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e Reggio Emilia, via Campi 213/B, 41100 Modena, Italy

vernia@unimore.it

August 2, 2004

Abstract

We consider optimization problems for complex systems in which
the cost function has a multivalleyed landscape. We introduce a new
class of dynamical algorithms which, using a suitable annealing pro-
cedure coupled with a balanced greedy-reluctant strategy drive the
systems towards the deepest minimum of the cost function. Results
are presented for the Sherrington-Kirkpatrick model of spin-glasses.
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1 Introduction.

There is a standard barrier in applied science: the computational complexity
of hard (non-polynomial) problems. The modelling of competing interac-
tions among the components of a large system often lead to consider the
solution of a problem as the minimum of a functional with a complex land-
scape. The extensive search for the optimal configurations has a cost that
grows too quickly (usually exponentially) and become practically intractable
when the number of composing units is of the order of a few hundreds as
in the interesting cases. The study of optimizing algorithms is then a basic
step toward the solution of specific practical problems emerging in different
fields of applied science. In this paper we build a strategy to efficiently
explore the landscape of complex functionals in combinatorial optimization
in order to find its minima both local and global. To allow the reader to
better focus on our method, let us describe the functional to be minimized
as the mathematical representation of a quickly changing mountain profile
(in large dimensions), with a high multiplicity of local minima separated
by high barriers. The a priori knowledge of the landscape geometry is very
poor and our strategy to explore the territory in order to find good quality
minima (close to the global one) is to send signals in random directions (ini-
tial configurations), follow their evolution according to a specified dynamics
(algorithm) and collect the observed results. Our investigation procedure
is not dissimilar from an optical instrument in which we may tune a few
parameters to better observe the landscape and find the sites which we are
interested in. The algorithm is preliminary set by choosing the elementary
dynamical moves: this choice reflects the topology that we are associating
to our landscape and comes with a notion of vicinity and nearest neigh-
boring sites. The successive step is to decide the criteria after which to
select among a large multiplicity of moves. This is done by keeping into
account what we search for and what we most fear: we want to reach the
best possible minima as quickly as possible and the worse happening is to
get stuck in a local minimum which is still far from the optimal or near op-
timal ones. It appears rather intuitive that an algorithm with a too steepy
descent (greedy) has a very high risk to get stuck in poor local minima, but
at the same time a too slow descent (reluctant) would cost a very high price
in terms of computer time. It is natural to expect, and indeed it is what we
find, an optimal speed of descent that compromise at best among having
a wide exploration basin in a reasonable amount of time. Yet the danger
of remaining caught in wrong local minima remains. To avoid it we also
allow moves which locally and momentarily deviates from the descending
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directions. In other terms: to reach a good minimum it is often necessary
to overcome a high barrier. Physically, the introduction of a similar possi-
bility works like the availability of thermal energy where the probability of
its happening is related to the temperature of the system: the higher the
temperature the more likely are moves upwards and viceversa. To introduce
such a useful strategy we initially allow upward and downward moves; with
the time passing the probability to go up is progressively decreased at a
rate which we may optimize (this simulates the annealing of a physical sys-
tem) and the algorithm will continue evolving according to its downward
moves. Our work and the implementation of the algorithm is built and
tested toward a standard model in combinatorial optimization with origins
in condensed matter physics: the Sherrington-Kirkpatrick (SK) model for
the mean field spin glass phase [1, 2]. Among the advantages of our ap-
proach, there is the flexibility of our algorithms and their wide applicability
to practical problems like protein folding in biology [2], portfolio optimiza-
tion in financial mathematics [3], error correcting codes for digital signal
transmissions [4].

2 Results.

In the following Sections we will present details of the Model and Algorithms
we used in our simulations. Here we summarize the main ideas and results
of our analysis.

In the Sherrington-Kirkpatrick model the cost function is identified with
the energy of the system, the domain of the cost function is the discrete
spin configuration space and the optimization problem amounts to find the
spin configuration with the lowest energy (ground state). Given a proper
definition of distance in the configuration space (we can think two spin con-
figurations to be close if they differ only for a single spin-flip), the energy of
the system is a real-valued function forming a complex and corrugated en-
ergy landscape, with valleys (local minima) and peaks (local maxima). Our
optimization algorithms are described as dynamical evolution rules in this
energy landscape which, starting from a random initial condition, drive the
system towards local minima of the energy. The random transition from a
point of the trajectory to the successive, which is a nearest neighboring one,
is ruled by a probability with exponential density. We consider four differ-
ent algorithms: starting from the simplest one (Algorithm 0) which allows
only energy-decreasing trajectories, we implement a sequence of refinements
(Algorithms 1,2,3) leading to more efficient strategies, which exploit also in-
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creases in the cost function.

