the RSB interpolation scheme with the following identifications i → σ, ai →
aN (σ,h), Ui → HN (σ), B

l,(s)
i → H

l,(s)
N (σ(s),ql),

in order to define the interpolating pressure as in Proposition 4

pN (t) :=
1

N
E logZ0,N (t). (123)

Then we have the following
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Proposition 10. The boundary values of pN (t) are

pN (1) = pN , (124)

pN (0) = log 2 +
∑

s∈S
α(s)f (s)(0, h(s)), (125)

where f (s)(u(s), h(s)) is the solution of the Parisi’s PDE (115).

Proof of the proposition. The boundary value at t = 1 is obvious; on other hand at t = 0
the sum over the σ’s and the disorder average factorize over the species and we can compute
separately each contribution to the interpolating pressure, obtaining

pN (0) =
∑

s∈A
p
(s)
0 (ql)

where p
(s)
0 (ql) are defined recursively as in Proposition 4 with

p
(s)
K (ql) = 2α

(s)
coshα

(s)
[ K∑

l=1

√
2√

α(s)

√
Ps

(
∆(ql − ql−1)

)
zl + h(s)

]

and for each l
zl ∼ N (0, 1).

It is immediate to check that p
(s)
0 (ql) = α(s)(log 2 + f (s)(0, h(s)) where f (s)(u(s), h(s)) is defined

in(115). �

In order to apply the interpolation argument we have to compute the t-derivative of the
interpolating pressure, which leads to the following

Proposition 11. The t-derivative of pN (t) is

∂

∂t
pN (t) = −1

2

(
1,∆1

)
− 1

2

K∑

l=0

(ml+1 −ml)
〈(

cN − 2
(
qN ,∆ql

))〉
N,l,t

. (126)

Proof of the proposition. The proof is a simple application of Proposition 4, observing
that

K∑

l=1

(
(ql − ql−1),∆1

)
=
(
1,∆1

)
,

and
l∑

l′=0

(
qN ,∆(ql′ − ql′−1)

)
=
(
qN ,∆ql

)
,

and then the conclusion is straightforward.�
In order to complete the proof of the Theorem, we still need the following equivalence

Proposition 12. The following representation holds

−1

2

(
1,∆1

)
+

1

2

K∑

l=0

(ml+1 −ml)
(
ql,∆ql

)
= −1

2

∫

Γ̃
du x(u) ∇u

(
u,∆u

)
· du.
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Proof of the proposition. We can use the explicit definition of x(u) given in (110) to
compute

−1

2

∫

Γ̃
x(u) ∇u

(
u,∆u

)
· du = −1

2

K∑

l=0

(ml+1 −ml)

∫

Γ̃

∏

s∈S
θ(u(s) − q

(s)
l ) ∇u

(
u,∆u

)
· du =

= −1

2

K∑

l=0

(ml+1 −ml)

∫

Γl

∇u

(
u,∆u

)
· du

where Γl is the result of the action of the θ’s on the path Γ̃, that is his component between the
points ql and 1. By the Gradient’s Theorem, the result of the integral is path independent and
is equal to the increment of the potential function, then finally we obtain

−1

2

∫

Γ̃
du x(u) ∇u

(
u,∆u

)
= −1

2

K∑

l=0

(ml+1 −ml)
[(

1,∆1
)
−
(
ql,∆ql

)]
=

= −1

2

(
1,∆1

)
(mK+1 −m0) +

1

2

K∑

l=0

(ml+1 −ml)
(
ql,∆ql

)

that is the desired result. �

Finally, combining Proposition 10, 11 and 12 we obtain the proof of the Theorem.�

The RSB bound achieved by Theorem 4 and the corresponding ziggurat-like order parameter,
includes the RS bound (Theorem 3 ) in the case of K = 2, m1 = 0,m2 = 1 and q1 = qtrial and
improves it.
However it is quite natural to ask if the ziggurat − ansatz we introduced contains the exact
solution of the model in each point (∆, α) when ∆ is positive semidefinite. This is an hard
question on which we are not able to give a complete proof, but we can at least show that the
ziggurat − ansatz is able to reproduce limits under control. Let us consider for simplicity the
case of two non interacting species that corresponds to a system composed of two independent
SK models. From the results by Guerra and Talagrand [12, 17] we know that, since the species
are decoupled, the pressure is given by the sum of two independent Parisi’s solutions. We can
prove (see last section), that the previous solution is contained in the ziggurat-RSB variational
principle, and this is our claim of consistency.

