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Abstract

We study the properties of fluctuation for the free energies and internal energies of

two spin glass systems that differ for having some set of interactions flipped. We

show that their difference has a variance that grows like the volume of the flipped

region. Using a new interpolation method, which extends to the entire circle the

standard interpolation technique, we show by integration by parts that the bound

imply new overlap identities for the equilibrium state. As a side result the case of

the random field is analyzed and the triviality of its overlap distribution proved.
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1 Introduction and results

In this paper we investigate a new method to obtain overlap identities for the spin glass

models. The strategy we use is the exploitation of a bound on the fluctuations of a

quantity that compares a system with some Gaussian disorder with the system at a flipped

(J → −J) disorder. While the disordered averages are symmetric by interaction flip due

to the symmetry of the distribution, the difference among them is an interesting random

variable whose variance can be shown to grow at most like the volume (for extensive

quantities).

The identities are then deduced using some form of integration by parts in the same

perspective in which they appear from stochastic stability [AC] or the Ghirlanda Guerra

method [GG] in the mean field case or, more recently, for short range finite dimensional

models [CGi, CGi2] (see also [T, B]).

The interest of obtaining further information from the method of the identities lies

on the fact that they provide a constraint for the overlap moments (or their distribution)

and have the potential to reduce its degrees of freedom toward, possibly, a mean field

structure like it is expected to have the Sherrington Kirkpatrick model.

More specifically the results of this paper consist of overlap identities for the quenched

state which interpolate between a Gaussian spin glass and the system where the couplings

in a subvolume (possibly coinciding with the whole volume) have been flipped. The inter-

polation is obtained by extending to the whole circle the Guerra Toninelli interpolation

[GT]. The bounds are derived from the concentration properties of the difference of the

free energy per particle in the two settings, original and flipped.

As an example, one may consider the result which is stated in [NS] (and quoted there

as proved by Aizenman and Fisher) for the difference ∆F between the free energy of the

Edwards-Anderson model on a d-dimensional lattice with linear size L and a volume Ld

when going from periodic to antiperiodic boundary conditions on the iperplane which is

orthogonal to (say) the x-direction. The mentioned property is a bound for the variance of

this quantity which grows no more than the volume of the iperplane. Such an upper bound

is equivalent to a bound for the stiffness exponent θ ≤ (d−1)/2 [SY, BM, FH]. Although
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that bound is not expected to be saturated we prove here that it implies an identity

for the equilibrium quantities. When expressed in terms of spin variables some of the

overlap identities that we find generalize the structure of truncated correlation function

that appear in [Te] whose behaviour in the volume is related to the low temperature phase

properties of the model. Consequences of our bound can also be seen at the level of the

difference of internal energies. This second set of identities contains as a particular case

some of the Ghirlanda-Guerra identities.

A quite interesting result, from the mathematical physics perspective, is provided by

the analysis of the identities for the random field model. We show here that the new

set of identities that we derive (and explicitly test) when considered together with the

Ghirlanda Guerra ones provide a simple proof of triviality of the model i.e. the proof that

the overlap is a non fluctuating quantity.

The plan of the paper is the following. In the next section we define the setting of

Gaussian spin glasses that we consider. Then in section 3 we prove a lemma for the first

two moments of the difference of free energies. This is obtained by studying a suitable

interpolation on the circle for the linear combination of two independent Hamiltonians.

Section 4 contains the proof of the concentration of measure results. The main results are

given in section 5 and 6, where the new overlap identities are stated. Finally in section 7

we study the case of the random field model and shows how to derive the triviality of the

model without making use of the explicit solution.

2 Definitions

We consider a disordered model of Ising configurations σn = ±1, n ∈ Λ ⊂ L for some

subset Λ (volume |Λ|) of a lattice L. We denote by ΣΛ the set of all σ = {σn}n∈Λ, and

|ΣΛ| = 2|Λ|. In the sequel the following definitions will be used.

1. Hamiltonian.

For every Λ ⊂ L let {HΛ(σ)}σ∈ΣN
be a family of 2|Λ| translation invariant (in

distribution) Gaussian random variables defined, in analogy with [RU], according
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to the general representation

HΛ(σ) = −
∑

X⊂Λ

JXσX (2.1)

where

σX =
∏

i∈X

σi , (2.2)

(σ∅ = 0) and the J ’s are independent Gaussian variables with mean

Av(JX) = 0 , (2.3)

and variance

Av(J2
X) = ∆2

X . (2.4)

Given any subset Λ′ ⊆ Λ, we also write

HΛ(σ) = HΛ′(σ) +HΛ\Λ′(σ) (2.5)

where

HΛ′(σ) = −
∑

X⊂Λ′

JXσX , HΛ\Λ′(σ) = −
∑

X⊂Λ
X⊂\ Λ′

JXσX , (2.6)

and

HΛ,Λ′(σ) = −HΛ′(σ) +HΛ\Λ′(σ) (2.7)

will denote the Hamiltonian with the J couplings inside the region Λ′ that have

been flipped.

2. Average and Covariance matrix.

The Hamiltonian HΛ(σ) has covariance matrix

CΛ(σ, τ) := Av (HΛ(σ)HΛ(τ))

=
∑

X⊂Λ

∆2
XσXτX . (2.8)

By the Schwarz inequality

|CΛ(σ, τ)| ≤
√

CΛ(σ, σ)
√

CΛ(τ, τ) =
∑

X⊂Λ

∆2
X (2.9)

for all σ and τ .
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3. Thermodynamic Stability.

The Hamiltonian (2.1) is thermodynamically stable if it exists a constant c̄ such

that

sup
Λ⊂L

1

|Λ|

∑

X⊂Λ

∆2
X ≤ c̄ < ∞ . (2.10)

Thanks to the relation (2.9) a thermodynamically stable model fulfills the bound

CΛ(σ, τ) ≤ c̄ |Λ| (2.11)

and has an order 1 normalized covariance

cΛ(σ, τ) :=
1

|Λ|
CΛ(σ, τ) . (2.12)

4. Random partition function.

ZΛ(β) :=
∑

σ∈ΣΛ

e−βHΛ(σ) ≡
∑

σ∈ΣΛ

e−βHΛ′ (σ)−βHΛ\Λ′ (σ) , (2.13)

ZΛ,Λ′(β) :=
∑

σ∈ΣΛ

e−βHΛ,Λ′ (σ) ≡
∑

σ∈ΣΛ

eβHΛ′ (σ)−βHΛ\Λ′ (σ) . (2.14)

5. Random free energy/pressure.

−βFΛ(β) := PΛ(β) := lnZΛ(β) , (2.15)

−βFΛ,Λ′(β) := PΛ,Λ′(β) := lnZΛ,Λ′(β) . (2.16)

6. Random internal energy.

UΛ(β) :=

∑

σ∈ΣΛ
HΛ(σ)e−βHΛ(σ)

∑

σ∈ΣΛ
e−βHΛ(σ)

, (2.17)

UΛ,Λ′(β) :=

∑

σ∈ΣΛ
HΛ,Λ′(σ)e−βHΛ,Λ′ (σ)

∑

σ∈ΣΛ
e−βHΛ,Λ′ (σ)

. (2.18)

7. Quenched free energy/pressure.

−βFΛ(β) := PΛ(β) := Av (PΛ(β)) . (2.19)

−βFΛ,Λ′(β) := PΛ,Λ′(β) := Av (PΛ,Λ′(β)) . (2.20)
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8. R-product random Boltzmann-Gibbs state.