With Algorithm 0 the cost-decreasing trajectory ends up as soon as it
reaches a configuration which, according to our notion of vicinity (see Sec. 3)
is a local minimum. The parameter controlling the transition probability
function tunes the steepness of descents, generating a continuum of behav-
iors ranging from a reluctant-type dynamics (very small jumps and slow
convergence) to a greedy-type one (very large jumps deep into a valley).

A first improvement of this strategy, implemented in Algorithms 1 and 2, is
obtained by introducing a “temperature” in the system, which enables ran-
dom positive fluctuations of the cost function. This is obtained through the
choice of a transition probability which gives a non zero weight to upwards
moves. With these choices we have the following scenario for Algorithms
1 and 2: the dynamics starts with a given initial temperature and equal
probability of positive and negative moves. As the time goes on, the system
is gradually cooled until it reaches a state in which positive fluctuations are
forbidden and the dynamics continues as either greedy or reluctant, depend-
ing on the initial temperature. With a high initial temperature the long term
behavior of the dynamics will be greedy-like, while a low initial temperature
will lead to reluctant-type motion. The difference between Algorithm 1 and
2 lies in the convergence criterium: while the former stops when the first
local minimum is attained (likewise Algorithm 0), the latter allows the tra-
jectory to escape from it in view of the possibility to reach deeper minima
(supplementary stopping conditions are required in this case).

A further improvement of the algorithm efficiency is obtained with Algo-
rithm 3. In this case, the transition probability is designed to model an
initially hot system with high probability of positive moves, which is gradu-
ally quenched; when the system is cool, positive fluctuations are absent and
the decreasing trajectories are forced to follow greedy-like paths. In Fig. 1
typical trajectories for the four different algorithms are reported.

The efficiency of the algorithms are quantified on one hand by measuring
the average time needed to reach a local minimum, on the other hand by the
quality of the found minima (i.e. how deep they are). The optimization is
done by tuning the parameters which control the transition probabilities; in
particular, for Algorithms 1 and 2 this parameter is mainly the initial tem-
perature, while for Algorithm 3 it is the rate of the quench, i.e. the speed
of convergence to zero of the temperature of the system. As one would ex-
pect, for low initial temperatures (very low possibility of energy increase),
Algorithm 1 and 2 behaves very much as Algorithm 0. However their differ-
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ences become effective for sufficiently high initial temperatures. Obviously,
allowing positive jumps and escapes from local minima, the relaxation times
increase passing from Algorithm 0 to Algorithm 2; less trivially, numerical
results show that the scaling of the execution times with respect to the sys-
tem size is greatly enhanced. This is an important fact, because it suggests
that a crossover between computation times is to be expected for systems
with larger sizes. As regards the lowest values found, similar conclusions
can be drawn: going from Algorithm 0 to Algorithm 2 deeper minima are
attained.

Algorithm 3 can be consistently compared with Algorithm 2, which is the
best performing among the first three. The computation times and their
scaling with the size are similar for the two algorithms when the initial tem-
perature (for Algorithm 2) is high, but a clear enhancement is obtained by
Algorithm 3 when it is low. Also the minimal values of the cost functional
are similar for high temperatures, while they are lower for Algorithm 2 with
low initial temperatures. The previous remarks refer to an experimental
protocol in which the search for low cost configurations is performed testing
a fixed number of trajectories. The minimization of cost at fixed elapsed
computer time is another relevant criterium for the comparison of the al-
gorithms. In this case the best result is obtained with Algorithm 3, even
though Algorithm 2 gives comparable results.

3 The model and the algorithms.

3.1 The Sherrington Kirkpatrick model

The system we study is the Sherrington-Kirkpatrick model of spin-glasses
[1]. It is defined by the Hamiltonian

H(J, σ) = − 1√
N

∑

1≤i<j≤N

Jijσiσj (1)

where σi = ±1 for i = 1, . . . , N are Ising spin variables which interact
through couplings Jij . These are gaussian random variables, independent
and identically distributed with zero mean and variance 1. The random
sign (and strength) of the interaction generates frustration in the system,
i.e. the fact that in low energy configurations some of the couples will have
unsatisfied interaction. In particular, the ground state of the system is far
from the standard ground state of ferromagnetic models, where all spins
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Figure 1: Typical trajectories to reach a local minimum configuration for
Algorithm 0, 1, 2 and 3. Note that the trajectories generated by Algorithms
1 and 2 coincide until the first minimum is reached.

