POLYNOMIAL INVARIANTS FOR TREES.
A STATISTICAL MECHANICS APPROACH.
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Abstract

We introduce two “polynomial invariants” for rooted trees and discuss their prop-
erties. A statistical mechanics interpretation is pointed out. In particular we show that
the partition function of the Ising model, in the simple surface separation ensemble, is
a complete invariant.

Accepted for publication by “Discrete Mathematics”, June 97

(1) Dipartimento di Matematica, Universitd di Roma IT “Tor Vergata”,

00133 Roma. (email conti@mat.utovrm.it, falcolini@mat.utovrm.it)

(2) Departments of Mathematics and Physics, Jadwin Hall, Princeton University,
Princeton, NJ 08544, USA. (email contucci@princeton.edu)

(3) Dipartimento di Fisica, Gruppi CAM e GTC, Universita di Roma “La Sapienza”
00185 Roma. (email contucci@romal.infn.it)

1



1. Introduction.

Trees are interesting objects in many areas of mathematics and physics. They appear
not only in combinatorics but also in algebra, in geometry and in analysis. Their interest
in physics is mainly due to their use as a geometric space for constructing statistical
mechanics models. In this situation a classification theory is in order and, in fact, many
beautiful results about their enumeration are well established starting from the classical
works of Cayley and Polya [1].

In this brief note we consider a “polynomial strategy” in the same spirit of the
polynomial invariants appearing in the theory of knots [2] [3]. One of the motivations
of our work is to test that procedure in a simplified framework: trees in fact can be
considered as multiple loops in d = 2 (Fig. 1):

Stustu. .. .ust — IR? (1.1)

up to diffeomorphisms in the same way the links are in d = 3. The problem of classi-
fying these two-dimensional “links” is enormously simpler than the three-dimensional
one since it does not contains the superposition structure of three-dimensional loops
projected on a plane; nevertheless, in spite of this simplified picture, the polynomial
approach reveals some interesting features mainly because, like for knots, it turns out
to be related to statistical mechanics models. For this reason we hope our work will be
useful to understand more difficult concepts.

Recently, two interesting proposals on how to construct invariants for trees have
appeared in the literature [4] [5]. In the first reference numerical invariants for oriented
or rooted trees are discussed via the “contraction-deletion” procedure of graph theory
analogous to the “skein” familiar from knot theory. In the second one, the authors
present a powerful two-variable polynomial in the more general setting of greedoids
which can be used, in particular, to distinguish rooted trees. Our approach is similar
to the latter. We use a general algorithm to associate polynomials to rooted trees
and we show how they are related to the Ising model. The main theorem we prove
establishes a one to one correspondence between rooted trees and a particular two-
variable polynomial.

The work is organized as follows: in section 2 we define for each rooted tree two
“dually paired” polynomials C' and C* with positive integer coefficients. In section 3
we study the structural meaning of the coefficients of C' and C*; our main result is
the injection theorem for the two-variable C' polynomial which has the meaning of a
“prime decomposition theorem”. In section 4 we present some examples which give some
insight on the combinatorial properties of the two polynomials, showing that C* and
a particular one-variable evaluation of C' are not sufficient to distinguish rooted trees.
In section 5 we consider the statistical mechanics interpretation of our polynomials in
terms of Ising models; we show that the partition function and the two point correlation
functions coincide essentially with our two polynomials. Section 6 collects some general
remarks.



2. Polynomial invariants.

A tree is a connected acyclic graph with vertices connected by edges. In this work
we consider only finite trees. A rooted tree A € Ag is a tree with a marked vertex
r called root. Conventionally, we consider an orientation along the edges of the tree
directed from the root to the endpoints. It is possible to count elements in A3 with the
help of a functional equation for the generating function (see for instance [1]).

