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We develop a geometric representation for the ground state of the spin-1/2 quantum XXZ
ferromagnetic chain in terms of suitably weighted random walks in a two-dimensional lattice.
The path integral model so obtained admits a genuine classical statistical mechanics inter-
pretation with a translation invariant Hamiltonian. This new representation is used to study
the interface ground states of the XXZ model. We prove that the probability of having a
number of down spins in the up phase decays exponentially with the sum of their distances
to the interface plus the square of the number of down spins. As an application of this
bound, we prove that the total third component of the spin in a large interval of even length
centered on the interface does not fluctuate, i.e. has zero variance. We also show how to
construct a path integral representation in higher dimensions and obtain a reduction for-
mula for the partition functions in two dimensions in terms of the partition function of the
one-dimensional model.

Keywords: Heisenberg XXZ model, interface ground state, path integral representation,
fluctuations, q-counting problems.

1. Introduction

The advantages of a path integral representation for quantum models have been well

known since the advent of the Feynman–Kac formula. It allows a non-commutative

algebra of observables, with its hard algebraic problems, to be replaced by a classical

configuration space of paths with given probability weights, thereby reducing the

computational problem to a probabilistic and combinatorial one.

In this paper we develop a geometric representation in terms of random paths

in two dimensions for the one-dimensional spin-1/2 quantum XXZ ferromagnetic

model with Hamiltonian

H =
∑
x

−
(

2

q + q−1
(S(1)
x S

(1)
x+1 + S(2)

x S
(2)
x+1)

− (S(3)
x S

(3)
x+1 − 1/4)− q−1 − q

2(q−1 + q)
(S(3)
x − S

(3)
x+1)

)
, (1.1)
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where Six are the usual Pauli spin matrices and 0 < q < 1 is a parameter that

measures the anisotropy. We would like to stress, however, that in our geometric

representation the second dimension does not correspond to imaginary time, but

rather to the third component of the total spin. As in [1], the fact that properties

related to the local spin are represented geometrically makes it possible to derive

rather strong properties about the correlations in the ground state.

It is well-known that the model (1.1) has interface ground states [2, 3]. In any

subspace with a fixed number of down spins, which we will call the “canonical

esemble”, the antiparallel boundary fields are sufficient to induce phase separation:

up to order one fluctuation all up spins collect at one side of the interval (the left

side, in the present case).

In this paper we study the correlations in these interface ground states, extending

unpublished results by Koma and Nachtergaele [4]. Our main result is a bound on

the probability of finding a number of down spins in the up phase at a given distance

of the interface.

Exponential bounds on the correlations. In the canonical ensemble in a volume

[1, N ], with n spins down, the probability of finding v down spins located at

x1, . . . , xv is bounded, uniformly in the volume, by

Prob(Szx1
= ↓, . . . , Szxv = ↓) ≤ qv(v−1)+2

∑
v

k=1
(xk−n) , (1.2)

with xk − n being interpreted as the distance of the spin at xk to the interface.

This bound is similar to the “ferromagnetic string formation probability”, cal-

culated for antiferromagnetic XXZ chain in [5]. As an application of this bound, we

prove (See Theorem 7.2) that the total third component of the spin in a large inter-

val of even length centered on the interface does not fluctuate in the limit that the

interval tends to infinity, i.e. the distribution of this quantity tends to a Kronecker

delta. This is an a priori surprising result. A possible interpretation is that the

fluctuations of the interface can be thought of as being “bound” to the interface

and occurring in pairs, similar to particle-hole pairs.

The paper is organized as follows. In Sec. 2, we introduce path integral models

for weighted random walk in two dimensions. In Sec. 3, we show how to relate

the ground state property of the quantum model to the correlation functions of a

suitable weighted random walk. A classical statistical mechanics interpretation of

the path integral model is introduced in Sec. 4. In Sec. 5, we prove a Markov-type

property for the partition functions and also the action of the translation group.

In Secs. 6 and 7, we prove the bound (1.2) and apply it to the fluctuations of the

third component of the spin. In Sec. 8, we consider higher dimensional models and

prove a dimensional reduction formula for the partition functions in two-dimensions

in terms of the partition functions of the one-dimensional model.

2. Path Integral Models in the Two-Dimensional Lattice

Let Z2
+ be the set of points in the positive quadrant of the two-dimensional lattice

Z2. A “zig-zag” path from the origin (0, 0) to some final point (n,m) is a connected
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L

L

(n,m)

Fig. 1. Three paths on Z2
+ from the origin to (n,m).

path in Z2
+ monotonically increasing in both coordinates. Its length (the sum of the

steps) is equal to L = n+m, as shown in Fig. 1. A path integral model on Z2
+ is a

law that associates positive weights w(p) to each path p in the lattice.