point in the same direction. The model has been solved through the replica
symmetry breaking ansatz by G. Parisi [2], while the rigorous solution is
still a debated issue in the mathematical physics community. From the
numerical point of view, the model poses amazing difficulties and indeed
it is often presented as the standard example of NP-problems. Several
numerical studies have tried different algorithms in the search of ground-
state energies, for example gradient descendent [5, 6], simulated annealing
[7, 8], genetic algorithms [9, 10], extremal optimization [11, 12, 13]. In a
previous paper we developed a new numerical scheme, which is based on a
smooth interpolation between greedy and reluctant dynamics [14, 15, 16].
Here we make a further step by proposing a new class of algorithms which
we describe in detail in the following.
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3.2 Dynamical Algorithms

We focus our attention on stochastic dynamics that generates a sequence
of spin configurations ending up on a local energy minimum. The smooth
interpolation between greedy and reluctant dynamics studied in a previous
work [16] follows an energy-decreasing trajectory and terminates in the first
local minimum it encounters: only transitions corresponding to a decrease
in the cost (energy) function are allowed by the algorithm. In the same
spirit of Simulated Annealing strategies [7], where a slow decrease of the
temperature leads the system through successive metastable states with
lower and lower energy, we think of a class of algorithms which also accept,
in some limited way, transitions corresponding to an increase in the cost
function. In fact, these algorithms are based on the statistical properties
of metastable states: they are organized with some structure so that the
evolution dynamics can be considered as the overlapping of a “fast” motion
in the basin of attraction of a local minimum and of a “slow” motion with
jumps between minima (the time of the dynamics is determined by the
energy barriers between these metastable states).

In the algorithms that we are going to introduce, the transition between the
spin configuration at time t, σ(t) = (σ1(t), . . . , σN(t)), and the successive
configurations at time t + 1, σ(t + 1) = (σ1(t + 1), . . . , σN(t + 1)) depends
on the spectrum of energy changes of σ(t), obtained by flipping the spin in
position i, for i = 1, . . . , N :

∆Ei = σi(t)
∑

j 6=i

Jijσj(t). (2)

Let also define ∆Eī = min1≤i≤N ∆Ei that will be used in what follows. As

a first step, let us briefly recall the algorithm studied in [16], where only
energy decreasing trajectory are considered. It is described by the following
procedure:

Algorithm 0

1. Initialization: choose an initial spin configuration σ(0) and a param-
eter value for λ > 0.

2. Generate a random number D with probability density

f(x) =

{

λeλx if x ≤ 0
0 if x > 0

(3)
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3. Select the site i⋆ associated with the closest energy change to the value
D, i.e.:

i⋆ : |∆Ei⋆ − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei < 0}. (4)

4. Flip the spin on site i⋆:

σi(t + 1) =

{

−σi(t) if i = i⋆

σi(t) if i 6= i⋆.
(5)

5. If ∆Ei > 0, ∀i = 1, . . . , N , then the algorithm stops (σ(t) is a local
minimum); otherwise repeat from step 2.

The dynamics generated by this algorithm follows a 1-spin flip decreasing
energy trajectory and arrives at a configuration whose energy cannot be
decreased by a single spin-flip. The control parameter λ in the probability
distribution function for the move acceptance, tunes the speed of conver-
gence to local energy minima: the larger is λ, the bigger is the probability
of doing small energy-decreasing steps, so that the trajectory will follow
an evolution path close to level curves (reluctant) while, small values of λ
enrich the probability of large negative energy steps (greedy), which will
quickly drive the dynamics to the end-point.

As a modification of Algorithm 0 we consider two new algorithms (Algo-
rithm 1 and Algorithm 2). They generate a dynamics that follows a 1-spin
flip trajectory that, in addition to energy-decreasing transitions, accepts
also energy-increasing transitions with probability exponentially decreasing
in time. The difference between the two is that while the trajectory of Al-
gorithm 1 ends up in the first local minimum it encounters, in Algorithm 2
it may continue to explore the space of configurations through the visit of
subsequent local minima.

