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Abstract

We show that a rigorous statistical mechanics description of some
Dirichlet series is possible. Using the abstract polymer model lan-
guage of statistical mechanics and the polymer expansion theory we
characterize the low activity phase by the suitable exponential decay
of the truncated correlation functions.

1 Introduction

The idea to relate number theory and equilibrium statistical mechanics or,
more precisely, zeta functions and partition functions, is now already quite
old. One motivation for pursuing this idea lies in the probabilistic aspects of
the prime number distribution. Statistical mechanics as an intrinsically prob-
abilistic theory is hoped to be an appropriate language for these phenomena.
The book [15] by Kac nicely presents this kind of probabilistic reasoning.
More concretely, the formulation of the famous Lee-Yang theorem was
influenced by a paper [23] by Pélya on the Riemann zeta function. In that
paper Podlya took the asymptotics of the Fourier transformed zeta function
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and proved for its inverse Fourier transform the 'Riemann hypothesis’, saying
that the non-real zeroes have real part %

As described by Kac in [23], the method of Pdlyas proof inspired the first
version of the Lee-Yang theorem (which says that the partition function of
ferromagnetic Ising models has only zeroes on the unit circle of the activity
plane).

This lead to the natural question whether inversely the Riemann hy-
pothesis or simpler number-theoretical questions could be proven by some
statistical mechanics method.

In recent years two approaches have been followed. In one of them the
Riemann zeta function ((s) itself was interpreted as partition function of a
system of interacting primes at inverse temperature s, see Julia [13, 14] and
Bost and Connes [2, 3]. In the last-mentioned paper the system was shown
to exhibit a phase transition at s = 1 with type I states (resp. type III) at
low (resp. high) temperature.

In the second approach mentioned the quotient ((s—1)/((s) is interpreted
as a partition function at the inverse temperature s, see Cvitanovié [8], Knauf
[17, 18, 19, 20], Contucci and Knauf [7], and Guerra and Knauf [12].

It was shown that the partition function described a spin chain with
asymptotically translation-invariant long-range ferromagnetic interaction (the
number-theoretical spin chain). The point s = 2 corresponds to a phase tran-
sition where magnetization jumps form 0 to 1.

Although there exist versions of the Lee-Yang theorem predicting zero-
free half planes in the inverse temperature plane, unfortunately these theo-
rems cannot be applied to the above spin chain, since its interaction includes
multi-body terms.

In this paper, using the general polymer model approach of statistical
mechanics, we propose a criterium to interpret a large class of Dirichlet series
as grand canonical partition functions of hard-core interacting systems.

The criterium involves a finite-volume approximation and a precise notion
of activity. We present two possible polymerizations: the first is based on the
notion of Euler product and works for multiplicative arithmetical functions,
the second covers a wider class of cases.

We show that the natural thermodynamical quantities of the polymer
model, like correlation functions, carry a deep number theoretical meaning
being the probability of suitable divisibility properties.

In order to control the behaviour of the correlation functions we apply



the polymer expansion technique by means of the Kirkwood-Salsburg iter-
ative equations: the low activity expansion theory enables us to prove the
exponential decay of all the truncated correlation functions and provides, in
general, a full analytical control of the low temperature phase.

This shows that the language of polymer models is not only formally but
also analytically adequate to describe the considered class of Dirichlet series.

Our approach clarifies the statistical mechanics meaning of the absolute
convergence theory for the Dirichlet series and introduces new perspectives
on it; moreover it has the merit to point out the natural limits of each poly-
merization. The polymerizations treated in this work, like similar techniques
in number theory, provide an approximation of the Dirichlet function which
works well for large real part of the complex plane but it results to be too
non-uniform elsewhere, especially on the critical strip.

We believe that, in order to obtain new analytical results from the number
theoretical point of view, one has to search for different polymerizations,
for instance the high temperature ones, or better to explore more subtle
strategies like the rearrangement procedure for polymer models (see [4, 5])
which, in some cases, provide a good control of the asymptotic behaviour of
the correlation functions in the interesting regions of the phase space.

All these ideas can be improved and tested with the study of the number
theoretical spin chain: the interacting objects are there not directly related to
primes and could suggest different types of polymerization based on groups
of spins (see Guerra and Knauf [12]). Moreover the approximant family ¢y
[17, 8] of the Euler totient function could really be seen as a systematic way
to rearrange the Euler totient function ¢ thought as a bare interaction. We
will return on these question elsewhere.

Notation. Sums resp. products over empty sets equal zero resp. one.
We write N := {1,2,3, ...} for the integers, No := NU {0} and P = {2,3,5, ...}

for the primes. If n divides m we write n|m and the symbol 3_, .. denotes

n|m
a sum over all the divisors of m; (n,m) is the greatest common divisor of m

and n.