We denote by P(n,m) the set of all paths from the origin to a point (n,m) and

define the canonical partition function

Z(n,m) =
∑

p∈P(n,m)

w(p) . (2.1)

This formalism can be extended to “zig-zag” paths which go from any arbitrary

origin (n′,m′) to the final point (n,m) with n′ ≤ n and m′ ≤ m. We call this set of

paths P(n′,m′;n,m), and define a generalized partition function by

Z(n′,m′;n,m) =
∑

p∈P(n′,m′;n,m)

w(p) . (2.2)

In path integral models, correlation functions measure the probability that a path

goes through particular points (x1, y1), (x2, y2), . . . , (xr, yr). The one-point correla-

tion function is defined as the probability of crossing the point (x, y),

Pn,m(x, y) =
Z(n,m|x, y)
Z(n,m)

, (2.3)

where

Z(n,m|x, y) =
∑

p∈P(n,m)(x,y)

w(p) (2.4)

and P(n,m)(x, y) is the set of paths from the origin to (n,m) that pass through the

point (x, y). More generally, we can define

Pn,m(x1, y1; . . . ;xr, yr) =
Z(n,m|x1, y1; . . . ;xr, yr)

Z(n,m)
, (2.5)

where

Z(n,m|x1, y1; . . . ;xr, yr) =
∑

p∈P(n,m)(x1,y1;...;xr,yr)

w(p) (2.6)

and P(n,m)(x1, y1; . . . ;xr , yr) denotes the set of paths that pass through the par-

ticular points (x1, y1), (x2, y2), . . . , (xr, yr).
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In this framework, we consider models for which the weight w(p) is a local

function of the bonds that the path is passing through. Denoting by B2
+ the set

of bonds in Z2
+, we associate a positive number w(b) to each element b of B2

+ and

define

w(p) =
∏
b∈p

w(b) . (2.7)

This formalism admits a generalization when, instead of restricting the paths to

reach one final point, we extended it to all paths of given length L = n + m

(the grand-canonical ensemble). In this way we define the grand-canonical partition

function

Z̃(L) =
∑
p∈PL

w̃(p) , (2.8)

where PL =
⋃
n+m=L Pn,m.

The relation between the partition functions (2.1) and (2.8) is made particularly

useful when we chose w̃(p) = znw(p), where n is the horizontal displacement of p.

In this case we get the following generating function relation

Z̃(L)(z) =
L∑
n=0

znZ(n,L− n) . (2.9)

3. The One-Dimensional Spin-1/2 XXZ Ferromagnetic Model

The path integral formalism developed in the previous section provides a geometric

representation for interface ground state of quantum spin systems governed by the

XXZ Hamiltonian.

In one-dimension, the Hamiltonian for the spin-1/2 XXZ ferromagnetic chain of

length L with special boundary terms is given by [2, 3],

HL =
L−1∑
x=1

hx,x+1 , (3.1)

where

hx,x+1 = −∆−1(S(1)
x S

(1)
x+1 + S(2)

x S
(2)
x+1)− (S(3)

x S
(3)
x+1 − 1/4)−A(∆)(S(3)

x − S
(3)
x+1) .

(3.2)

Here Six (i = 1, 2, 3) are the usual Pauli spin matrices at the site x, ∆ ≥ 1 is the

anisotropy parameter and A(∆) is a boundary magnetic field given by

A(∆) =
1

2

√
1−∆−2 . (3.3)

A configuration of spins in the one-dimensional chain is identified with the set of

numbers αx for x = {1, 2, . . . , L} where α takes values in the set {0, 1}. We choose

α = 0 to correspond to an up spin, or, in the particle language, to an unoccupied

site. Conversely, α = 1 corresponds to a down spin or an occupied site. It can be
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proved [2, 3] that the ground state of the model in the sector with n down spins

and m up spins (with L = n+m) is given by

ψ(n,m) =
∑

{αx}∈An,m

{
L∏
x=1

qαxx

}
|{αx}〉 , (3.4)

where An,m is the set of configurations {αx} such that
∑
x αx = n, and the real

and positive parameter q is defined in term of the anisotropic coupling by

∆ =
q + q−1

2
with 0 < q < 1 . (3.5)

The norm of the ground state vector (3.4) with n spins down is

‖ψ(n,m)‖2 =
∑
{αx}

L∏
x=1

q2xαx . (3.6)

To construct the classical path integral representation for the quantum XXZ model,

we identify the norm (3.6) of the ground state vector (3.4) with the canonical

partition function (2.1) in the path integral formalism by assigning suitable weights

to the bonds of the corresponding two dimensional path space.

Theorem 3.1 (Path integral representation for interface ground state).

‖ψ(n,m)‖2 =: Z(n,m) =
∑

p∈P(n,m)

w(p) (3.7)

is the partition function for the classical path integral model associated with the

quantum XXZ model for the the following choice of weights

w(b) =

{
q2(xb+yb) for a horizontal bond whose right end is at (xb, yb)

1 any vertical bond .
(3.8)

Proof. From expression (3.6) we have

∑
{αx}

L∏
x=1

qxαx =
∑

1≤x1<x2<···<xn≤L
q2(x1+···+xn) , (3.9)

where the xi are the positions of the down spins in the chain. Observing that the

position of a down spin in the lattice is equal to the distance of a given point in the

path from the origin xi = xb + yb, Eq. (3.8) follows. �

4. Classical Statistical Mechanics Interpretation

The paths integral models treated so far admit a classical statistical mechanics

interpretation, based on the following result:

Theorem 4.1. Given an element of Pn,m we define the area of a path by (see

Fig. 2)

A(p) = #{plaquettes under p} . (4.1)
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Fig. 2. Parity and time reversal symmetries.