ΩΛ(−) :=
∑

σ(1),...,σ(R)

(−)
e−β[HΛ(σ(1))+···+HΛ(σ(R))]

[ZΛ(β)]R
. (2.21)

9. Quenched equilibrium state.

〈−〉Λ := Av (ΩΛ(−)) . (2.22)

10. Observables.

For any smooth bounded function G(cΛ) (without loss of generality we consider

|G| ≤ 1 and no assumption of permutation invariance on G is made) of the covari-

ance matrix entries we introduce the random (with respect to 〈−〉) R × R matrix

of elements {qk,l} (called generalized overlap) by the formula

〈G(q)〉 := Av (Ω(G(cΛ))) . (2.23)

E.g.: G(cΛ) = cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))

〈q1,2q2,3〉 = Av





∑

σ(1),σ(2),σ(3)

cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))
e−β[

P3
i=1 HΛ(σ(i))]

[Z(β)]3



 (2.24)

Remark: In the following, whenever there is no risk of confusion, the volume dependency

in the quenched state or in the thermodynamic quantities will be dropped.

3 Preliminary: interpolation on the circle

Let ξ = {ξi}1≤i≤n and η = {ηi}1≤i≤n be two independent families of centered Gaussian

random variables, each having covariance matrix C, i.e.

Av(ξiξj) = Ci,j

Av(ηiηj) = Ci,j

Av(ξiηj) = 0. (3.25)
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Consider the following linear combination of ξ and η

xi(t) = f(t)ξi + g(t)ηi

yi(t) = ẋi(t) = ḟ(t)ξi + ġ(t)ηi (3.26)

where the parameter t ∈ [a, b] ⊂ R and the two functions f(t), g(t) take real values subject

to the constraint

f(t)2 + g(t)2 = 1 . (3.27)

Writing f(t) = cosα(t), g(t) = sinα(t) we obtain:

xi(t) = cosα(t)ξi + sinα(t)ηi

yi(t) = ẋi(t) = α̇(t)(− sinα(t)ξi + cosα(t)ηi). (3.28)

Because of the constraint (3.27), for a given time t ∈ [a, b], the new families x(t) =

{xi(t)}1≤i≤n and y(t) = {yi(t)}1≤i≤n are still independent, with covariances

Av(xi(t)xj(t)) = Ci,j

Av(yi(t)yj(t)) = Ci,j(ḟ
2(t) + ġ2(t)) ≡ Ci,jα̇(t)2

Av(xi(t)yj(t)) = 0. (3.29)

However, for different times t and s the families x(t), x(s), y(t) and y(s) will be correlated

with the following covariance matrix:

Av(xi(t)xj(s)) = Ci,j cos(α(t) − α(s)) ≡ Ci,jϑ(t, s)

Av(yi(t)yj(s)) = Ci,jα̇(t)α̇(s) cos(α(t) − α(s)) ≡ Ci,jϕ(t, s)

Av(xi(t)yj(s)) = Ci,jα̇(s) sin(α(t) − α(s)) ≡ Ci,jψ(t, s). (3.30)

Note that when the motion of the “angle” α(t) is uniform on the circle, i.e. α(t) = α0+α1t,

the covariance is a function of the difference of times and then the 2n-dimensional Gaussian

process z(t) = (x(t), y(t)) becomes stationary.

In the abstract set-up described above, we regard x(t) as an interpolating Hamiltonian

which is a linear combination of the random Hamiltonians ξ and η, with t-dependent
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weights that are the coordinates of a point on the circle of unit radius. We introduce the

interpolating random pressure 1:

P(t) = lnZ(t) = ln

n
∑

i=1

exi(t) , (3.31)

and the notation 〈C1,2〉t,s to denote the expectation of the covariance matrix in the de-

formed quenched state constructed from two independent copies with Boltzmann weights

x(t), respectively x(s). Namely:

〈C1,2〉t,s = Av

n
∑

i,j=1

Ci,j

exi(t)+xj (s)

Z(t)Z(s)
. (3.32)

The definition is extended in the obvious way to more than two copies. We will be

interested in the random variable given by the difference of the pressures evaluated at the

boundaries values

X (a, b) = P(b) −P(a) . (3.33)

The following lemma gives an explicit expression for the first two moments of this random

variable.

Lemma 1 For the random variable X (a, b) defined above we have

Av(X (a, b)) = 0 (3.34)

and

Av[(X (a, b))2] =

∫ α(b)

α(a)

∫ α(b)

α(a)

dαt dαs k1(αt, αs)〈C1,2〉t,s (3.35)

−

∫ α(b)

α(a)

∫ α(b)

α(a)

dαt dαs k2(αt, αs)
[

〈C2
1,2〉t,s − 2〈C1,2C2,3〉s,t,s + 〈C1,2C3,4〉t,s,s,t

]

with

k1(αt, αs) = cos(αt − αs), k2(αt, αs) = sin2(αt − αs). (3.36)

1Here, in defining the interpolating (random) pressure, we absorb the temperature in the Hamiltonian.
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Proof. In this paragraph we will denote
∑n

i=1 simply by
∑

i. The expressions above

follow from repeated application of the integration by parts formula for Gaussian families

of random variables. The result for the average of X (a, b) is immediately obtained by

writing

Av(X (a, b)) =

∫ b

a

dtAv(P ′(t)) =

∫ b

a

dt
∑

i

Av

(

yi(t)
exi(t)

Z(t)

)

. (3.37)

For a fixed t the expectation Av(−) is with respect to the 2n-dimensional family z(t) =

(x(t), y(t)), which is Gaussian with covariance Eq.(3.29). For this family the integration

by parts formula reads

Av[zif(z)] =
2n
∑

j=1

Av(zizj)Av

(

∂f(z)

∂zj

)

(3.38)

=
∑

j

Av(zixj(t))Av

(

∂f(x(t), y(t))

∂xj(t)

)

+
∑

j

Av(ziyj(t))Av

(

∂f(x(t), y(t))

∂yj(t)

)

.