2 The Polymer Expansion

Statistical Mechanics seeks to describe the collective behaviour of a large
number of similar particles. One assumes that these particles are enclosed



in a finite region A C S of space S (typically S = R? or S = 7%) and then
considers the thermodynamic limit A 7 S.

The mutual interaction between the particles in a configuration o is en-
coded by their total energy Hy (o). At inverse temperature s the probability
of that configuration is given by exp(—sHx(0))/Za(s),

Zn(8) = Zexp(—sHA(U)) (1)

being the partition function for volume A.

So the basic objects of statistical mechanics are the Boltzmann factors
exp(—sHu (o)) of the configurations.

Whereas the above Gibbs probability measures for the finite volume A
are real-analytic in the parameter s, in the thermodynamic limit A~ §
nonanalyticities arise which are called phase transitions. Different asymptotic
Gibbs measures may then be compatible with a given interaction and inverse
temperature.

This phenomenon is typical for random fields, i.e. random functions in
several variables, and is of central interest in today’s theory of probability.

Thus one basic problem of statistical mechanics consists in determining
regions in parameter space (e.g., in the s plane) where intensive quantities
like the free energy |A|~! In(Zx(s)) stay analytic in the thermodynamic limit.

Many of the techniques employed in that context recently turned out to
be related, the common ground being the abstract polymer model formulation
(see Glimm and Jaffe [11], Simon [24] and Kotecky and Preiss [21]).

In the abstract setting one starts with a denumerable set P = {~, 72, ...}
whose elements are called polymers and with an assigned reflexive symmetric
relation of incompatibility between each two of them.

In the concrete application of a two-dimensional Ising model, the poly-
mers may be the contours enclosing a region of constant spin direction, or
the subgraphs of the nearest neighbour graph, depending on whether one is
interested in small or large temperatures; the incompatibility between two of
them is simply the mutual overlapping.

Thus one may associate to a k-polymer X := {y1,..., v} € P*¥ an undi-
rected graph G(X) = (V(X), E(X)) with vertex set V(X) := {1,...,k},
vertices ¢ # j being connected by the edge {v;,v;} € F(X) if 4; and v, are
incompatible. Accordingly the k-polymer X is called connected if G(X) is
path-connected and (completely) disconnected if it has no edges (E(X) = 0).
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The corresponding subsets of P* are called C* resp. D, with D° :=
P°:= {0} consisting of a single element. Moreover P> := (J;2, P* with the
subsets D := [J;2, D* and C* := |J;2, C*. We write | X| := k if X € P*;
indicating with X () the multiplicity of v in X it results & = 3, X (). It
is useful to define the function ¢(X) := [T; X(v:)!. We will indicate with a
hat the abelianized set: for instance P> is the set of abelian words (which
we also call polymer configurations) which arises if one identifies k-polymers
X ={v,...,m}h, Y ={01,...,0c} € P¥if .y = v for some permutation
.

Statistical weights or activities z : P — C of the polymers are multiplied
to give the activities ¥ := [T, 2(v;) of k-polymers.

The thermodynamical properties of the model are defined through the

7 = Z . (2)

XeDeeo

partition function

We observe that no multiple occurence of a polymer is allowed since the
incompatibility relation is reflexive; for this reason the sum is finite when P
has finite cardinality which corresponds to a finite volume in the concrete
cases.

It has to be stressed that the polymer models are not statistical mechanics
models in the usual form (1). They are useful devices to study the true
models in the low activity regime of the phase diagram: for this reason a
given model is often mapped into different polymer models according to each
different phase regime.

One is mainly interested in the |P| — oo limit (thermodynamic limit) for
the mean values of the configuration functions h:

Z:XeDOO h(X)ZX

<h>,=
z ZXeﬁOO ZX

, (3)
and especially for the correlation functions

p(Y) =< xv > (4)

where yy is the characteristic function of Y. Often the dependence of the
correlation functions on the activity is studied in terms of parameters like,
for instance in statistical mechanics, the inverse temperature or a magnetic

field.



An important quantity to be studied in the thermodynamic limit is the
free energy density, or pressure, which turns out to be (see for instance [10,
11]), up to a suitable normalization factor

, (5)
Xepee e(X)
with nT(X) := ny(X) — n_(X), ne(X) being the number of subgraphs of
G/(X) connecting all the vertices of G(X) with an even resp. odd number

T implies that the previous sum is

of edges. The structure of the factors n
actually supported only on .

We notice that, although in the partition sum only compatible configura-
tions of polymer may appear, the free energy contains contribution from all
the configuration and also coincident polymers (multiplicities) are allowed.