Algorithm 1

1. Initialization: choose an initial spin configuration σ(0) and parameter
values 0 < c1(0) < λ1, 0 < c2 < λ2(0), with the obvious constraint

c1(0)

λ1

+
c2

λ2(0)
= 1 (6)

In our simulation we chose λ1 as the only free parameter, by taking
λ2(0) = λ1, c1(0) = λ1/2, c2 = λ1/2. This amounts to start with an
equal probability of energy decreasing and energy increasing transi-
tions (c1(0)/λ1 = c2/λ2(0) = 1/2).
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2. Generate a random number D with probability function

ft(x) =

{

c1(t)e
λ1x if x ≤ 0

c2e
−λ2(t)x if x > 0

(7)

3. Select the site i⋆ associated with the closest energy change to the value
D and with the same sign, i.e.:

i⋆ : |∆Ei⋆ − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei · D > 0}. (8)

4. Flip the spin on site i⋆:

σi(t + 1) =

{

−σi(t) if i = i⋆

σi(t) if i 6= i⋆.
(9)

5. If ∆Ei > 0, ∀i = 1, . . . , N , then the algorithm stops (σ(t) is a local
minimum). Otherwise, change the parameter λ2(t) of the probability
distribution in step 2 with a suitable scheduling, for example

λ2(t) =
λ2(0)

kt
, 0 < k < 1 (10)

and return to step 2.

The trajectory generated by Algorithm 1 wonder in the energy landscape
(by a succession of moves which decrease and increase energy) till it arrives
to a local minimum. Starting from a symmetric probability distribution for
the spin-flip selection, as time goes on the probability of energy-increasing
moves is decreased by the update rule (10).

Next, we want to consider an algorithm as the previous one but with the
possibility of exploring subsequent minima. The problem one has to solve
is to give an efficient criterium to stop the dynamics. We considered the
following implementation:

Algorithm 2

1. Initialization: as in Algorithm 1. Set also m = 1000 and ǫ = 10−4.

2. Generate a random number D as follows:

with probability function

ft(x) =

{

c1(t)e
λ1x if x ≤ 0

c2e
−λ2(t)x if x > 0

if
c1(t)

λ1

≤ m
c2

λ2(t)
(11)
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and with probability function

f(x) =

{

λ1e
λ1x if x ≤ 0

0 if x > 0
if

c1(t)

λ1
> m

c2

λ2(t)
(12)

3. Select the site i⋆ associated with the closest energy change to the value
D and with the same sign, i.e.:

i⋆ : |∆Ei⋆ − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei · D > 0}. (13)

4. Flip the spin on site i⋆:

σi(t + 1) =

{

−σi(t) if i = i⋆

σi(t) if i 6= i⋆.
(14)

5. If ∆Ei > 0, ∀i = 1, . . . , N , and Pt(D ≥ ∆Eī) < ǫ then Stop.

D is a random number, Pt is the cumulative function of the probability
described in step 2 and ǫ is a small parameter. In other words, if
we arrive in a minimum and the probability of a significant energy
increasing transition from this local minimum is too small (or even
zero when the energy increases are forbidden, see step 2), then the
algorithm stops.

6. Change the probability distribution (11) with the scheduling (10) for
λ2(t) (the same scheduling used in Algorithm 1) and return to step 2.

As in Algorithm 1, the dynamics generated by this algorithm follows a 1-
spin flip trajectory making a combination of upwards and downwards moves.
However, in this case, the trajectory does not end up in the first 1-spin flip
stable configuration it encounters, at least as long as the probability of
positive moves (c2/λ2(t)) remains greater than a certain threshold (1/m
times the probability of negative moves c1(t)/λ1 - in our experiments m =
1000). With this strategy it is possible to escape from the local minima to
explore the neighboring space in view of (possible) lower energy minima.
When the probability of energy increases exceed this fixed threshold, from
this point on, only decreases in energy are accepted and so the process
terminates when the subsequent local minimum is reached. In fact, when
the process starts at time t = 0 we choose equal probabilities c1(0)/λ1 and
c2/λ2(0) of cost-decreasing or cost-increasing moves, respectively, by settling
c2 = λ2(0)/2. As the algorithm continues its execution, we decrease c2/λ2(t)
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towards zero, varying the control parameter λ2(t) in accordance with the
above mentioned law (10):

λ2(t) =
λ2(0)

kt
, λ2(0) = λ1, 0 < k < 1

(and keeping fixed λ1) until c1(t)
λ1

≤ m c2
λ2(t)

; as a consequence, the probability

of energy-decreasing move acceptance c1(t)/λ1 tends to one (c1(t) = λ1(1−
c2/λ2(t))). Therefore, while the speed of convergence to the local energy
minima is mainly tuned by λ1, the vanishing velocity of the probability of
energy-increasing steps is governed by the parameter k. Of course, large λ1

(and λ2(t)) lead to evolution paths generated by small (in absolute value)
energy changes (annealed reluctant dynamics) and the closer k is to 1, the
slower λ2(t) grows and then the more energy increases are enabled. When
c1(t)
λ1

> m c2
λ2(t)

the dynamics continues governed only by the parameter λ1,
not depending on t.