We have

w(p) = n(n+ 1) + 2A(p) . (4.2)

Proof. The theorem is true, by inspection, for the path of minimum weight, which

is the path p̃ that goes through (n, 0). In this case

w(p̃) = 2
n∑
j=1

j . (4.3)

Any other path can be obtained from the minimum weight path by the application

of a local operation C that adds a plaquette to a concave corner in such a way that

the weight of the path obtained is

w(Cp) = 2 + w(p) (4.4)

in accordance with (3.8). �

Remark 4.1. The area of a path can be regarded as the Hamiltonian of a corres-

ponding classical statistical model with the partition function

Z(n,m) = qn(n+1)
∑

p∈P(n,m)

e−βH(p) . (4.5)

with the identification H(p) = A(p) and q2 = e−β, for 0 < q < 1.

The former property allows us to prove the main result of this section.

Theorem 4.2. Consider the following transformations in the space of paths

PL :

(1) The parity

F : p ∈ Pn,m → F (p) ∈ Pm,n , (4.6)

is defined by the reflection with respect to diagonal (see Fig. 2). If p corresponds

to the sequence α1, α2, . . . , αL, F (p) corresponds to 1− α1, 1− α2, . . . , 1− αL.
(2) The time reversal

T : p ∈ Pn,m → T (p) ∈ Pn,m , (4.7)

is defined by the time reversed path (Fig. 2). If p is α1, α2, . . . , αL, T (p) is αL,

αL−1, . . . , α1.
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The combined transformation is a symmetry for our path integral model in the

sense that

Prob(p) = Prob(FT (p)) . (4.8)

Proof. We clearly have

A(p) +A(Fp) = nm , (4.9)

and

A(p) +A(Tp) = nm . (4.10)

By applying Eq. (4.9) to a time reversed path T (p) we see that A(Tp)+A(TFp) =

nm. This, together with (4.10) leads to A(p) = A(FTp) �

Lemma 4.1. The partition function Z(n,m) for paths Pn,m and the partition

function Z(m,n) for time reversed paths Pm,n satisfy the relation

Z(n,m)

qn(n+1)
=
Z(m,n)

qm(m+1)
. (4.11)

Proof. The result is a consequence of (4.5) and the fact that both the transforma-

tions F and T are one to one. �

With the aid of Theorem 5.2, proved in the next section, this property can be

extended to the generalized partition functions.

Lemma 4.2.
Z(n′,m′;n,m)

q(n+m′)(n+m′+1)
=

Z(m′, n′;m,n)

q(n′+m)(n′+m+1)
. (4.12)

Proof. We first shift the generalized partition function to the the origin with the

translation property formula (5.6). This gives

Z(n′,m′;n,m) = q2(n′+m′)(n−n′)Z(n− n′,m−m′) . (4.13)

Next we use (4.1) to rewrite Z(n−n′,m−m′) above in terms of Z(m−m′, n−n′).
We obtain

Z(n′,m′;n,m) = q(n−n′)(n+n′+2m′+1)−(m−m′)(m−m′+1)Z(m−m′, n− n′) . (4.14)

Now we again use the translation property to shift Z(m − m′, n − n′) back to

Z(m′, n′;m,n) and get

Z(m′, n′;m,n) = q2(n′+m′)(m−m′)Z(m−m′;n− n′) . (4.15)

The lemma follows from (4.15) and (4.14). �

5. Geometric Properties of Z

In this section we study the properties of the partition function (3.7) and the cor-

responding generalized partition function (2.2) associated with the XXZ model.

The two main properties we prove are a Markov type property and the action of

the translation group on partition functions. This two properties together provide

two independent relations that solve explicitly the one-dimensional quantum system.
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= + + + +. . .

Fig. 3. Graphic representation of the Markov property (5.1) of the partition function.

We have the following theorem.

Theorem 5.1 (Markov property). For any integer z such that n′ + m′ ≤ z ≤
n+m

Z(n′,m′;n,m) =
∑

x+y=z

Z(n′,m′;x, y)Z(x, y;n,m) . (5.1)

See Fig. 3 for a pictorial representation.

Proof. We write (2.2) with the set of path P(n′,m′;n,m) =
⋃
x+y=z P(n′,m′;n,m)(x, y)

as

Z(n′,m′;n,m) =
∑

∪x+y=zP(n′,m′;n,m)(x,y)

w(p) . (5.2)

Replacing the sum over the union of paths with an extra sum over the paths, we

get

Z(n′,m′;n,m) =
∑

x+y=z

∑
p∈P(n′,m′;n,m)(x,y)

w(p) ,

=
∑

x+y=z

Z(n′,m′;x, y)Z(x, y;n,m) , (5.3)

where the last equality comes from the fact that our paths are monotonically in-

creasing. �

In the particular case we restrict the sum over z in Theorem 5.1 to be over two

points for which z = n+m−1, the partition function Z(n,m) satisfies the recursion

relation (see Fig. 4) given in the following lemma.