For each rooted tree A there is a natural partial order between the vertices. One
says that a vertex v follows a vertex v’ (v > v') if they are connected by an oriented
path from v’ to v. In this way each vertex has a set of first successor vertices s, ; and
a set of successor vertices s,. A vertex is called trivial if |s, 1| = 1 and it is called final
(leaf) if |s, 1] = 0. It is useful to consider also two sets of vertices: the set p, defined
as the set of vertices which have v as successive vertex and ns, defined as the set of
nearest non-trivial successive vertices. For any vertex v of a given tree A rooted at r we
indicate with A\, the rooted tree which has v as root and is the subgraph of A induced
by s,; obviously A = A,.. We also denote with 9\ the set of final vertices of A. In a tree
there is a natural notion of distance between vertices: d(v’,v") is equal to the number
of edges of the shortest path connecting the vertices v’ and v”’. The presence of the root
allows to define the height of a vertex v as its distance from the root h(v) = d(v, 7).

Our proposal is to associate to each A € A3 the two—variable polynomial C and
the one-variable polynomial C'} with positive integer coefficients. They are defined by
a recursive procedure: fixed a vertex v we have

Cr(ta) =TT (Cn, () +0) (2.1

v' €5y 1

and

Cr,) =t Y C5,() (2.2)
v'E€Ssy 1

with

Cy, (t,a) = a, Cy, (1) =1 if v’ is a final vertex (2.3)
and finally

Ci(t,a) == C), (t,a), CX(t) == C}_(t). (2.4)

The procedure to obtain the C' polynomials can be visualized on the tree: we
associate to each edge the variable ¢ and to each final vertex the initial condition a.
Then, starting from one endpoint, we add the variables we meet going toward the root,
until we reach a non trivial vertex where we multiply the polynomial we have obtained
with all the polynomials obtained in a similar way along all the paths which meet in the
same vertex. If we are arrived to the root, we stop. If not, we continue our procedure
adding the new variable along the path, and so on (Fig. 2). The procedure to obtain
the C* polynomial is the same as above up to interchange of sums with products and
restricting, without loss of generality, to the case a = 1 since C}(¢,a) = aC5(t, 1).
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The next section collects the main properties of our polynomials.

3. Properties.

We start discussing C\ (t) = Ci (¢, 0) and C}(t), then we consider the general case. Using
the fact that the (2.1) and (2.2) give

Cx, ()= [ (Cx, () +d(v,v")) (3.1)

v'ENS,

Cx, (1) = Y 13 (1) (3.2)

v'ENS,

respectively, it is easy to find the structural meaning of the coefficients of the two
polynomials. Associating to each polymomial C(¢) the unique arithmetical function
c¢(n) given by the C(t) =77 | ¢(n)t"™ one immediately finds

*

ex, =[] (en, +dw,v)ey) (3.3)

v'ENS,

where e; is the arithmetical function corresponding to the polynomial ¢ and the star
p;oduct is the usual Cauchy convolution product defined by fxg(n) =3 7_, f(k)g(n—
k), and

= > (SMex ) (3.4)

v'ENS,

where S is the one step shift of the arithmetic functions defined by Ser = eg41. The
recursive relation (3.4) can be explicitly integrated and gives:

CNOED IOl (3-5)
h=0
with
cx(h) = #{ final points at height hin A }; (3.6)

it follows that the trees with the same C* polynomial are exactly those having the same
number of final points at each height.

For the other polynomial it is not possible to find such a direct description; never-
theless the minimum and the maximum coefficients have a simple interpretation. Con-
sidering



Ca(t) = 3 ealle® 5.7

k=0

one easily see from (3.3) that, defined D = deg(C), the following results hold:

D =C5(1) =+#{ final pointsin A }, (3.8)

and

exD) = [[ d(v,v)) (3.9)

|SU,1|:0

where the product runs over the final points and v) is the first nontrivial vertex (or the
root) v’ (with v’ < v) which one encounter going from v toward the root.

Analogously, defined d as the minimum power of the variable ¢t appearing in C', one
finds that:

d= |Sr71 5 (310)

and
ex(d) = Hd(r,v) (3.11)
{v}

where the product runs over the first nontrivial vertices (or final points) which one
encounters along the |s, 1| paths emerging from the root. This results shows that the
C polynomial contains the information on the number of final vertices and the number
of the branching degree of the root. The meaning of the other coefficients is more
involved since they result from sums of products of various contributions according to
the convolution prescription.