Formula (5) is important from the conceptional as well as from the an-
alytical point of view. It is complemented by the so-called tree estimate
InT(X)| < |7(G(X))], where 7(() denotes the set of maximal subtrees of the
connected graph (G. This inequality is useful, since there exist techniques to
estimate the number of subtrees. As an example, a theorem by Cayley says
that the complete (all edges present) graph K (k) with k vertices contains
|7(K(k))| = k*~% maximal trees.

[t’s easy to check that the simplest example P = {p}, i.e., Z = 1 + z,
of a polymer model reduces the formula (5) to the Taylor expansion for the

logarithm In(7) = >72, (—1])j—1 2k since nT (K (k)) = (—=1)*(k — 1)! (the

last formula showing, by the way, that the tree estimate is non-optimal).

So even for a finite cardinality of P one needs bounds on the activities
to ensure convergence of the free energy. In the statistical mechanics appli-
cations such bounds are given in terms of energy (or activity) and entropy
bounds.

3 Dirichlet Series

A basic object of analytic number theory is the Dirichlet series consisting
of terms of the form e™**» whose exponents {)\,}.cn being a real-valued
sequence strictly increasing to lim,_ ., A, = oco.



A formal series of the form

> a(n)e™ (6)

n=1

with complex coefficients a(n) and argument s is called a general Dirichlet
series. In this context functions A : N — C are called arithmetical functions.
Dirichlet series have abscissae o,, 0. of absolute resp. conditional conver-

% so that o, and o,

gence. For A\, := n eq. (6) is a power series in x := e~
coincide.
For A, :=1In(n) eq. (6) is called an ordinary Dirichlet series, and we write

it in the form .
Za(8) = Z a(n)n=". (7)
n=1

In that case 0 < o, — 0. < 1.

The simplest choice a(n) := 1 of coefficients leads to the Riemann zeta
function ((s) = Y02, n=* with inverse 1/((s) = Y02, u(n)n=*, with the
Mébius function g (see Appendix). In that case o, = 1 and % < o. <1, the
Riemann hypothesis being o, = %

Many Dirichlet series arising in number theory can be written as an Euler
product

> alnm)n™ = T] fo(p™). (8)
n=1 pEP
By the fundamental theorem of arithmetic this is the case exactly if the
arithmetical function n +— a(n) is multiplicative, that is, (it is not identically
zero) and
a(mn) = a(m)a(n) if ged(m,n) = 1.

Then f,(z) = Y52 a(p”)z~F. For example, ((s) = [T,es(1 —p~) 7"

The product
Z1(8)Z4(8) = Zyeg(s)- (9)

of Dirichlet series has coefficients

fxg(n) =3 f(d)g(). (10)

d|n

which are given by the Dirichlet convolution product f*g of the arithmetical
functions of the factors.



With pointwise addition and Dirichlet multiplication the set of arith-
metical functions becomes an associative algebra with unit 7, I(n) = 61, (a
so-called monoid). Tt is easy to prove that when f(1) # 0 a Dirichlet inverse
F1 exist.

Dirichlet series are used in number theory in order to make use of analytic
tools in the theory of prime numbers. As an example, the prime number
theorem states that the number m(z) = |[{p € P | p < x}| of primes smaller
than x is asymptotic to 2/ Inx. This can be shown by analyzing ('(s)/((s)
for Re(s) = 1, that is on the line containing the pole.

In order to give a statistical mechanics interpretation of (some) Dirichlet
series as polymer partition functions we have to identify the sums (7) and
(2). This can be done, of course, in many ways: the main point is that in
the partition sum each polymer can only have simple multiplicity.

We propose two type of polymerization: the first works for multiplicative
arithmetical function and is based on the notion of Euler product, the sec-
ond is more general. We introduce both of them because the first admits a
special treatment in the convergence theorems leading to better convergence
estimates (see Appendix B).

1. Multiplicative Polymerization.

o If we now interpret ((s) = Y00, e~
for an infinite system with state space n € IV and energies In(n),
then (’'(s)/((s) is minus the expectation of the internal energy.
Moreover, in the notation of the previous section

C(s) = [ —p)t= > =

pE]P XEDOO

as a partition function

taking the primes as the polymers (P := P), assuming different
primes to be compatible and setting the activities z5(p) := 1/(p® —
1); moreover

C5)/6() = S In(E() = = S In(p) - 2.(p)

peP

o Alternatively one may consider the set P := {p" | p € P,n € N}
of prime powers as polymers with the activities z4(z) := 2~* for



x € P and call pi*, p3?> € P incompatible iff p; = p;. Then, again,
((s) can be written as a polymer model (2) and thus its logarithm
may be written using formula (5).