Lemma 5.1.

Z(n,m) = Z(n,m− 1) + q2(n+m)Z(n− 1,m) . (5.4)

Proof. Follows from Theorem 5.1 with the weights (3.8). �

Formula (5.4) relates the two nearest neighbors of the final point (n,m) in the

upper right corner of Fig. 4. A similar relation can be devised between the two

nearest neighbors of the initial point (0, 0) in the lower left corner. We have

Lemma 5.2. The partition function Z(n,m) satisfies the following recursion rela-

tion in terms of generalized partition functions (see Fig. 5)

Z(n,m) = q2Z(1, 0;n,m) + Z(0, 1;n,m) . (5.5)

Proof. Follows from the same reasoning that led to (5.4). �
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m-1

+=

nn-1

m

n-1

m-1

(n,m)(n,m)

Fig. 4. Graphic representation of the recursion relation (5.4).

1 n

=

m

1

+

1

mm

1

n n

Fig. 5. Graphic representation of the recursion relation (5.5).

Note that (5.5), unlike (5.4), involves generalized partition functions. However,

the action of the translation group on the generalized partition function in (5.5)

transforms them in ordinary partition functions by means of multiplication factor.

We have

Theorem 5.2 (Action of the translation group). For every x ≤ n′ and y ≤
m′

Z(n′,m′;n,m) = q2(x+y)(n−n′)Z(n′ − x,m′ − y;n− x,m− y) . (5.6)

Proof. We first note that Z(n′,m′;n,m) is a polynomial in q that can be written

as

Z(n′,m′;n,m) = qr(1 + a1q
2 + a2q

4 + · · ·+ a(m−m′)(n−n′)q
2(m−m′)(n−n′)) (5.7)

where r = 2(n′+m′)(n−n′)+(n−n′)(n−n′+1) is the minimum power of q among

all the paths from (n′,m′) to (n,m), and the (positive) coefficients aj account for

the multiplicity of the powers of q2j . Namely given the box B(n′,m′;n,m):

aj = #{paths in B(n′,m′;n,m)|A(p) = j} . (5.8)

If we perform a shift x in the horizontal direction and a shift y in the vertical

direction, we obtain the translated partition function

Z(n′ − x,m′ − y;n− x,m− y)

= qr
′
(1 + a1q

2 + a2q
4 + · · ·+ a(m−m′)(n−n′)q

2(m−m′)(n−n′)) (5.9)

where r′ = 2(n′ − x+m′ − y)(n − n′) + (n − n′)(n − n′ + 1), and the polynomial

inside the parenthesis on the right hand side of (5.9) is the same as in (5.7) because

of the translation invariance of the area Hamiltonian in Eq. (4.5). Consequently

Z(n′,m′;n,m) = q(r−r′)Z(n′ − x,m′ − y;n− x,m− y) , (5.10)

which is just (5.6). �
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The application of the translation property (5.6) to the partition function in (5.5)

provides a second independent relation between the partition functions containing

only the nearest neighbors of the point (n,m).

Lemma 5.3. The partition function satisfies

Z(n,m) = q2nZ(n− 1,m) + q2nZ(n,m− 1) . (5.11)

Proof. Direct application of the translation property of (5.6) allows us to write the

generalized partition functions in (5.5) in terms of ordinary partition functions

Z(1, 0;n,m) = q2(n−1)Z(n− 1,m) and Z(0, 1;n,m) = q2nZ(n,m− 1) . (5.12)

Substituting (5.12) in (5.5) yields the lemma. �

Remark 5.1. It is important to emphasize that the path integral formalism gene-

rated two independent relations between Z(n,m), Z(n − 1,m) and Z(n,m − 1),

namely (5.4) and (5.11), which are known as the q-Pascal identities for Gauss poly-

nomials [6]. This fact is reminiscent of the situation found in the general theory of

stochastic processes in which conditioning the process with respect to the initial or

the final conditions provides two independent relations.

The independence of the two relations allow us to derive an explicitly expression

for the partition function (5.7) as a product formula.

Theorem 5.3. The partition function Z(n,m) is given by

Z(n,m) = qn(n+1)

∏n+m
i=1 (1− q2i)∏n

i=1(1− q2i)
∏m
i=1(1− q2i)

. (5.13)

Proof. Solving (5.4) and (5.5) for Z(n−1,m) and Z(n,m−1) in terms of Z(n,m)

we get

Z(n− 1,m)

Z(n,m)
= q−2n 1− q2n

1− q2(n+m)
and

Z(n,m− 1)

Z(n,m)
=

1− q2m

1− q2(n+m)
. (5.14)

From (5.14) we obtain

Z(n− 1,m− 1)

Z(n,m)
= q−2n (1− q2n)(1− q2m)

(1− q2(L−1))(1− q2L)
. (5.15)

Setting the initial condition Z(0, 0) = 1 yields the theorem. �

Lemma 5.4. For v ≤ n, w ≤ m, the partition function Z(n− v,m− w) satisfies

Z(n− v,m− w) ≤ q−2nv+v(v−1)Z(n,m) . (5.16)

Proof. Starting from (5.15) and successively applying the first of the recursion

relations (5.14) v times, we obtain

Z(n− v,m− 1) = Kv−1Lv−2 . . . L0Z(n,m) , (5.17)
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where, according to (5.14) and (5.15), we define

Kj = q−2(n−j) (1− q2(n−j))(1− q2m)

(1− q2(n−j+m−1))(1− q2(n−j+m))
and

Lj = q−2(n−j) 1− q2(n−j)

1− q2(n−j+m)
.