Remark: for the particular class of trees which are made by a single linear path (a
sequence of trivial vertices) with an arbitrary number of final vertices branching from it
(“caterpillar” trees) there is an easy correspondence with the "up-right” paths starting
from the origin on a square lattice (see Fig. 3); the duality between symmetrical paths
with respect to the diagonal is then reflected in the values of C(¢,0) and C*(t): if A\
and A\ are two dual caterpillar trees one has (see Fig. 3):

O, (1,0) = G5, (1) (3.12)

Remark: from the properties above it is clear that the polynomial C* is trivially
bounded by the number n of edges both in the degree and in its value in one. The
polynomial C' has the same bound in the degree; its value in one can be easily bounded
by k™ for some constant k, but this bound is attained only in particular cases.
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It is interesting now to point out a result on the range of our maps A — C\ and
A — Cf. Calling Pc (resp. Pc-) the set of all C' (resp. C*) polynomials, excluding the
case corresponding to the trivial tree (the tree without edges), we have that Po and
P« are the smallest subsets of Z[t] satisfying the following properties:

t e Po,
it Ci(t),Cy(t) € Po then Cy(t)Cs(t) € Po (3.13)
if C(t) € Po then C(t)+t e Po
and
t e Po-
it Ci(t),C5(t) € Po- then C7(t) + C5(t) € P (3.14)
it C*(t) € Po- then ¢C*(t) € Pox.

Calling IN[t] the set of all polynomials with positive integer coefficients, which
vanish at zero, it can be easily proved that

INo[t] = Pc = Pe-. (3.15)

The proof is as follow: considering an element N (t) of INy[t] we construct a rooted
tree A such that Cy(t) = N(¢). The construction is by iteration: being k the lowest
power in ¢t we define N’(t) by N(t) = t*=!(at + N'(t)) where a is an integer and
N'(t) € INp[t]. This permits us to construct the tree from the root with k£ — 1 edges
departing from it and an a-long branch. From the leaf of the branch we iterate the
procedure to the polynomial N’(¢). The construction of a tree for which C* = N is
trivial: for instance the tree without ramification points (other than the root) and with
leaves according the theorem (3.5).

We observe that the results (3.8) (3.9) still hold for the two-variable C' polynomial,
together with the obvious generalizations of (3.13), (3.14).

It immediately follows that

C(0,a) = a®. (3.16)

Our main result is the following :

Theorem. The map A — C)(t, a) is injective. In other words the two-variable polyno-
mial C(t, a) is a complete invariant for rooted trees.

Proof. Given a polynomial C)(¢,a) for some tree, we have to show that A can be
uniquely determined. We have just seen that we are able to recognize the degree of the
root i.e. the number of branches emerging from it. Thus we know that C' is the product
of exactly d factors C; of the form

aPi it a) + kit (3.17)
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where D;, k; are positive integers, c¢; does not contain terms in ¢, it is of degree D; — 1
(resp. D;) in a (resp. t) and ¢;(0,a) = 0. Moreover, C; is the polynomial C}, of a (sub-
Jtree A; with branching degree one. If every Cj is irreducible over the polynomial ring
Z[t,a], then the conclusion is a consequence of the fact that there exists a unique such
decomposition of C' (which corresponds to the decomposition into irreducible factors)
and we may uniquely associate a polynomial to each branch. Taking one of these
factors, subtracting ¢ and repeating the procedure, the theorem follows by induction on
the height of the tree. Therefore it is enough to prove the irreducibility of a polynomial
of the form (3.17). This is easily established matching coefficients. In fact, let

Ci = (a(a) + B(a)t + v(a)t? + ...)(e(a) + n(a)t + 8(a)t® + ...). (3.18)

Therefore a(a) = apa® e(a) = exa®, aner, = 1,h +k = D; > 0 so without loss of
generality we may assume h > 0, and in the term #(a"n 4 a¥3)t the only possibility to
get the monomial k;t is k = 0, h = D;. Thus n(a) = 1y must be independent of a. Next
consider the term (ap,a®i0 4+ Bny + v)t2, and deduce that § = 6, is independent of a,
and so on. Therefore

Ci = (OzDiaDi + B(G)t + fy(a)t2 + ...)(60 + 770t + 90t2 + ), (319)

and the only possibility is ng = 6y = ... = 0 as may be easily recognized by rearranging
the first polynomial in decreasing powers of a.