Applying formula (3.38) with zi = yi(t) to Eq. (3.37) we have

Av(X (a, b)) =

∫ b

a

dt
∑

i,j

[

Av(yi(t)xj(t))Av

(

∂

∂xj(t)

exi(t)

Z(t)

)

+ Av(yi(t)yj(t))Av

(

∂

∂yj(t)

exi(t)

Z(t)

)]

from which the result (3.37) follows, since Av(yi(t)xj(t)) = 0 and ∂
∂yj(t)

exi(t)

Z(t)
= 0. As far

as the computation of the second moment is concerned, we start from

Av[(X (a, b))2] =

∫ b

a

dt

∫ b

a

dsAv(P ′(t)P ′(s))

=

∫ b

a

dt

∫ b

a

ds
∑

i,j

Av

(

yi(t)yj(s)
exi(t)+xj (s)

Z(t)Z(s)

)

. (3.39)

Now, for fixed t 6= s, the expectation Av(−) involves the 4n-dimensional family w(t, s) =

(x(t), x(s), y(t), y(s)) which is Gaussian with covariance structure given by Eq.(3.30). For

this family, the integration by parts formula reads:

Av[wif(w)] =
4n
∑

j=1

Av(wiwj)Av

(

∂f(w)

∂wj

)

(3.40)

=
∑

j

Av(wixj(t))Av

(

∂f(x(t), x(s), y(t), y(s))

∂xj(t)

)

+
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∑

j

Av(wixj(s))Av

(

∂f(x(t), x(s), y(t), y(s))

∂xj(s)

)

+

∑

j

Av(wiyj(t))Av

(

∂f(x(t), x(s), y(t), y(s))

∂yj(t)

)

+

∑

j

Av(wiyj(s))Av

(

∂f(x(t), x(s), y(t), y(s))

∂yj(s)

)

.

We apply twice Eq. (3.40) in Eq. (3.39). Start with wi = yi(t) to obtain:

Av[(X (a, b))2] =

∫ b

a

dt

∫ b

a

ds
∑

i,j,k

[

Av(yi(t)xk(t))Av

(

∂

∂xk(t)
yj(s)

exi(t)+xj (s)

Z(t)Z(s)

)

+

Av(yi(t)xk(s))Av

(

∂

∂xk(s)
yj(s)

exi(t)+xj(s)

Z(t)Z(s)

)

+

Av(yi(t)yk(t))Av

(

∂

∂yk(t)
yj(s)

exi(t)+xj(s)

Z(t)Z(s)

)

+

Av(yi(t)yk(s))Av

(

∂

∂yk(s)
yj(s)

exi(t)+xj (s)

Z(t)Z(s)

)]

.

Making use of Eq. (3.30) we have

Av[(X (a, b))2] =

∫ b

a

dt

∫ b

a

ds
∑

i,j,k

[

Ci,kψ(s, t)Av

(

yj(s)
∂

∂xk(s)

exi(t)+xj(s)

Z(t)Z(s)

)

+

Ci,kδk,jϕ(t, s)Av

(

exi(t)+xj(s)

Z(t)Z(s)

)]

. (3.41)

In the second term of the previous formula we recognize the quenched expectation 〈C1,2〉t,s.

The first term in (3.41) can be treated again by formula (3.40), this time with wi = yj(s).

Then we have

Av[(X (a, b))2] =

∫ b

a

dt

∫ b

a

ds
∑

i,j,k,l

[

Ci,kψ(s, t)Av(yj(s)xl(t))Av

(

∂2

∂xl(t)∂xk(s)

exi(t)+xj(s)

Z(t)Z(s)

)

+

Ci,kψ(s, t)Av(yj(s)xl(s))Av

(

∂2

∂xl(s)∂xk(s)

exi(t)+xj(s)

Z(t)Z(s)

)

+

Ci,kψ(s, t)Av(yj(s)yl(t))Av

(

∂2

∂yl(t)∂xk(s)

exi(t)+xj (s)

Z(t)Z(s)

)

+

Ci,kψ(s, t)Av(yj(s)yl(s))Av

(

∂2

∂yl(s)∂xk(s)

exi(t)+xj(s)

Z(t)Z(s)

)]

+

∫ b

a

dt

∫ b

a

dsϕ(t, s)〈C1,2〉t,s .

(3.42)
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which implies

Av[(X (a, b))2] =

∫ b

a

dt

∫ b

a

ds
∑

i,j,k,l

[

ψ(t, s)ψ(s, t)Av

(

∂2

∂xl(t)∂xk(s)

exi(t)+xj (s)

Z(t)Z(s)

)]

+

∫ b

a

dt

∫ b

a

dsϕ(t, s)〈C1,2〉t,s . (3.43)

We now separately compute the second derivative in the previous formula. We have

∂2

∂xl(t)∂xk(s)

exi(t)+xj(s)

Z(t)Z(s)
=

(

∂

∂xl(t)

exi(t)

Z(t)

)(

∂

∂xk(s)

exj(s)

Z(s)

)

(3.44)

=

(

δi,l
exi(t)

Z(t)
−
exi(t)+xl(t)

Z(t)2

)(

δj,k
exj(s)

Z(s)
−
exj(s)+xk(s)

Z(s)2

)

.

Inserting the computation in the previous formula we find:

Av[(X (a, b))2] =

∫ b

a

dt

∫ b

a

dsψ(t, s)ψ(s, t)
∑

i,j,k,l

[

Ci,kCj,lAv

(

δi,lδj,k
exi(t)

Z(t)

exj(s)

Z(s)

)]

−

∫ b

a

dt

∫ b

a

dsψ(t, s)ψ(s, t)
∑

i,j,k,l

[

Ci,kCj,lAv

(

δi,l
exi(t)

Z(t)

exj(s)+xk(s)

Z(s)2

)]

−

∫ b

a

dt

∫ b

a

dsψ(t, s)ψ(s, t)
∑

i,j,k,l

[

Ci,kCj,lAv

(

δj,k
exi(t)+xl(t)

Z(t)2

exj(s)

Z(s)

)]

+

∫ b

a

dt

∫ b

a

dsψ(t, s)ψ(s, t)
∑

i,j,k,l

[

Ci,kCj,lAv

(

exi(t)+xl(t)

Z(t)2

exj(s)+xk(s)

Z(s)2

)]

+

∫ b

a

dt

∫ b

a

dsϕ(s, t)〈C1,2〉t,s . (3.45)

This, using (3.30), can be rewritten as:

Av[(X (a, b))2] = −

∫ b

a

dt

∫ b

a

dsα̇(t)α̇(s) sin2(α(s) − α(t))〈C2
1,2〉t,s

+2

∫ b

a

dt

∫ b

a

dsα̇(t)α̇(s) sin2(α(s) − α(t))〈C1,2C2,3〉s,t,s

−

∫ b

a

dt

∫ b

a

dsα̇(t)α̇(s) sin2(α(s) − α(t))〈C1,2C3,4〉t,s,s,t

+

∫ b

a

dt

∫ b

a

dsα̇(t)α̇(s) cos(α(s) − α(t))〈C1,2〉t,s , (3.46)

which is equivalent to expression (3.35). �
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4 Bound on the fluctuations of the free energy dif-

ference

It is a well established fact that the random free energy per particles of Gaussian spin

glasses satisfies concentration inequalities, implying in particular self-averaging. Here

we prove that the same result holds for the variation in the random free energy (or

equivalently the random pressure)

XΛ,Λ′ = PΛ − PΛ,Λ′ (4.47)

induced by the change of the signs of the interaction in the subset Λ′ ⊆ Λ. In general, the

fact that the random free energy per particle concentrates around its mean as the system

volume increases of the free energy can be obtained either by martingales arguments

[PS, CGi2] or by general Gaussian concentration of measure [T, GT2]. Here we follow

the second approach. Our formulation applies to both mean field and finite dimensional

models and, for instance, includes the non summable interactions in finite dimensions

[KS] and the p-spin mean field model as well as the REM and GREM models.