We stress however that, while we recovered through our ansatz the known limit of decoupled
spin-glasses -which is somehow trivial (at least physically)- the ziggurat prescription is able to
tackle the complexity of their mutual interaction, if the latter does not exceed a threshold where
the strength of the off-diagonal terms prevails on the inter-party interactions. The latter is
intrinsically different because the model approaches the Hopfield model for neural network [6],
on which we plan to report soon.

8 The decoupled RSB Ziggurat ansatz

In this section we show that the ziggurat−ansatz contain the solution of the case of two species
S = {a, b} with ∆ab = 0, that corresponds to a system composed of two independent SK models,
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with sizes α(s)N and at inverse temperatures βs =
√
2α(s)∆ss, with s ∈ {a, b}. We know that

the pressure of the model is given by

p(∆, α) =
∑

s∈S
α(s)pSK(βs), (127)

where pSK(β) = infx(q) p
Parisi(β;x(q)) is the Parisi full-RSB solution of the Sherrington-Kirkpatrick

model with

pParisi(β;x(q)) = log 2 + f(0, 0;β, x(q)) − β2

2

∫ 1

0
dq qx(q) (128)

and f(q, y;β, x(q)) satisfying the Parisi equation

∂qf +
1

2
∂2
yf +

1

2
x(q)(∂yf)

2 = 0, (129)

with the boundary condition f(1, y) = log cosh(βy).
A basic observation is the following.
Consider for each s ∈ {a, b} an integer K(s) and two non decreasing sequences

m(s) := (m
(s)
l )l=0,...,K(s)+1

with m
(s)
0 = 0 and m

(s)

K(s)+1
= 1, and

p(s) := (p
(s)
l )l=0,...,K(s)

with p
(s)
0 = 0 and p

(s)
K = 1 . Then the following proposition holds

Proposition 13. Given, for each s ∈ {a, b}, the above sequences m(s) and p(s), there exists a
suitable integer K, such that we can always construct a non decreasing sequence

(ml)l=0,...,K+1

with m0 = 0,mK+1 = 1 and a sequence of points

Γ = (ql)l=0,...,K :=
(
q
(a)
l , q

(b)
l

)
l=0,...,K

∈ R
2
+

such that for each s ∈ {a, b}, we have

0 = q
(s)
0 ≤ q

(s)
1 ≤ · · · ≤ q

(s)
K−1 ≤ q

(s)
K = 1,

and if

x(u) =

K∑

l=0

(ml+1 −ml)θ(u
(a) − q

(a)
l )θ(u(b) − q

(b)
l ), (130)

then the marginals are

x(u(s)) =

K(s)∑

l=0

(m
(s)
l+1 −m

(s)
l )θ(u(s) − p

(s)
l ).
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Proof of the Proposition: The proof works by explicit construction. We can assume with-

out loss of generality that the sequences of m
(s)
l and ml are strictly increasing.

We define the following sets

M = {m(a)
1 ,m

(b)
1 , . . . ,m

(a)

K(a),m
(b)

K(b)},

and
D := {x, y ∈ M : x = y},

and the integer

KD :=
1

2
|D|,

namely the number of equal elements in M .
Setting K = K(a) +K(b) −KD, we define recursively the following strictly increasing sequence

mK+1 := 1, (131)

ml := max
(
M\

⋃

l′=l+1,...,K

{ml′}
)
, (132)

m0 := max
(
∅
)
:= 0. (133)

We define
D(s) := {l : ∃! l′ : m(s)

l′ = ml}
the uniqueness follows from the hypothesis of strictly increasing sequence. Clearly we have that

{1, . . . ,K} =
⋃

s∈{a,b}
D(s)

and |D(s)| = K(s).
We denote by

ql :=
(
q
(s)
l

)
s∈{a,b}

,

and we set qK = (1, 1) = 1, q0 = (0, 0) = 0 and for each l ∈ {1, . . . K} and s ∈ {a, b} we define

q
(s)
l =

{
q
(s)
l−1 l /∈ D(s)

p
(s)
l′ l ∈ D(s)

It is easy to see by simple inspection starting from q
(s)
0 = 0 that the above sequence is not

decreasing:
Let us fix s ∈ {a, b}, then by definition we have that

x(u(s)) = mK+1θ(u
(s) − q

(s)
K )−

K∑

l=1

ml

(
θ(u(s) − q

(s)
l )− θ(u(s) − q

(s)
l−1)

)
.