Now, successively applying the second of the recursion relations (5.14) w times, we

obtain

Z(n− v,m− w) = Mw−1 · · ·M1Z(n,m) , (5.18)

where

Mj =
1− q2(m−j)

1− q2(n+m−j) .

Combining (5.17) and (5.18) gives

Z(n− v,m− w)

Z(n,m)
≤
v−1∏
j=0

q−2(n−j) (5.19)

and the theorem follows. �

6. Probability Estimates

In this section we show how to bound the correlation functions for the quantum

model through bounds on the path integral model correlations functions. The pro-

bability that a given spin, or a set of spins, is up or down can be expressed as sums

of probabilities that a path goes through a given, or many, bonds.

The path integral representation provides a remarkable pictorial interpretation

of these probabilities which allows us to obtain the estimates in an elementary way

by efficiently exploiting the action of the translation group.

Our first result is the

Theorem 6.1. The probability that a path from the origin to (n,m) pass through

the point (x, y) is given by

Pn,m(x, y) = q2(x+y)(n−x)Z(x, y)Z(n− x,m− y)
Z(n,m)

. (6.1)

Proof. By the one-point correlation function (2.3) we have

Pn,m(x, y) =
Z(n,m|x, y)
Z(n,m)

, (6.2)

where Z(n,m|x, y) is the number of paths from the origin to (n,m) passing through

the point (x, y). By Theorem 4.1 we also have

Z(n,m|x, y) = Z(x, y)Z(x, y;n,m) . (6.3)

Now we use the translation property (5.6) to shift Z(x, y;n,m). We obtain

Z(x, y;n,m) = q2(x+y)(n−x)Z(n− x,m− y) . (6.4)

Substituting (6.4) in (6.2) yields the theorem. �
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As to the probability that a path goes through a particular bond, we have the

following estimates (which are useful for x ≥ n).

Theorem 6.2. Considering the quantity

P (Szx = −1) :=
〈ψ(n,m)|(1/2− Szx)ψ(n,m)〉

‖ψ(n,m)‖2 , (6.5)

we have that

Pn,m(Szx = −1) =
n∑

j=x−m
Pn,m(j − 1, x− j; j, x− j) (6.6)

and the following bound holds

Pn,m(Szx = −1) ≤ q2(x−n) 1− q2n

1− q2(n+m)
. (6.7)

Theorem 6.3. We have seen in Sec. 4 that the one-dimensional XXZ model and

its ground states are invariant under the combined spin flip and left-right sym-

metries. This fact implies the property

Pn,m(Szx = −1) = Pm,n(SzL−x+1 = +1) . (6.8)

In this way the properties that we are proving for x ≥ n can be transformed in the

similar ones for x ≤ n.

Proof. To obtain the probability that the xth spin is down, we have to sum the

probabilities that the paths from (0, 0) to (n,m) go horizontally through the diag-

onal line in which the sum of the coordinates is x because each horizontal bond in

the path represent a down spin.

The graphic representation of this probability is shown in Fig. 6 for x ≥ n,

x ≥ m, and x < n+m. In this case, the xth step has to be taken in the horizontal

direction. Then we have

Pn,m(Sx = −1) =
n∑

j=x−m
Pn,m(j − 1, x− j; j, x− j) , (6.9)

where Pn,m(j − 1, x − j; j, x − j), the probability that the path goes through the

bond (j − 1, x− j)→ (j, x− j), is given by

Pn,m(j − 1, x− j; j, x− j) = q2xZ(j − 1, x− j)Z(j, x− j;n,m)

Z(n,m)
. (6.10)

We see that each Pn,m(j − 1, x− j; j, x− j) is represented by a box from the origin

to the tip of a horizontal bond on the sphere of radius x, connected to another box

from the tip of the horizontal bond to the final point (n,m).

A bound on Pn,m(j−1, x−j; j, x−j) is the result of an operation we perform on

Fig. 6, by shifting the upper box in the figure one unit to the left in the horizontal
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(n,m) (n,m)

x-j

x

j j-1

x

Fig. 6. The paths in which the xth spin is down are contained in the two shaded areas in the
diagram. To obtain the probability (6.9) we shift the upper box B(j, x − j;n,m) one unit to the
left and sum along the line x.

direction, as indicated. This is the same as making an equal shift on Z(j, x−j;n,m).

By the translation property (5.6), we have

Z(j, x− j;n,m) = q2(n−j)Z(j − 1, x− j;n− 1,m) . (6.11)

We thus get

Pn,m(Sx = −1) = q2x
n∑

j=x−m

Z(j − 1, x− j)Z(j − 1, x− j;n− 1,m)

Z(n,m)
q2(n−j) .