Before stating the result, it is useful to notice that, as a consequence of the symmetry of

the Gaussian distribution, the variation of the random pressure has a zero average:

Av(XΛ,Λ′) = 0 . (4.48)

Lemma 2 For every subset Λ′ ⊂ Λ the disorder fluctuation of the free energy variation

XΛ,Λ′ satisfies the following inequality: for all x > 0

P (|XΛ,Λ′| ≥ x) ≤ 2 exp

(

−
x2

8πβ2c̄|Λ′|

)

(4.49)

with c̄ the constant in the thermodynamic stability condition (cfr. Eq. (2.10)). The

variance of the free energy variation satisfies the bound

V ar(XΛ,Λ′) = Av
(

X 2
Λ,Λ′

)

≤ 16 π c̄ β2 |Λ′| (4.50)

Proof. Consider an s > 0 and let x > 0. By Markov inequality, one has

P {XΛ,Λ′ ≥ x} = P {exp[sXΛ,Λ′] ≥ exp(sx)}

≤ Av (exp[sXΛ,Λ′]) exp(−sx) (4.51)
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To bound the generating function

Av (exp[sXΛ,Λ′]) (4.52)

one introduces, for a parameter t ∈ [0, π
2
], the following interpolating partition functions:

Z+(t) =
∑

σ∈ΣΛ

e
−β cos t H

(1)

Λ′ (σ)−βH
(3)

Λ\Λ′ (σ)−β sin t H
(2)

Λ′ (σ)
, (4.53)

Z−(t) =
∑

σ∈ΣΛ

e
β cos t H

(1)

Λ′ (σ)−βH
(3)

Λ\Λ′ (σ)+β sin t H
(2)

Λ′ (σ)
. (4.54)

Here the hamiltonians H
(1)
Λ′ (σ), H

(2)
Λ′ (σ), H

(3)
Λ\Λ′(σ), defined according to (2.6), depend

on three independent copies {J
(1)
X }X⊂Λ, {J

(2)
X }X⊂Λ, {J

(3)
X }X⊂Λ of the Gaussian disorder

characterized by (2.3),(2.4). Now we are ready to consider the interpolating function

φ(t) = lnAv3Av1

{

exp

(

s Av2

{

ln
Z+(t)

Z−(t)

})}

, (4.55)

where Av1{−}, Av2{−} and Av3{−} denote expectation with respect to the three inde-

pendent families of Gaussian variables JX . It is immediate to verify that

φ(0) = ln Av exp[s XΛ,Λ′] , (4.56)

and, using (4.48),

φ
(π

2

)

= 0 . (4.57)

This implies that

Av (exp[sXΛ,Λ′]) = eφ(0)−φ(π
2
) = e−

R

π
2

0 φ′(t)dt. (4.58)

On the other hand, the function φ′(t) can be easily bounded. Defining

K(t) = exp

(

s Av2

{

ln
Z+(t)

Z−(t)

})

(4.59)

the derivative is given by

φ′(t) = φ′
+(t) + φ′

−(t) (4.60)

where

φ′
+(t) =

sAv3Av1

{

K(t)Av2

{

Z+(t)
′

Z+(t)

}}

Av3Av1 {K(t)}
, φ′

−(t) = −
sAv3Av1

{

K(t)Av2

{

Z−(t)
′

Z−(t)

}}

Av3Av1 {K(t)}
.

(4.61)
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The first therm in the derivative is

φ′
+(t) =

sAv3Av1

{

K(t)Av2

{

∑

σ∈ΣΛ
p+

t (σ)
[

β sin tH
(1)
Λ′ (σ) − β cos tH

(2)
Λ′ (σ)

]}}

Av3Av1 {K(t)}
(4.62)

where

p+
t (σ) =

e
−β cos t H

(1)

Λ′ (σ)−βH
(3)

Λ\Λ′ (σ)−β sin t H
(2)

Λ′ (σ)

Z+(t)
(4.63)

Applying the integration by parts formula, a simple computation gives

β sin t Av3Av1

{

K(t) Av2

{

∑

σ

p+
t (σ)H

(1)
Λ′ (σ)

}}

= −sβ2 sin t cos t Av3Av1

{

K(t)
∑

X⊂Λ′

∆2
X [s+

t (X)2 + s+
t (X)s−t (X)]

}

− β2 sin t cos t Av3Av1

{

K(t) Av2

{

∑

σ

CΛ′(σ, σ)p+
t (σ)

}}

+ β2 sin t cos t Av3Av1

{

K(t) Av2

{

∑

σ,τ

CΛ′(σ, τ)p+
t (σ)p+

t (τ))

}}

(4.64)

and

−β cos t Av3Av1

{

K(t) Av2

{

∑

σ

pt(σ) H
(2)
Λ′ (σ)

}}

= β2 sin t cos t Av3Av1

{

K(t) Av2

{

∑

σ

CΛ′(σ, σ)p+
t (σ)

}}

− β2 sin t cos t Av1

{

K(t) Av2

{

∑

σ,τ

CΛ′(σ, τ)p+
t (σ)p+

t (τ))

}}

(4.65)

where

s+
t (X) = Av2

{

∑

σ

σXp
+
t (σ)

}

, s−t (X) = Av2

{

∑

σ

σXp
−
t (σ)

}

(4.66)

and

p−t (σ) =
e

β cos t H
(1)

Λ′ (σ)−βH
(3)

Λ\Λ′ (σ)+β sin t H
(2)

Λ′ (σ)

Z−(t)
. (4.67)

Taking the difference between (4.64) and (4.65) one finds that

φ′
+(t) = −s2β2 sin t cos t

Av3Av1

{

K(t)
∑

X⊂Λ′ ∆2
X [s+

t (X)2 + s+
t (X)s−t (X)]

}

Av3Av1{K(t)}
. (4.68)
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With a similar computation one obtains also

φ′
−(t) = −s2β2 sin t cos t

Av3Av1

{

K(t)
∑

X⊂Λ′ ∆2
X [s−t (X)2 + s+

t (X)s−t (X)]
}

Av3Av1{K(t)}
, (4.69)

then we conclude that

φ′(t) = −s2β2 sin t cos t
Av3Av1

{

K(t)
∑

X⊂Λ′ ∆2
X [s+

t (X) + s−t (X)]2
}

Av3Av1{K(t)}
. (4.70)

Using the thermodynamic stability condition (2.11), this yields

|φ′(t)| ≤ 4 β2 c̄ s2 |Λ′| (4.71)

from which it follows, using (4.58)

Av (exp[sXΛ,Λ′]) ≤ exp
(

2πβ2 c̄ s2 |Λ′|
)

. (4.72)

Inserting this bound into the inequality (4.51) and optimizing over s one finally obtains

P (XΛ,Λ′ ≥ x) ≤ exp

(

−
x2

8π β2 c̄ |Λ′|

)

. (4.73)

The proof of inequality (4.49) is completed by observing that one can repeat a similar

computation for P (XΛ,Λ′ ≤ −x). The result for the variance (4.50) is then immediately

proved, thanks to (4.48), using the identity

Av
(

X 2
Λ,Λ′

)

= 2

∫ ∞

0

x P(|XΛ,Λ′| ≥ x) dx . (4.74)

�

5 Overlap identities from the difference of free en-

ergy

We are now ready to state our first result.