We see that for Algorithm 2 the possibility to escape from the minima is
effective only when λ1 is sufficiently small (say λ1 ≃ 1, and then λ2(0) ≃ 1,
see (10)). For greater values of λ1 the possibility to explore successive
minima is not exploited and both the dynamics 1 and 2 can be expected
to give similar results in terms of achieved minimum energy level. In these
cases, the dynamics generated by Algorithm 2 ends up naturally, after t′

steps, in the first minimum it encounters, because the (step dependent)
probability Pt′ to escape from this configuration is too small; therefore, we
expect that for large values of λ1 Algorithms 1 and 2 should be equivalent.

Since for these algorithms the speed of convergence to the finale state is
governed by the probability function ft(x), we can consider a third algorithm
in which the time dependence is present only in the control parameters λi(t),
i = 1, 2; in this case, starting from a (in general) non symmetric probability
function, the dynamics evolves gradually towards a final scenario in which
the system is cooled by tuning the control parameter λ1(t).

Algorithm 3

1. Initialization: choose an initial spin configuration σ(0) and parameter
values λ1(0), λ2(0) such that 1/λ1(0)+1/λ2(0) = 1. Set also m = 1000
and ǫ = 10−4.

2. Generate a random number D as follows:
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with probability function

ft(x) =

{

eλ1(t)x if x ≤ 0
e−λ2(t)x if x > 0

if
1

λ1(t)
≤ m

1

λ2(t)
(15)

and with probability function

f(x) =

{

λ1e
λ1x if x ≤ 0

0 if x > 0
if

1

λ1(t)
> m

1

λ2(t)
(16)

3. Select the site i⋆ associated with the closest energy change to the value
D and with the same sign, i.e.:

i⋆ : |∆Ei⋆ − D| = min
i∈{1,...,N}

{|∆Ei − D| : ∆Ei · D > 0}. (17)

4. Flip the spin on site i⋆:

σi(t + 1) =

{

−σi(t) if i = i⋆

σi(t) if i 6= i⋆.
(18)

5. If ∆Ei > 0, ∀i = 1, . . . , N , and Pt(D ≥ ∆Eī) < ǫ then Stop (as in
Algorithm 2) .

6. Change the probability distribution defined in (15) with the same
scheduling for λ2(t) used in Algorithm 2 and return to Step 2.

The main difference between Algorithm 2 and Algorithm 3 is that in the
latter, when the process starts at time t = 0 we have (if λ1(0) 6= 2) dif-
ferent probabilities of energy-decreasing moves (1/λ1(0)) and of energy-
increasing moves (1/λ2(0)). As Algorithm 3 continues its execution, we
decrease 1/λ2(t) towards zero, varying the control parameter λ2(t) in accor-
dance with the scheduling:

λ2(t) =
λ2(0)

kt
, λ2(0) =

λ1(0)

λ1(0) − 1
, 0 < k < 1 (19)

until 1
λ1(t)

≤ m 1
λ2(t)

; as a consequence, the probability of energy-decreasing

move acceptance 1/λ1(t) tends to one (λ1(t) = λ2(t)
λ2(t)−1

). Therefore, while the
speed of convergence to the final state is mainly tuned by the initial value
λ1(0) of the time dependent parameter λ1(t) (which tends to 1, as time
t increases), the vanishing velocity of the probability of energy-increasing
steps is governed by the parameter k. When 1

λ1(t∗)
> m 1

λ2(t∗)
the dynamics

12
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Figure 2: Probability density functions for Algorithm 1 and 2 (part (a)) and
for Algorithm 3 (part (b)) for different values of time t. The continuous lines
refer to t = 0; the time goes on passing from broken lines to dotted ones.
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continues, for t > t∗, governed only by the parameter λ1 = λ1(t
∗) (close to

1) not depending on t. The dynamic evolution of the probability density
functions for Algorithm 1 and 2 compared with Algorithm 3 is reported in
Fig. 2.

Summarizing: the control parameters are λ for Algorithm 0, λ1 and k for
Algorithms 1 and 2, and λ1(0) and k for Algorithm 3. Varying them we
study the efficiency of the algorithms by measuring the average time to reach
a metastable configuration and the lowest energy value found for different
system sizes.