Let us fix an l0 /∈ D(s) then by definition

q
(s)
l0

= q
(s)
l0−1.
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Then

x(u(s)) = mK+1θ(u
(s) − q

(s)
K )−

K∑

l=1,l 6=l0

ml

(
θ(u(s) − q

(s)
l )− θ(u(s) − q

(s)
(l−1)0

)
)
,

where (l − 1)0 denote previous element of l excluding l0. After a repeated application of the
previous argument we get

x(u(s)) = mK+1θ(u
(s) − q

(s)
K )−

K∑

l∈D(s)

ml

(
θ(u(s) − q

(s)
l )− θ(u(s) − q

(s)
(l−1)D

)
)
,

where (l − 1)D denote the previous element of l in D(s).
Clearly we have that if l ∈ D(s), then by definition

q
(s)
l = p

(s)
l′ , q

(s)
(l−1)D

= p
(s)
l′−1, ml = m

(s)
l′ ,

hence

x(u(s)) = mK+1θ(u
(s) − q

(s)
K )−

K(a)∑

l′=1

m
(s)
l′

(
θ(u(s) − p

(s)
l′ )− θ(u(s) − p

(s)
l′−1)

)
.

Since m
(s)
K+1 = mK+1, m

(s)
K+1 = mK+1, q

(s)
0 = 0 q

(s)
K = 1 then we get the thesis �.

The meaning of the previous Proposition is that the set of all possible ziggurat order parame-
ters is surely able to reproduce the situation of two arbitrary decoupled one dimensional order
parameters which is precisely the case of ∆ab = 0. However the fact that we can recover two
decoupled Parisi’s solutions is not immediate. We show briefly how this happens. Consider for
example the species a, in the case ∆ab = 0, the relation (111) becomes

Q
(a)
l = β2

aq
(a)
l

The Parisi’s PDE for the party a is

∂f (a)

∂u(a)
+

1

2

∂2f (a)

∂y2
+

1

2
x∆(u(a))

(∂f (a)

∂y

)2
= 0 (134)

with boundary condition

f (s)(Q
(s)
K , y) = log cosh(y) (135)

and can be rewritten in the standard Parisi’s form by setting

u(a) = β2
aq y = βay

′

and then by Proposition 13 we know that there exists a choice of the ziggurat such that

x∆(u(a)) = xa(q) =

K(a)∑

l=0

(m
(a)
l+1 −m

(a)
l )θ(q − p

(a)
l ).

The same argument holds for the partite b, hence we have proved that the ziggurat ansatz can
describe two decoupled solutions of the Parisis’s PDE. It remains two show that also the integral
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over the path is decoupled in the same way.
For this purpose we observe that, in the case of ∆ab = 0, we have

−1

2

∫

Γ̃
du x(u) ∇u

(
u,∆u

)
=
∑

s∈A

[
− α(s)β2

s

4
(mK+1 −m0) +

α(s)β2
s

4

K∑

l=0

(ml+1 −ml)(q
(s)
l )2

]

Consider for example the party a, then the following holds

K∑

l=0

(ml+1 −ml)(q
(a)
l )2 = mK+1 −

K∑

l=1

ml

[
(q

(a)
l )2 − (q

(a)
l−1)

2
]

The r.h.s. of the previous relation can be rewritten, by the same argument which leads to the
proof of Proposition 13, as

K(a)∑

l=0

(m
(a)
l+1 −m

(a)
l )(p

(a)
l )2

then

−α(a)β2
a

4

[
(mK+1 −m0)−

K∑

l=0

(ml+1 −ml)(q
(a)
l )2

]
= −α(a)β2

a

2

∫ 1

0
dq q xa(q).

Clearly the same argument hold for the species b.
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