(6.12)

The easy bound follows immediately

Pn,m(Sx = −1) ≤ q2x
x∑
j=1

Z(j − 1, x− j)Z(j − 1, x− j;n− 1,m)

Z(n,m)
, (6.13)

and, by Theorem 4.1, the summation over j is nothing more than the partition

function Z(n− 1,m).

Thus we get

Pn,m(Sx = −1) ≤ q2xZ(n− 1,m)

Z(n,m)
. (6.14)

We have worked out the ratio Z(n − 1,m)/Z(n,m) in Sec. 4. The substituting of

formula (5.14) of that section in (6.14) gives the theorem. �

The same reasoning with minor changes leads to the estimates for the probability

that the xth spin is up. We have

Theorem 6.4.

Pn,m(Szx = +1) ≤ 1− q2m

1− q2(n+m)
. (6.15)

Proof. As depicted in Fig. 7, also for x ≥ n, x ≥ m and x ≤ n+m, we have

Pn,m(Sx = +1) =
n∑

j=x−m
Pn,m(j, x− j − 1; j, x− j) , (6.16)
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(n,m) (n,m)

x-j
x-j-1

x x

j j

Fig. 7. To obtain the probability (6.16) we shift the upper box down one unit and sum along the

line x.

where Pn,m(j, x− j − 1; j, x− j) is the probability that the path goes through the

bond (j, x− j − 1)→ (j, x− j) and is given by

Pn,m(j, x− j − 1; j, x− j) =
Z(j, x− j − 1)Z(j, x− j;n,m)

Z(n,m)
. (6.17)

By applying the translation property (5.6) to Z(j, x − j;n,m) to shift it one unit

down in the vertical direction, we get

Z(j, x− j;n,m) = q2(n−j)Z(j, x− j − 1;n,m− 1) . (6.18)

Substituting the above relation in (6.16) gives

Pn,m(Sx = +1) ≤
n∑

j=x−m

Z(j, x− j − 1)Z(j, x− j − 1;n,m− 1)

Z(n,m)
=
Z(n,m− 1)

Z(m,n)
.

(6.19)

By inserting (5.14) into the above expression gives the theorem. �

Finally, we have to consider the probability that adjacent spins are opposite.

We suppose that the xth spin is down and the (x+ 1)th spin is up. We prove that

Theorem 6.5.

Pn,m(Szx = −1, Szx+1 = +1) ≤ q2(x−n) (1− q2n)(1− q2m)

(1− q2(L−1))(1− q2L)
. (6.20)

Proof. For x ≥ n, x ≥ m and x < n+m, we have

Pn,m(Szx = −1, Szx+1 = +1)

=
q2x

Z(n,m)

n∑
j=x−m

Z(j − 1, x− j)Z(j, x− j + 1;n,m) . (6.21)

By performing a translation along both the horizontal and vertical direction by one

unit, as in Fig. 8, we bring the origin of Z(j, x−j+1;n,m) to the point (j−1, x−j),
thus obtaining

Z(j, x− j + 1;n,m) = q4(n−j)Z(j − 1, x− j;n− 1,m− 1) . (6.22)
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(n,m) (n,m)x x

x-j

j-1

x-j

j-1

Fig. 8. To obtain the probability (6.21) we shift the upper box to the left and down by one unit
and sum along the line x.

Substitution in (6.21) yields

Pn,m(Szx = −1, Szx+1 = +1) ≤ q2x
n∑

j=x−m

Z(j− 1, x− j)Z(j− 1, x− j;n− 1,m− 1)

Z(n,m)

= q2xZ(n− 1,m− 1)

Z(n,m)
(6.23)

and the theorem follows from (5.15). �

7. Multi-Point Correlation Functions

We now extend the analysis of the previous section to include the probability that a

string of r spins at positions x1, x2, . . . , xr has a given configuration of up or down

spins. Let us consider multi-point correlation functions as given in the definitions

(2.5) and (2.6), and paths from the origin to (n,m) that cross successive spheres

on the lattice of radii x1, x2, . . . , xr. We take the case in which xj > n,m and

xj ≤ n+m for j = 1, 2, . . . , r.

We denote by Pn,m(Szx1
= σ1, . . . , S

z
xr = σr) the probability that the spins

at position x1, x2, . . . , xr have a configuration σ1, σ2, . . . , σr, with σj = ±1 for

j = 1, 2, . . . , r. Then

P (Szx1
= σ1, . . . , S

z
xr

= σr) =
1

Z(n,m)

n∑
j1=x1−m

F (j1)q
2x1(1−ᾱ1)

×
∆x2+t1∑
j2=j1

· · ·
∆xr−1+tr−2∑
jr−1=jr−2

n∑
jr=jr−1

×
(

r∏
k=2

F (jk−1, jk)q
2xk(1−ᾱk)

)
F (jr) , (7.1)

where we have simplified the notation for the partition functions by denoting

F (j1) = Z(j1 − 1, x1 − j1), F (jr) = Z(jr − ᾱr, xr − jr + ᾱr;n,m) , (7.2)

and

F (jk−1, jk) = Z(jk−1 − ᾱk−1, xk−1 − jk−1 + ᾱk−1; jk − 1, xk − jk) . (7.3)
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We have also introduced the new variables ᾱk = 1 − αk, tk = jk − ᾱk and ∆ =

xk − xk−1.