4 Data analysis.

To compare these annealed algorithms with those carried out in previous
works [14, 15, 16] and in particular with Algorithm 0, we performed a set of
trials for different values of N , starting from N initial conditions (for a sys-
tem of size N) and averaging the data on nreal = 1000 disorder realizations.
We measured two quantities to test the performance of the algorithms:

- the average time (i.e. the number of spin flips) to reach a minimum
energy level

τ =
1

M

M
∑

i=1

ti, (20)

with M = N · nreal and ti, i = 1, . . . , M the time for each initial
condition;

- the lowest energy found (averaged over disorder)

HN =

〈

minσ HN(J, σ)

N

〉

nreal

, (21)

where minσ HN(J, σ) is the minimum value of the energy of the meta-
stable states attained starting from the set of the N initial conditions.

Our numerical experiments follows two different protocols:

1. with a fixed number of initial conditions;

2. with a fixed elapsed computer time.

The results are described in the following subsections.

14



10

100

1000

10000

10 100 1000

=1,k=.98
=1,k=.99

=1,k=.995
=10,k=.98
=10,k=.99

=10,k=.995
=100,k=.98
=100,k=.99

=100,k=.995

N

τ
λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

λ1

·····
·····
·····
·····
·····
·····

Figure 3: Average time τ to reach a metastable configuration as a function
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4.1 Fixed number of initial conditions

The dynamics of Algorithm 0 has been shown [16] to behave as a smooth
interpolation between greedy and reluctant dynamics [14] depending on the
parameter λ: small λ (say λ ≃ 1) plays the role of the greedy algorithm,
while large λ (say λ ≃ 100) that of reluctant. In fact, the relaxation time
τ(N) grows linearly with the system size when λ ≃ 1 and quadratically when
λ ≃ 100 (see Tab. 1), as it was previously observed in [14] for deterministic
greedy and reluctant regimes.

In Fig. 3, which refers to Algorithm 2, we represent τ as a function of N
(N ∈ [25, 300]). We performed the analysis for different values of the control
parameters. For the sake of space, we show only the values λ1 = 1, 10, 100
and three values of k (k = .98, .99, .995) for each λ1, together with the best
numerical fits. Fig. 3 shows the progressive increase of the slope in log-log
scale from a sub-linear law in N for λ1 = 1 and k = .98 ( ⋄—) to a super-linear
one for λ1 = 100 and k = .98 ( ×· · ·). More in detail, the numerical fits of
τλ1,k(N) ∼ Na in Fig. 3 are reported in Tab.1.

Table 1: Numerical fits of τλ(N) ∼ Na for Algorithm 0 (with the symbols
of Fig. 6) and of τλ1,k(N) ∼ Na for Algorithm 1 and Algorithm 2 (with the
symbols of Fig. 3)

Alg 0 Alg 1 Alg 2
λ a symbol λ1 k a λ1 k a symbol

.98 .687 .98 .549 ⋄—
1 1.027 ∗ 1 .99 .630 1 .99 .475 +—

.995 .592 .995 .299 �—
.98 1.041 .98 1.030 ⋄· · ·

10 1.263 10 .99 .948 10 .99 .891 +· · ·
.995 .858 .995 .687 �· · ·
.98 1.724 .98 1.771 ×· · ·

100 1.932 ⋄ 100 .99 1.591 100 .99 1.691 △· · ·
.995 1.499 .995 1.567 ∗· · ·

With the same protocol (fixed number of initial conditions), we measured
the lowest energy HN found by the algorithms. As a general remark we
recall that from a theoretical point of view it is proved the monotonicity in
N of the ground state energy (this follows from sub-additivity [17]). For the
largest size we have studied, some values of the simulation parameters give a
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non-monotone behavior in N , suggesting that we are not actually finding the
true lowest energy state. A larger number of trials (i.e. initial conditions)
would be needed to achieve the global minimum. However, our principal
aim here is not to have a perfect measure of ground state energies. In Fig. 4
we represent, for Algorithm 2, HN as a function of N for different values of
λ1 and k. The best results for large N are obtained for λ1 = 100 and k = .98
which corresponds to annealed reluctant dynamics (as found for Algorithm
0, see Fig. 5). Therefore, this confirms [15, 16] that, for a fixed number of
initial spin configurations, the algorithm that makes moves corresponding
to the “smallest” possible energy change keeping the possibility of energy
increase only for the first steps of the algorithm is the most efficient in
reaching low-energy states. Note that, for λ1 = 1 and k = .995 the attained
energy values are sufficiently low: even if these results are not better than
those for λ1 = 100 (with k = .98 and k = .995), they should not be

discarded since the average time scales better ( τ
(2)
1,.995(N) ∼ N .299 instead

of τ
(2)
100,.98(N) ∼ N1.771 or τ

(2)
100,.995(N) ∼ N1.567) 1.