4. Some examples.

Looking at the polynomials C(t), C*(¢), it is easy to recognize that there exist different
A € Az with the same C*(¢) polynomial and other trees with the same C(¢). A more
difficult and interesting problem is to see whether there exist two non isomorphic rooted
trees with the same C(t), C*(t): in Figure 4 we show that this is indeed the case with
an example of two 13-vertices trees. This example has the minimum number of vertices
since we have checked all trees up to 12 vertices by computer. Another question is
whether in this case C' and C* characterize the “structure” of the trees, that is if there
exist two trees with only non trivial vertices and the same C(¢,0) and C*(¢). Again the
answer is affirmative: an example is given in Figure 5. In the last two examples (Fig. 4
and Fig. 5) the two trees have the same number of vertices, but also this property is not
general. In fact in Figure 6 we show an example of a 17-vertex tree and an 18-vertex
tree with the same C(t) and C*(t).

Summarizing these examples: the map A — (C\(t),C5(t)) is not injective. Also
the couple C(t) and C*(t) not even characterize the number of vertices of a tree nor
the trees without trivial vertices. Nevertheless it provide a complete system for rooted
trees up to 12 vertices.



5. Ising models on rooted trees.

The Ising model on a general finite graph G = (V, E) is usually defined by assigning
its energy functional: one consider a spin o, € {£1} associated to each vertex v and a
coupling j. € R associated to each edge e. The Hamiltonian, for a given configuration
of spins and a fixed configuration of coupling constants, is

H(o,j) ==Y jedo (5.1)

ecE

where do. = 0;0; with (4, j) = Oe; we use these symbols to stress the fact that to a
vertex function o (one-form) we associate an edge function do (two-form) defined as
above.

The statistical properties of the model are encoded in its partition function; for an
assigned subset £ (the statistical ensemble) of the full spin configuration space 2V =
{£1}VI the partition function is

Zg =) e PHD) (5.2)
A

where the parameter 3, in the statistical mechanics interpetation, is usually understood
as the inverse of the absolute temperature. The Gibbs prescription, used in equilibrium
statistical mechanics, defines the mean values of the spin functions:

(Ne=D_ [lo)e D)/ Z¢ (5.3)

o€l

The choice of the statistical ensemble completely defines the model: we consider here
two natural cases for the Ising model on rooted trees. The free ensemble Eo- = 2V
and the simple surface separation ensemble £g; this is defined as the set of all the
spin configurations with positive value on the root, with negative values on all the final
points, and fulfilling the condition that the sign of the spins changes only “once” moving
along the paths (7w € II) connecting the root to the final points; the set of edges on which
the signs of the spins change is called the surface separation between the + and the -
phase; it correspond to a “trim” (7 € T') on the tree. It is a classical result in statistical
mechanics to express the partition function or the mean values as a series. Defining 5
by ¢ +4 = 1, where ¢ is the usual Kronecker function, one has do = —25 + 1. This
identity gives the so called low temperature expansion for the partition function

Zgo = H ePie Z H e~ 2Pe (5.4)
eckE TET e€cT

which has first been obtained by Peierls ([6]). Considering the identity e#?” = csh(8)(1+
dotgh(/3)) one has the high temperature expansion for the correlation which gives:

> (oMo e = [] esh(Bie) Y [] tan(Bie)- (5.5)

PEIA ecE well eEm



It is clear that the sums appearing in (5.4) and (5.5) reproduce respectively the C
and the C* algorithms. This is seen as follows: the indipendence of the Hamiltonians
for the subtrees connected to a given vertex implies the factorization of the partition
function which is just the product rule (2.1); as for C* the (5.5) gives directly the
characterization (3.6). One obtains exactly the two polynomials making the choice that
the coupling variables j. are of two types (j1,j2) on (5.4) and take the value j; on the
final edges and j2 on all the others. In this case the sum on (5.4) become the C(t,a)
polynomial with the identification ¢ +a = =207t and t = ¢~2072, To identificate the C*
polynomial the choice to make is simply a coupling variable 5 on all the edges and the
identification is t = tgh(3j).