Theorem 1 Given a volume Λ, consider the Guassian spin glass with Hamiltonian (2.1).

For a subvolume Λ′ ⊆ Λ and a parameter t ∈ [0, π], let

ωt(−) =
∑

σ

(−)e−Hσ(t)/Z(t)
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with

Hσ(t) = cos(t)H
(1)
Λ′ (σ) + sin(t)H

(2)
Λ′ (σ) +HΛ\Λ′(σ)

be the Boltzmann-Gibbs state which interpolates between the system with Gaussian dis-

order and the system with a flipped disorder in the region Λ′ ( H
(1)
Λ′ and H

(2)
Λ′ are two

independent copies of the Hamiltonian in the subvolume Λ′, HΛ\Λ′(σ) is the Hamilto-

nian in the remaining part of the volume, they are all independent). Then, the following

identities hold

lim
Λ,Λ′րZd

∫ π

0

∫ π

0

dt ds sin2(s− t)
[

〈(cΛ
′

1,2)
2〉t,s − 2〈cΛ

′

1,2c
Λ′

2,3〉s,t,s + 〈cΛ
′

1,2c
Λ′

3,4〉t,s,s,t

]

= 0 (5.75)

where 〈(cΛ
′

1,2)
2〉t,s (and analogously for the other terms) is the overlap of region Λ′ ⊆ Λ in

the quenched state constructed form the interpolating Boltzmann-Gibbs state, e.g.

〈(cΛ
′

1,2)
2〉t,s = Av(ωtωs(c

2
Λ′(σ, τ))) .

Proof: The proof is obtained from a suitable combination of the results in the previous

sections. For a parameter t ∈ [0, π] we consider the interpolating random pressure

P(t) = ln
∑

σ∈ΣΛ

exσ(t)+HΛ\Λ′ (σ) (5.76)

where

xσ(t) = cos(t)H
(1)
Λ′ (σ) + sin(t)H

(2)
Λ′ (σ)

with H
(1)
Λ′ (σ), H

(2)
Λ′ (σ) two independent copies of the Hamiltonian for the subvolume Λ′ ⊆

Λ. The boundaries values give the random pressure of the original system when t = 0

and the random pressure of the system with the couplings J flipped on the subvolume Λ′

when t = π, i.e.

P(0) = PΛ ,

P(π) = PΛ,Λ′ .

Application of Lemma 1 with ξσ = H
(1)
Λ′ (σ) and ησ = H

(2)
Λ′ (σ) (the presence of the addi-

tional term HΛ\Λ′(σ) in the random interpolating pressure does not change the result in
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the Lemma, as far as the quenched state is correctly interpreted) gives

V ar(PΛ − PΛ,Λ′) = Λ′

∫ π

0

∫ π

0

dt ds cos(s− t)〈cΛ
′

1,2〉t,s (5.77)

+ (Λ′)2

∫ π

0

∫ π

0

dt ds sin2(s− t)
[

〈(cΛ
′

1,2)
2〉t,s − 2〈cΛ

′

1,2c
Λ′

2,3〉s,t,s + 〈cΛ
′

1,2c
Λ′

3,4〉t,s,s,t

]

On the other hand, Lemma (2) tell us that V ar(PΛ−PΛ,Λ′) is bounded above by a constant

times the subvolume Λ′. As a consequence, the statement of the theorem follows. �

Remark: When expressed in terms of the spin variables the polynomial in the integral

(5.75) involves generalized truncated correlation functions. Indeed, for the model defined

in Section 2, we have the following expressions

ωt,s((C
Λ′

1,2)
2) =

∑

X,Y ⊂Λ′

∆2
X∆2

Y ωt(σ
(1)
X σ

(1)
Y )ωs(σ

(2)
X σ

(2)
Y )

ωs,t,s(C
Λ′

1,2C
Λ′

2,3) =
∑

X,Y ⊂Λ′

∆2
X∆2

Y ωs(σ
(1)
X )ωt(σ

(2)
X σ

(2)
Y )ωs(σ

(3)
Y )

ωt,s,s,t(C
Λ′

1,2C
Λ′

3,4) =
∑

X,Y ⊂Λ′

∆2
X∆2

Y ωt(σ
(1)
X )ωs(σ

(2)
X )ωs(σ

(3)
Y )ωt(σ

(4)
Y ) (5.78)

thus

ωt,s((c
Λ′

1,2)
2) − 2 ωs,t,s(c

Λ′

1,2c
Λ′

2,3) + ωt,s,s,t(c
Λ′

1,2c
Λ′

3,4) = (5.79)

1

|Λ′|2

∑

X,Y ⊂Λ′

∆2
X∆2

Y [ωt(σXσY ) − ωt(σX)ωt(σY )] [ωs(σXσY ) − ωs(σX)ωs(σY )]

where replica indices have been dropped. For the Edwards-Anderson model, which is

obtained with ∆2
X = 1 if X ∈ B′ = {(n, n′) ∈ Λ′×Λ′, |n−n′| = 1} and ∆2

X = 0 otherwise,

the linear combination (5.79) of the moments of the link-overlap in the region Λ′ is written

in terms of truncated correlation functions, that is

ωt,s((c
Λ′

1,2)
2) − 2 ωs,t,s(c

Λ′

1,2c
Λ′

2,3) + ωt,s,s,t(c
Λ′

1,2c
Λ′

3,4) =

1

|Λ′|2

∑

b,b′∈B′

[ωt(σbσb′) − ωt(σb)ωt(σb′)] [ωs(σbσb′) − ωs(σb)ωs(σb′)] , (5.80)

with σb = σnσ
′
n, if b = (n, n′) ∈ B′.
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6 Overlap identities from the difference of internal

energy

In this section we study the change in the internal energy after a flip of the couplings.

We consider only the case of the flip of all the couplings in the entire volume.