Comparing these results with those obtained with the interpolating
greedy and reluctant algorithm (Algorithm 0) [16] we note (Figs. 5 and
6 and Tab. 1) that for small λ and λ1 Algorithm 2 is better performing than
Algorithm 0 both with respect to average time and energy levels, while
for greater λ and λ1 we find comparable energy values but with lower cost
for the computational time for Algorithm 2 (τ

(2)
100,.98(N) ∼ N1.771 instead of

τ
(0)
100(N) ∼ N1.932).

The same analysis is considered also for Algorithm 1. The comparison
between Algorithms 1 and 2 shows that the possibility of exceed the energy
barriers between minima is useful only for small values of λ1 (for λ1 close
to 1 Algorithm 2 is more efficient than Algorithm 1 in reaching lower en-
ergy states) while for λ1 ≥ 5 the performances of Algorithms 1 and 2 are
practically indistinguishable (see Figs. 7 and 8). Moreover, we note that
the best scaling of the average time τλ1,k with respect to N is obtained with

Algorithm 2 (see Tab. 1), though for fixed N, λ1 and k, we have τ
(1)
λ1,k < τ

(2)
λ1,k.

Figures 9 and 10 report the results of the analysis of Algorithm 3 with a
fixed number of initial conditions: N ∈ [25, 400]) for three distinct values
of λ1(0) (λ1(0) = 2, 10, 100) and for four values of k (k = .98, .99, .995, .997)
for each λ1(0). Because of high computational costs (which increase with
λ1(0) and k), the cases N = 350 and N = 400 for λ1(0) = 100 are only
partially studied. For the same reason also the case k = .997 is considered

1From now on, the superscript (x) in the notation of the average time τ
(x) will refer

to the number of the corresponding algorithm.
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Figure 4: Lowest energy value HN as a function of N for different values of
λ1 and k for Algorithm 2 and for a fixed number of initial conditions.
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Figure 5: Lowest energy value HN as a function of N obtained using a
protocol with a fixed number of initial conditions for λ = 1 (∗) and λ = 100
(⋄) for Algorithm 0 and for λ1 = 1 and k = .995 (�) and for λ1 = 100 and
k = .98 (×) for Algorithm 2.
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Figure 6: Average time τ to reach a metastable configuration as a function
of N for λ = 1 (+) and for λ = 100 (⋄) for Algorithm 0, and for λ1 = 1 and
k = .995 (�), for λ1 = 100 and k = .98 (×),and for λ1 = 100 and k = .995
( ∗) for Algorithm 2.
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Figure 7: Lowest energy value HN as a function of N for λ1 = 1 and different
values of k, for Algorithm 1 and 2.

21



-0.75

-0.74

-0.73

-0.72

-0.71

-0.7

-0.69

-0.68

-0.67

0 50 100 150 200 250 300

k=.980
k=.990
k=.995
k=.980
k=.990
k=.995

N

HN
Alg 2, λ1 = 10

{

.

Alg 1, λ1 = 10

{

.

Figure 8: Lowest energy value HN as a function of N for λ1 = 10 and for
different values of k obtained with Algorithm 1 and 2.
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only for λ1(0) = 2.

Fig. 10 shows that Algorithm 3 seems to depend weakly on the parameter
λ1(0), its behavior being mainly ruled by k. In fact, the lines of the HN

values corresponding to the same choices of k are grouped into narrow bands
well separated one from the others. Moreover, a closer look to Fig. 10 shows
that the best result for HN is obtained for λ1(0) = 2 and k = .997. Note
that for any λ1(0), the closer the values of k to one, the lower the values
of energy: slow growths of the parameter λ2(t) enable energy increases and
then the possibility to exceed the energy barriers. Even though Algorithm
2 is slightly better performing (λ1 = 100, k = .98 see Fig. 4) in terms of
minimum energy level reached, the best scaling of τλ1(0),k(N) is obtained
by Algorithm 3. In fact, for Algorithm 3 we note (Fig. 9 and Tab. 2)
the progressive increase of the slope in log-log scale from a scaling law
τ

(3)
λ1(0),k(N) ∼ N .22 for λ1(0) = 100 and k = .995 ( ∗· · ·) to τ

(3)
λ1(0),k(N) ∼ N .53

for λ1(0) = 2 and k = .98 ( ⋄—). More in detail, the numerical fits of
τλ1(0),k(N) ∼ Na for Algorithm 3 are reported in Tab.2.