The main result of this section is the following:

Theorem 7.1 (Exponential bounds on the correlations). Let v =
∑r
j=1 αj

be the number of down spins on the observable set α1, . . . , αr, and let dk = (xk−n)αk
be the distances of a down spin from the point of coordinate n (distance to the

interface). Then the following bound holds

P (Szx1
= σ1, . . . , S

z
xr = σr) ≤ qv(v−1)+2

∑r

k=1
dk . (7.4)

This result extends to (and reduces to in the case r = 2 with up and down spin) the

Eq. (6.20).

Proof. We now use the translation property to first shift the partition function in

the last box B(jr − ᾱr, xr − jr + ᾱr;n,m) in (7.3) one unit to left (when ᾱk = 0)

or down (when ᾱk = 1). We get

Z(jr−ᾱr, xr−jr+ᾱr;n,m) = q2(n−jr+ᾱr)Z(jr−1, xr−1;n−(1−ᾱr),m−ᾱr) . (7.5)

Next we estimate the factor of q above by one before substituting (7.5) in (7.1), and

we also factorize out all the bond weights 2xk(1− ᾱk), thus obtaining the bound

P (Szx1
= σ1, . . . , S

z
xr = σr) ≤ q2

∑r

k=1
xk(1−ᾱk) 1

Z(n,m)

n∑
j1=x1−m

Z(j1 − 1, x1 − j1)

×
∆x2+t1∑
j2=j1

· · ·
∆xr−1+tr−2∑
jr−1=jr−2

(
r−1∏
k=2

F (jk−1, jk)

)

×Zr−1(n− (1− ᾱr),m− ᾱr) , (7.6)

where we have observed that by carrying out the summation over jr we obtain the

partition function

Zr−1(n− (1− ᾱr),m− ᾱr)

=
n∑

jr=jr−1

Z(jr−1 − ᾱr−1, xr−1 − jr−1 + ᾱr−1; jr − 1, xr − jr)

×Z(jr − 1, xr − 1;n− (1− ᾱr),m− ᾱr) . (7.7)

From here we will need to repeat this procedure of performing shifts of one unit

down or to the left in succession to the partition functions in (7.6). After each step

the resulting partition function obtained is changed according to the number of

shifts we have performed. At the end, we get

P (Szx1
= σ1, . . . , S

z
xr

= σr) ≤ q2
∑

r

k=1
xkαk Z(n−

∑r
k=1 αk,m−

∑r
k=1(1− αk))

Z(n,m)
.

(7.8)

Substituting (5.16) in (7.8), with v =
∑r
k=1 αk yields the theorem. �
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Theorem 7.1 can be used to study the fluctuations around the interface. In com-

bination with the conservation of the third component of the spin, the bound implies

that fluctuations are strongly correlated. In order to illustrate this we consider the

total third component of the spin on an interval centered on the interface: let N

and L be even positive numbers, L ≤ N , and consider the state ψ(N/2, N/2), and

let 〈·〉N denote the expectation in this state. Define FL by

FL =

(N+L)/2∑
x=(N−L)/2+1

Szx . (7.9)

We will also need the total third component of the spin in the complement of the

interval [(N − L)/2 + 1, (N + L)/2], defined by

F cL =
∑

x 6∈[(N−L)/2+1,(N+L)/2]

Szx .

Then, for all L ≤ N ,

〈FL〉N = 0 ,

as a consequence of the symmetry properties given in Theorem 4.2.

Theorem 7.2.

lim
L→∞

lim
N→∞

ProbN (FL = l) = δl,0 . (7.10)

Proof. The distribution of FL, and, hence, its variance, can be estimated by first

noting that

ProbN (FL = l) = ProbN (F cL = −l) = ProbN (F cL = l)

and further that

ProbN (F cL = l) ≤ ProbN (there are at least l down spins in [(N + L)/2 + 1, N ]) .

By summing the bound of Theorem 7.1 over all numbers r ≥ l of down spins to

the right of (N + L)/2, and possible positions x1, . . . , xr, we obtain the following

bound:

ProbN (there are at least l down spins in [(N + L)/2 + 1, N ])

≤
(N−L)/2∑
r=l

∑
(N+L)/2<x1<···<xr≤N

qr(r−1)+2
∑r

k=1
(xk−N/2)

≤
∞∑
r=l

qr(r−1)

r!

 ∞∑
x=L/2+1

q2x

r

≤
∞∑
r=l

qr(r−1)

r!

[
qL+2

1− q2

]r

≤ ql(l−1) 1

l!

[
qL+1

1− q2

]l
exp[qL+3/(1− q2)] ≤ C(q)ql

2+Ll ,
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where C(q) is a constant depending only on q. From this bound it is clear that

lim
L→∞

lim
N→∞

ProbN (FL = l) = δl,0 . (7.11)

As it has been shown in [3] that the limit N →∞ exists, this concludes the proof.