Let us consider two centered gaussian families ξ = {ξi}1≤i≤n, η = {ηi}1≤i≤n with

covariance structure given by

Av (ξiξj) = Av (ηiηj) = Ci,j (6.81)

with Ci,i = N . We assume the thermodynamic stability condition to hold. It follows

that N is proportional to the volume. For example, in the case of the Edwards-Anderson

model on a d-dimensional lattice we would have N = d|Λ|. We introduce the random free

energies

Pξ(β) = lnZξ(β) = ln
∑

i

e−βξi , Pη(β) = lnZη(β) = ln
∑

i

e−βηi , (6.82)

with the random Boltzmann-Gibbs state ωξ(−), ωη(−) and their quenched versions:

〈−〉ξ = Avξωξ(−), 〈−〉η = Avηωη(−). (6.83)

With a slight abuse of notation we will use the previous symbols also to denote the product

state acting on the replicated system. The free energy difference, obtained flipping the

hamiltonian η,

X (β) = Pξ(β) − P−η(β) ≡ ln
∑

i

e−βξi − ln
∑

i

eβηi , (6.84)

has a β-derivative given by the difference between the internal energies:

X ′(β) = −ωξ(ξ) − ω−η(η). (6.85)
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Using the symmetry of the distribution of η, we have the identities2

Avξωξ(ξ) = −β(N − Avξωξ(C1,2)) = −β(N − 〈C1,2〉ξ) (6.86)

Avηω−η(η) = β(N − Avηω−η(C1,2)) = β(N − 〈C1,2〉η). (6.87)

The above formulae show that the disorder average of X ′(β) vanishes

Avξ,η(X
′(β)) = β(〈C1,2〉η − 〈C1,2〉ξ) = 0, (6.88)

since, obviously, 〈C1,2〉η = 〈C1,2〉ξ. Here C1,2 = {Ci,j}i,j represents the covariance matrix

whose entries are regarded as configurations of two replicas labeled 1 and 2. Thus, using

the identity Avη(ω−η(η)
2) = Avξ(ωξ(ξ)

2), we have that the variance of X ′(β) is given by:

Avξ,η(X
′(β)2) = 2Avξ(ωξ(ξ)

2) + 2Avξ,η(ωξ(ξ)ω−η(η)). (6.89)

Using the integration by parts formula, we obtain that

Avξ(ωξ(ξ)
2) = Avξ

∑

i,j

Ci,j

e−βξi−βξj

Zξ(β)2
+ Avξ

∑

i,j

∑

k,ℓ

Ci,kCj,ℓ

∂2

∂ξℓ∂ξk

[

e−βξi−βξj

Zξ(β)2

]

. (6.90)

The second term in the right-hand side of the previous formula requires a repeated appli-

cation of the integration by parts formula, which gives:

Avξ

∑

i,j

∑

k,ℓ

Ci,kCj,ℓ

∂2

∂ξℓ∂ξk

[

e−βξi−βξj

Zξ(β)2

]

= β2N(N − 2〈C1,2〉ξ) + β2〈C2
1,2〉ξ

−6β2〈C1,2C2,3〉ξ + 6β2〈C1,2C3,4〉ξ.

Since the first term in the right-side of (6.90) is quenched average of C1,2, we conclude

that

Avξ(ωξ(ξ)
2) = 〈C1,2〉 + β2N(N − 2〈C1,2〉) + β2〈C2

1,2〉

− 6β2〈C1,2C2,3〉 + 6β2〈C1,2C3,4〉 (6.91)

2Indeed, from the symmetry of the gaussian distribution, we have that for any function f(η) the

following equalities hold: Avηf(η) = Avηf(−η) = Av
−ηf(−η). In particular if g is a function of the

configurations of the replicated system, applying the previous remark to f(η) = ωη(g) we obtain: 〈g〉η ≡

Avηωη(g) = Avηω
−η(g) = Av

−ηω
−η(g) ≡ 〈g〉

−η.

These properties will be tacitly used several time in this section.
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dropping, here and in what follows, the unessential reference to ξ in the quenched averages.

If the two families ξ and η were indipendent, then in (6.89) the average of the product

would factorize Avξ,η(ωξ(ξ)ω−η(η)) = −β2(N − 〈C1,2〉)
2 giving:

Avξ,η(X
′(β)2) = 2〈C1,2〉 + 2β2

(

〈C2
1,2〉 − 〈C1,2〉

2
)

+ 12β2 (〈C1,2C3,4〉 − 〈C1,2C2,3〉) .

In this case the self averaging of the normalized quantity X ′(β)2/N (see Theorem 2) would

lead, in the large volume limit N → ∞, to the well known identity [G]

〈c1,2c2,3〉 − 〈c1,2c3,4〉 =
1

6

(

〈c21,2〉 − 〈c1,2〉
2
)

. (6.92)

However, our concern here is the computation of the quadratic fluctuations of X ′(β) when

the sign of a given hamiltonian ξ is flipped in the whole volume. Therefore we have to set

ξ=η in (6.89). The computation requires, once again, the repeated use of the integration

by parts formula

Avξ(ωξ(ξ)ω−ξ(ξ)) = Avξ

(

∑

i,j

ξiξj
e−βξi+βξj

Zξ(β)Zξ(−β)

)

= Avξ

∑

i,j

Ci,j

e−βξi+βξj

Zξ(β)Zξ(−β)

+ Avξ

∑

i,j

∑

k,ℓ

Ci,kCj,ℓ

∂2

∂ξℓ∂ξk

[

e−βξi+βξj

Zξ(β)Zξ(−β)

]

. (6.93)

The average in (6.93) is expressed through a set of mixed quenched state: for instance,

the first term in right-hand side of the previous equation is

〈C1,2〉+,− = Avξ

∑

i,j

Ci,j

e−βξi+βξj

Zξ(β)Zξ(−β)
. (6.94)

Generalizing the previous definition we have, for instance, that 〈−〉+,+,−,+ represents

the thermal average taken with the usual boltzmannfaktor (i.e. with the sign − in the

exponent) in the first, second and fourth copy, and with the opposite sign in the third

one. Moreover, the symbol 〈−〉+,+,+,..., with all the subscripts + (or −, because of the

symmetry of the gaussian distribution), is the usual quenched measure 〈 −〉. The explicit

computation gives:

∂2

∂ξℓ∂ξk

[

e−βξi+βξj

Zξ(β)Zξ(−β)

]

= −β2N2 + 2β2N〈C1,2〉+,+ − β2〈C2
1,2〉+,− + 2β2〈C1,2C2,3〉+,−,+

−4β2〈C1,2C2,3〉+,+,− + 4β2〈C1,2C3,4〉+,+,+,− − β2〈C1,2C3,4〉+,+,−,− − β2〈C1,2C3,4〉+,−,+,−
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and finally:

Avξ(X
′(β)2) = 2(〈C1,2〉+,+ + 〈C1,2〉+,−) + 2β2

(

〈C2
1,2〉+,+ − 〈C2

1,2〉+,−

)

(6.95)

− 4β2 (3〈C1,2C2,3〉+,+,+ − 〈C1,2C2,3〉+,−,+ + 2〈C1,2C2,3〉+,+,−)

+ 2β2 (6〈C1,2C3,4〉+,+,+,+ + 4〈C1,2C3,4〉+,+,+,− − 〈C1,2C3,4〉+,+,−,− − 〈C1,2C3,4〉+,−,+,−) .