6. Some comments.

In this work we have analyzed two natural polynomials associated to rooted trees and
we have discussed the statistical mechanics interpretation; our main result is the one-
to-one correspondence between particular two-variable polynomials and rooted trees
which result to be respectively the partition functions of an Ising model and the graphs
on which that model lives. This interpretation opens the possibility of investigating
the fruitful field of the relations between counting problems and statistical mechanics
properties; in particular the search for the zeroes of our polynomial and the study of
their nature (which is part of the “critical” problem in statistical mechanics), could be
related to some of the unsolved counting problems in tree theory. Moreover our analysis
has a natural continuation in the study of the behaviour of the “free energy density”
function |[A|71log Z(\) on increasing family of trees; our main theorem sounds as a
strong indication that the simple surface separation ensemble should play an important
role in the study of the coexistence phenomena for Ising model on rooted trees, like
it does in classical cases (see for instance [7]). We hope to return on these questions
elsewhere.

We conclude observing that the definitions of our polynomials for rooted trees
admit a straightforward extension to labelled rooted trees; by label we mean some
extra-structure appended to the vertices or to the edges of the tree which may depend
on the structure of the tree (internal label) or may be put on by hand (external label).
If one consider the Ising model previously defined, it is clear that one obtains a general
external label choosing a generic family of coupling constants, for instance each different
from the other. On the other hand one can consider a generic internally labeled C'
polynomial as

C)\v = H (CN’)\,UI +fv’)a (61)

v/ E€8y,1

where f, is an algorithmically computable polynomial of the subtree with root v. In
[5] the authors obtain the distinguishing polynomial for rooted directed arborescences

9



with the step-dependent choice
fo =t"THz+1)" (6.2)
where 7 is the number of edges in the subtree of root v, and the initial condition
Cy, =t+1 (6.3)

if A, is the tree with only one edge. We note that with this choice we have C(t, 1-1) =
C(t,1).
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Figure 2: Examples of different rooted planar trees which represent the same rooted
tree
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C/\(t, a) C/\*(t,l)

t+a t
(t+a)(t+a)= t+t=2t

= t? + 2at + a*

(t+a)+t=2t+a tt =2
(t+a)(t+a)+t= (t + 1)t = 2t*

=t*+ (1 + 2a)t + a?

A% + dat + a? tt + tt = 2t?

4t + 5at + a? ttt +t =1t*+1¢

Ci(t,a) = 3t° + (3 + 16a)t® + (4 + 10a + 35a2)t*+

+(3 + 10a + 12a? + 40a®)t® + (1 + a + 8a® + 6a® + 25a*)t?+
+(1 + 2a® + a* + 8a®)t + a®

Ch(t)" = (((ttt + (t+ O)t)t) + (t+ ¢+ t)t))t = t° + 2t* + 3¢3

Figure 3:
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Figure 4: An example of dual trees with the corresponding paths 7,, and 7v,,:
C3 (6, 1) =58 +2t° , C\,(£,0) =7 4+ 3> + 4¢. C5, = Cy,, C5, = Oy,

Y

Figure 5: C*(t,1) =t + 2t + 22 | C(1,0) = 16t° + 4t* + 4> + 2
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Figure 6: C*(t,1) = 2t°> +t* + 6t3 +2t> , C(t,0) = t'' + 2¢'0 + 3¢9 + 4¢% + 447 + 415 +
3t° + 2" + 17 + 7

Figure 7: C*(t,1) = 2t% + 2¢3 + 2t | C(¢,0) = 165 + 32t° 4 20t* + 4¢3
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