�

8. Higher Dimensions

The path integral formulation we have introduced provides an efficient way to bound

correlation functions of the quantum XXZ model in one dimension. For higher

dimensions it is known that the state with n down spins in d dimensions is given

by [2]:

ψ(n,m) =
∑
αx

{∏
x

qαx|x|

}
|{αx}〉 , (8.1)

where |x| is the L1 norm of the vector x.

We consider a two-dimensional spin system in order to illustrate how to relate

the property of the model in higher dimensions to those of a one dimensional system.

Since we are free to choose the orientation of the physical spin system, we prefer

to dispose the spins along M diagonal lines with each diagonal having the same

number N of spins, as in the first diagram of Fig. 9. The weights assigned to the

bonds in the corresponding path representation follow the diagonal pattern shown

in the second diagram of Fig. 9. The analytic expression for the weight of a bond

in this case is

w(b) =

{
x+ y any horizontal bond ending at (x, y)

1 any vertical bond .
(8.2)

Our result is based on Eq. (5.6) and shows in detail the mechanism of dimen-

sional reduction which underlines the methods used to prove the absence of gaps

for interface excitations in d = 3 [7].

The main result of this section is the following theorem.

Theorem 8.1. Consider a two-dimensional system shown in Fig. 9, having sizes

N and M. Let K be the set of m non-negative integers {ki} such that
∑m
i=0

iki = k and
∑m
i=0 ki = N. The norm of the ground state of the two-dimensional

system with k down spins, Z2d(k,NM − k), is given by

Z2d(k,NM − k) = q2(N−1)k
∑
{ki}∈K

N !

k0!k1! . . . km!

m∏
i=1

{Z(j,M − j)}kj . (8.3)

where Z(j,M − j) are the partition functions of the one-dimensional model.

Example 8.1. To illustrate the theorem let us calculate the two-dimensional par-

tition function for a system of 9 spins with N = 3, M = 3. We take k = 3. In

this case, there are three set of allowed values of (k0, k1, k2, k3). They are (2, 0, 0, 1),
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5

Fig. 9. The spin system in any dimension can be put in correspondence with a one-dimensional spin
system by using the Cantor diagonal procedure as indicated in the diagram for the two-dimensional
case.

(1, 1, 1, 0) and (0, 3, 0, 0). Thus we obtain

Z2d(3, 6) = q12{Z(1, 2)
3
+ 6Z(1, 2)Z(2, 1) + 3Z(3, 0)} . (8.4)

When n = 4, m = 5, the following are the sets of allowed k values are (2, 0, 0, 1),

(1, 1, 1, 0) and (0, 3, 0, 0). We get

Z2d(4, 5) = q16{6Z(1, 2)Z(3, 0) + 3Z(2, 1)2 + 3Z(3, 0)} . (8.5)

Proof of Theorem 8.1. Because of the periodic pattern of the weights in path

space, the grand-canonical partition function in two-dimensions is given by

Z2d
GC =

N+M−1∏
j=N

(1 + zq2j)N =
NM∑
k=0

zkZ2d(k,NM − k) , (8.6)

where Z2d(k,NM − k) is the canonical partition function in two-dimensions.

The product formula in (8.6) can also be written in terms of the generalized

canonical partition functions of the one-dimensional system. By interchanging the

Nth power with the product in Eq. (8.6) we get

N+M−1∏
j=N

(1 + zq2j)N =

{
M∑
l=0

zlZ1d(N − 1, 0;N − 1 + l,M − l)
}N

, (8.7)

where the generalized partition functions have initial points (N − 1, 0) in order

to account for the proper relation between the weights of the corresponding one-

dimensional and two-dimensional systems as we have defined them.

Now we use the translation property (5.6) to shift the generalized partition

functions in (8.7) to the origin. In doing this we obtain a multiplicative factor

depending on the first set of weights of the two-dimensional system:

Z1d(N − 1, 0;N − 1 + l,M − l) = q2(N−1)lZ1d(l,M − l) . (8.8)

Substituting the above expression into (8.7) we get

N+M−1∏
j=N

(1 + zq2j)N =

{
M∑
l=0

zlq2(N−1)lZ1d(l,M − l)
}N

. (8.9)
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Equating (8.9) to the expression on the right hand side of (8.6) yields

NM∑
k=0

zkZ2d(k,NM − k) =

{
M∑
l=0

zlq2(N−1)lZ1d(l,M − l)
}N

. (8.10)

Since the equality in (8.10) holds term by term in powers of z, we express the

two-dimensional partition function as a sum of one-dimensional partition functions

given by

Z2d(k,NM−k) = q2(N−1)k
∑

k0,k1,k2,...,km

N !

k0!k1! . . . km!

m∏
i=1

{Z1d(j,M−j)}kj , (8.11)

where the sum runs over the values of k with the restrictions k1 + 2k2 + 3k3 + · · ·+
mkm = k, and k0 = N −

∑m
i=1 ki. �
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