If we choose now ξ to be the Hamiltonian family defined in section 2, we obtain the

following:

Theorem 2 Consider the Guassian spin glass with Hamiltonian ξ given in (2.1). In the

infinite volume limit and for almost all values of β, we have

[

〈c21,2〉+,+ − 〈c21,2〉+,−

]

− 2 [3〈c1,2c2,3〉+,+,+ − 〈c1,2c2,3〉+,−,+ + 2〈c1,2c2,3〉+,+,−]

+ [6〈c1,2c3,4〉+,+,+,+ + 4〈c1,2c3,4〉+,+,+,− − 〈c1,2c3,4〉+,+,−,− − 〈c1,2c3,4〉+,−,+,−] = 0 (6.96)

where 〈c21,2〉+,− (and analogously for the other terms) is the overlap expectation in the

quenched state constructed form the mixed Boltzmann-Gibbs state with one copy given by

the original system and the other copy given by the flipped systems, e.g.

〈c21,2〉+,− = Av(ωξω−ξ(c
2
Λ(σ, τ))) .

Proof.

The proof is a simple consequence of well known results. The sequence of convex functions

Pξ(β)/N converges almost everywhere in J to the limiting value a(β) of its average and the

convergence is self averaging (i.e. Var(Pξ(β)/N) → 0). By general convexity arguments

[RU] it follows that the sequence of derivatives P ′
ξ(β)/N converges to u(β) = a′(β) al-

most everywhere in β and also that the convergence is self averaging (Var(P ′
ξ(β)/N) → 0,

β-a.e.) [S, OTW]. These remarks apply obviously also to P−ξ(β)/N and to its deriva-

tive, with the same limiting functions a(β) and a′(β). Thus we have that X (β)/N =

Pξ(β)/N−P−ξ(β)/N and its derivative X ′(β)/N vanish a.e. in J in the large volume limit.

Moreover, Var(X ′(β)/N) = Var(P ′
ξ(β)/N)+Var(P ′

−ξ(β)/N)−2cov
(

P ′
ξ(β)/N,P ′

−ξ(β)/N
)

,

thus estimating the covariance with the Cauchy-Schwartz inequality we have

Var(X ′(β)/N) ≤ 4Var(P ′
ξ(β)/N) → 0, β − a.e. (6.97)
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for N → ∞. Therefore, dividing (6.95) by N2 and taking the limit we obtain the result.

�

7 Triviality of the Random Field model

In this section we compute explicitly the expression appearing in Theorem 1

〈c21,2〉t,s − 2〈c1,2c2,3〉s,t,s + 〈c1,2c3,4〉t,s,s,t (7.98)

in the simple case of the random field. We will show that this linear combination of

overlap moments vanishes pointwise for all values of t and s. We will then deduce the

triviality of the order parameter for the random field model.

We consider two families Ji and J̃i for i = 1, . . . , N of independent normally distributed

centered random variables with variance 1:

Av(JiJj) = Av(J̃iJ̃j) = δi,j, Av(JiJ̃j) = 0, (7.99)

and the random field hamiltonians

ξσ =

N
∑

i=1

Jiσi, ησ =

N
∑

i=1

J̃iσi. (7.100)

where σi = ±1. We have that {ξσ}σ and {ησ}σ are two independent centered gaussian

families (each having n = 2N elements indexed by the configurations σ, N being the

volume) and covariance structure given by:

Av(ξσξτ ) ≡ Cσ,τ = Nq(σ, τ),

Av(ησητ ) ≡ Cσ,τ = Nq(σ, τ),

Av(ξσητ ) = 0. (7.101)

where q(σ, τ) is the site overlap of the two configurations σ and τ :

q(σ, τ) =
1

N

N
∑

i,j=1

σiτj . (7.102)
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For the trigonometric interpolation:

xσ(t) = cos(t)ξσ + sin(t)ησ

yσ(t) = ẋσ(t) = − sin(t)ξσ + cos(t)ησ, (7.103)

we have that:

Av(xσ(t)xτ (t)) = Nq(σ, τ)

Av(yσ(t)yτ (t)) = Nq(σ, τ)

Av(xσ(t)yτ (t)) = 0 (7.104)

and

Av(xσ(t)xτ (s)) = Nq(σ, τ) cos(t− s)

Av(yσ(t)yτ (s)) = Nq(σ, τ) cos(t− s)

Av(xσ(t)yτ (s)) = Nq(σ, τ) sin(t− s). (7.105)

Introducing, for the sake of notation, the Gaussian variables

Gi(t) = cos(t)Ji + sin(t)J̃i, (7.106)

we can define the interpolating partition function

Z(t) =
∑

σ exp(xσ(t)) =
∑

σ exp(
∑N

i=1Gi(t)σi). (7.107)

A simple computation shows that

Z(t) = 2N

N
∏

i=1

coshGi(t). (7.108)

For any integer M < N , we consider the sublattice ΛM = {N − M + 1, . . . , N} ⊆

ΛN ≡ {1, . . . , N} with its spin-configuration space SM = {−1, 1}ΛM and the subspace

S+
M = {(+1, σN−M+2, . . . , σN ), σi = ±1} (we will drop the subscript when it is equal to

N , e.g. S ≡ SN , S+ ≡ S+
N , etc.). The interpolating Boltzmann-Gibbs random state on

23



the lattice ΛM is

ωM
t (f) =

∑

σ∈SM
f(σ) exp

(

∑N
i=N−M+1Gi(t)σi

)

ZM(t)
,

ZM(t) =
∑

σ∈SM

exp

(

N
∑

i=N−M+1

Gi(t)σi

)

, (7.109)

where f is a function on SM . This definition extends in the obvious way to the R-fold

product; for instance the 2-product measure for the parameter values t and s is given by

ωM
t,s(f) =

∑

σ,τ∈SM
f(σ, τ) exp

(

∑N

i=N−M+1Gi(t)σi +
∑N

i=N−M+1Gi(s)τi

)

ZM(t)ZM(s)
(7.110)

where f is a function on SM × SM . In the sequel we will also write ωt,s(−) instead of

ωN
t,s(−).

The computation of the mean 〈C1,2〉t,s and the polynomial (7.98) is done evaluating (by

induction on M) the averages of the products of the overlaps between configurations of

SM

qM(σ, τ) =
1

M

N
∑

i=N−M+1

σiτi . (7.111)

Indeed, the explicit computation shows that:

ωN
t,s(qN) =

1

N
tanhG1(t) tanhG1(s) +

N − 1

N
ωN−1

t,s (qN−1), (7.112)

then iterating the previous formula N − 1 times we obtain

ωN
t,s(qN ) =

1

N

N
∑

j=1

tanh(Gj(t)) tanh(Gj(s)). (7.113)

since ω1
t,s(q1) = tanh(GN(t)) tanh(GN(s)). Recalling the relation between overlaps and

covariance (7.101) and taking the average with respect to the disorder, we obtain:

〈C1,2〉t,s =

N
∑

i=1

Av( tanh(Gi(t)) tanh(Gi(s))). (7.114)

For later use we report also the square of the quenched average

〈C1,2〉
2
t,s =

N
∑

i=1

(Av( tanh(Gi(t)) tanh(Gi(s))))
2 + QN(t, s) (7.115)
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where

QN(t, s) = 2
∑

1≤j<ℓ≤N

Av [tanh(Gj(t)) tanh(Gj(s))] Av [tanh(Gℓ(t)) tanh(Gℓ(s))] (7.116)

is a term of order N2.