To conclude the analysis of the protocol with a fixed number of initial
conditions we can say that taking into account also the average time τ , the
best performing algorithm in reaching minimum energy level is Algorithm 3
(Fig. 11). In fact, Algorithm 3 with λ1(0) = 2 e k = .997 attains minimum
energy levels comparable with those obtained by the other algorithms with
λ and λ1 equal to 100 but with lower computational costs (τ

(3)
2,.997 ∼ N .272

while τ
(0)
100 ∼ N1.932, τ

(1)
100,.98 ∼ N1.724 and τ

(2)
100,.98 ∼ N1.771, see Tabs. 1 and

2).

4.2 Fixed elapsed computer time

Finally, we analyze the lowest energy states found by the dynamics varying
the control parameters for a given elapsed running time for all algorithms.
In Fig. 12 we consider the minimum energy values HN , obtained by choosing
different system sizes N and, for each of them, different parameter values
(λ = 1, 10, 100 for Algorithm 0, λ1 = 1, 5, 10, 100 for Algorithm 1, λ1 =
1, 10 for Algorithm 2 and λ1(0) = 2, 10, 100 for Algorithm 3) with different
annealing scheduling each (k = .98 and k = .995 for Algorithm 1 and 2,
k = .995 and k = .997 for Algorithm 3), for a fixed time of 50 h of CPU on a
IBM SP4. For Algorithm 2 we consider in detail mainly the case (λ1 = 1) in
which the dynamics behaves differently from that generated by Algorithm 1.
Each run (i.e. for fixed N and for fixed control parameter) consists of 1000
disorder realizations, with the same CPU time length (3 min.) assigned to
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each sample, in order to compare these results with [14, 15, 16]. With all this
dynamics, for N ≤ 150, we believe to find the ground state of the system,
since varying the control parameters and independently on the algorithm
used, the values of HN coincide, within our numerical accuracy (10−10).
The best result is obtained with Algorithm 3 for the case λ1(0) = 2 and
k = .997 (even though the result provided by Algorithm 2 for λ1 = 1 and
k = .995 is comparable). Note that, for Algorithm 1 the best result is for
λ1 = 10 and k = .98 in good agreement with the best result of Algorithm 0
obtained for λ = 10 (Fig. 12). Moreover, it is worthnoting that the values
HN obtained with Algorithm 3 for the case λ1(0) = 2 and k = .997 are the
best (for fixed CPU time) with respect to all algorithms we consider in the
present paper and in [14, 15, 16].

Table 2: Numerical fits of τλ1(0),k(N) ∼ Na for Algorithm 3

λ1(0) k a symbol
.98 .531 ⋄—

2 .99 .509 +—
.995 .379 �—
.997 .272 ∗—
.98 .352 ⋄· · ·

10 .99 .304 +· · ·
.995 .225 �· · ·
.98 .321 ×· · ·

100 .99 .289 △· · ·
.995 .220 ∗· · ·
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Figure 9: Average time τ to reach a metastable configuration as a function
of N for different values of λ1(0) and k for Algorithm 3, together with the
best numerical fits for a fixed number of initial conditions. We represent
λ1(0) = 2 (k = .98 (⋄—), k = .99 (+—) and k = .995 (�—)), λ1(0) = 10 (k = .98
(⋄· · ·), k = .99 (+· · ·) and k = .995 (�· · ·)) and λ1(0) = 100 (k = .98 (×· · ·), k = .99
(△· · ·) and k = .995 (∗· · ·))
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Figure 10: Lowest energy value HN as a function of N for different values
of λ1(0) and k for Algorithm 3 and for a fixed number of initial conditions.
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Algorithm 0, for λ1 = 100 and k = .98 (△) for Algorithm 1 and (×) for
Algorithm 2 and for λ1(0) = 2 and k = .997 (∗) for Algorithm 3.
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Figure 12: Lowest energy value HN as a function of N for different values
of control parameters for Algorithms 0, 1, 2 and 3, for a fixed CPU time of
50 h on a IBM SP4. The symbol (+) refers to λ = 10 for Algorithm 0, (⋄)
to λ1 = 10 and k = .98 for Algorithm 1, (�) to λ1 = 1 and k = .995 for
Algorithm 2 and (×) for λ1(0) = 2 and k = .997 for Algorithm 3.
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doli, C. Vernia, “Optimization strategies in complex systems”,
Science and Supercomputing at Cineca - 2003 Report, 386-390,
http://arxiv.org/abs/math.NA/0309058.
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