For the squared overlap the following relation holds

ωt,s(q
2
N) =

1

N
+

2

N2

N−1
∑

j=1

(N − j) tanh(Gj(t)) tanh(Gj(s))ω
N−j
t,s (qN−1). (7.117)

Since for M ≤ N

ωM
t,s(qM) =

1

M

N
∑

j=N−M+1

tanh(Gj(t)) tanh(Gj(s)) (7.118)

we can write

ωt,s(q
2
N) =

1

N2
+

2

N2

∑

1≤j<ℓ≤N

tanh(Gj(t)) tanh(Gj(s)) tanh(Gℓ(t)) tanh(Gℓ(s)) (7.119)

and finally

〈C2
1,2〉t,s = 1 + 2

∑

1≤j<ℓ≤N

Av [tanh(Gj(t)) tanh(Gj(s)) tanh(Gℓ(t)) tanh(Gℓ(s))] . (7.120)

From the independence of the random variables Gi(t) (see (7.106)), we have that the

average in the right hand side of the previous formula factorizes, thus

〈C2
1,2〉t,s = 1 + QN(t, s). (7.121)

The second term in (7.98) is computed considering the average of qN(σ, γ)qN (γ, τ) where

γ, σ, τ ∈ S. We have

ωN
s,t,s(qN(σ, γ)qN (γ, τ)) = 1

N2 tanh2(G1(s))

+ 2
N2 tanh(G1(t)) tanh(G1(s))

∑N
j=2 tanh(Gj(t)) tanh(Gj(s))

+
(

N − 1
N

)2

ωN−1
s,t,s (qN−1(σ

′, γ′)qN−1(γ
′, τ ′)). (7.122)

where σ′, γ′, τ ′ are the restriction of σ, γ, τ to SN−1. As in the previous cases, iterating this

formula and taking into account that ω1
s,t,s(q1(σ, γ)q1(γ, τ)) = tanh2(GN(s)) we obtain

ωN
s,t,s(qN (σ, γ)qN (γ, τ)) = 1

N2

∑N
i=1 tanh2(Gi(s))

+ 2
N2

∑N−1
j=1 tanh(Gj(t)) tanh(Gj(s))

∑N

ℓ=j+1 tanh(Gℓ(t)) tanh(Gℓ(s)), (7.123)
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then

〈C1,2C2,3〉s,t,s =
∑N

i=1 Av
(

tanh2(Gi(s))
)

+ QN (t, s). (7.124)

The computation of the last term in (7.98) is simple because in this case the random

product measure factorizes:

ωt,s,s,t(q(σ, τ)q(γ, κ)) = ωt,s(q(σ, τ))ωs,t(q(γ, κ)). (7.125)

Then, using (7.113) we have

ωt,s,s,t(q(σ, τ)q(γ, κ)) =
1

N2

N
∑

i,j=1

tanh(Gj(t)) tanh(Gj(s)) tanh(Gi(t)) tanh(Gi(s))(7.126)

and

〈C12C34〉t,s,s,t =

N
∑

i,j=1

Av (tanh(Gj(t)) tanh(Gj(s)) tanh(Gi(t)) tanh(Gi(s))) (7.127)

which, using the symmetry of ai,j = Av (tanh(Gj(t)) tanh(Gj(s)) tanh(Gi(t)) tanh(Gi(s))),

can be written as

〈C12C34〉t,s,s,t =
∑N

j=1 Av
(

tanh2(Gj(t)) tanh2(Gj(s))
)

+ QN (t, s). (7.128)

An immediate consequence of (7.115),(7.121),(7.124),(7.128) is the following

Theorem 3 Consider the random field spin glass with Hamiltonian (7.100). In the limit

N → ∞ and for all values of t and s we have

γ1〈q
2
1,2〉t,s + γ2〈q1,2〉

2
t,s + γ3〈q1,2q2,3〉s,t,s + γ4〈q1,2q3,4〉t,s,s,t = 0 (7.129)

for any choice of real γ1, γ2, γ3, γ4 with γ1 + γ2 + γ3 + γ4 = 0.

Proof The proof is trivial. Indeed

γ1〈C
2
1,2〉t,s + γ2〈C1,2〉

2
t,s + γ3〈C1,2C2,3〉s,t,s + γ3〈C1,2C3,4〉t,s,s,t =

γ1 + γ2

N
∑

i=1

(Av( tanh(Gi(t)) tanh(Gi(s))))
2 + γ3

N
∑

i=1

Av
(

tanh2(Gi(s))
)

+γ4

N
∑

j=1

Av
(

tanh2(Gj(t)) tanh2(Gj(s))
)

+(γ1 + γ2 + γ3 + γ4)QN(t, s),
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i.e. the linear combination of the covariance matrix moments is of order N . Thus, since

| tanh(x)| < 1, we have

∣

∣γ1〈C
2
1,2〉t,s + γ2〈C1,2〉

2
t,s + γ3〈C1,2C2,3〉s,t,s + γ4〈C1,2C3,4〉t,s,s,t

∣

∣

≤ |γ1| + (|γ2| + |γ3| + |γ4|)N,

which can be rewritten, using the overlaps q1,2, q2,3, q3,4 between replicas, as

∣

∣γ1〈q
2
1,2〉t,s + γ2〈q1,2〉

2
t,s + γ3〈q1,2q2,3〉s,t,s + γ4〈q1,2q3,4〉t,s,s,t

∣

∣

≤
|γ2| + |γ3| + |γ4|

N
+

|γ1|

N2
. (7.130)

�

Among the relations of theorem 3, in the thermodynamic limit, we find the identity of

theorem 1 for the values γ1 = 1, γ2 = 0, γ3 = −2, γ4 = 1:

〈q2
1,2〉t,s − 2〈q1,2q2,3〉s,t,s + 〈q1,2q3,4〉t,s,s,t = 0 (7.131)

and the Ghirlanda-Guerra identities; for γ1 = 1, γ2 = 1, γ3 = −2, γ4 = 0 we find

〈q1,2q2,3〉s,t,s =
1

2
〈q2

1,2〉t,s +
1

2
〈q1,2〉

2
t,s ; (7.132)

for γ1 = 1, γ2 = 2, γ3 = 0, γ4 = −3 we find

〈q1,2q3,4〉s,t,s =
1

3
〈q2

1,2〉t,s +
2

3
〈q1,2〉

2
t,s . (7.133)

Using (7.132) and (7.133) we can express (7.131) as:

〈q2
1,2〉t,s − 2〈q1,2q2,3〉s,t,s + 〈q1,2q3,4〉t,s,s,t =

1

3
(〈q2

1,2〉t,s − 〈q1,2〉
2
t,s) (7.134)

The identity derived from the flip of the coupling thus imply a trivial order parameter

distribution. Indeed, since the identity (7.131) is true for every t and s we can choose

t = s = 0 and then the interpolating states reduce to the usual quenched Boltzmann-Gibbs

state. From Eq. (7.134) we deduce a trivial overlap distribution.
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