Clearly this kind of game can be played with any Dirichlet series having
an Euler product (8). Then for the first choice P = P of polymers the
activities are z,(p) 1= f,(p~*) — 1, whereas z,(p*) := a(p*)p~** in the
second case.

It is clear that when the multiplicative arithmetical function a : N — C
is a square-free function (that is, it vanishes on integers containing
squares), then both polymer model interpretations lead to the same
activity z,(p) = a(p)e™*™"?, z,(p*) = 0 for & > 1. The function a plays
the role of an interaction.

2. General Polymerization.

e Square-Free Case.

A large class of square-free Dirichlet series admit the interpreta-
tion of polymer models where each prime number is considered a
polymer. For instance we can consider the family of arithmetical
functions ¢ = wf where f is multiplicative (and possibly positive
to have a genuine probabilistic framework) and the function w is

defined as

1, ifn=1p;
w(n) = {pr’ln g(p,p'), otherwise, (11)

where g(p, p) takes values 0,1 and is a symmetric function vanish-
ing on the diagonal. We stress that the previous conditions define
a class of matrices (of entries g(p,p’)) and correspondingly a class
of square-free arithmetical functions ¢ not necessarily multiplica-
tive. Two primes with g(p,p’) = 0 are called incompatible; two
integers are incompatible if there are two incompatible primes in
the respective decomposition.

Some examples of incompatibility are the following: p, p’ are com-
patible polymers when

—p#Fp;



— |p—=p'| > const,;

= [p=p| > logv/pp'.
The first case corresponds to the square-free function |u| (see ap-
pendix) in which the only interaction is the Fermi statistic; the
relative zeta function is 7, (s) = £ The interest of the third

((2s)°

case will be clear in the section on convergence.

The fundamental theorem of arithmetic on the unique decompo-
sition of an integer into primes permits the formal identification

of the function
Zy(s) =D ¢(n)n™", (12)
neN
with a partition function of a polymer system in which each prime
has activity z,(p) = f(p)e™*1°8? and the function w play the role
of the hard-core interaction.

Non Square-Free case.

An important observation is that to treat the case of non square-
free Dirichlet series we have simply to change the polymer iden-
tification: the polymers are now the prime powers P := {p" |
p € P,n €N} = {2,3,4,5,7,8,9,...} with the activities zy(x) :=
f(z)x™* for @ € P. The class of arithmetical function treated in
this way is defined by ¢ = fw where f is multiplicative and w

1, if n=1,p"

w(n) = {Hx’xlep,mqn g(x,2"), otherwise, (13)

where g(x, 2") takes values 0,1 and is a symmetric function vanish-
ing on all the couples (z,2') = (p,p*). The previous conditions
define a class of matrices and correspondingly a class of arithmeti-
cal functions ¢ in general not square-free nor multiplicative.

Also in this case there is plenty of examples; for instance the
second and third example of the previous polymerization can be
rephrased exactly in this one. The simplest example is just the
Riemann zeta function: it corresponds to the element of the pre-
vious class in which f(n) =1 and g(x,z') = 1 if (z,2') # (p*, p")
which says that two polymers are incompatible when they are
power of the same prime and they are compatible otherwise.
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This means that the Riemann zeta function admits the interpreta-
tion of the partition function of an hard-core interacting polymer
system.

4 The Hard-Core Models

Let consider, for simplicity, the square-free case with ¢ = w. We introduce
now a family of approximating functions w; depending on a integer k; the
meaning of this approximation is just the finite volume approximation in sta-
tistical mechanics which manifest itself with a finite number of polymers. The
corresponding partition function becomes a finite series for each k and the
problem to control the thermodynamical limit for the correlation functions
concerns the possibility to obtain bounds which are uniform in .

We first define the k-th set of square-free integers N; as the integers of
the form

n=pps?---pr*, where a; =0 or 1, (14)

and py,...,pg are the first k& prime numbers. Then, for instance, Ny = {1},
Ny = {1,2}, Ny = {1,2,3,6}, N3 = {1,2,3,5,6,10,15,30}, etc, and |1,| = 2*.
Now we define:

wk(n) _ {w(n), if n € Ng; (15)

0, otherwise.

It is easy to prove that:
wr(n) =w(n), for n < py, (16)

and

wr(n) =0, for n > py---py. (17)

The origin of this approximation is quite simple: we consider the natural
numbers progressively generated by prime numbers; the nature of the func-
tion w implies that for each generation only a finite quantity of integers gives
a contribution.

Remark: The above mechanism induces in general a one-to-one corre-
spondence between the functions of the variable (aq,...,ax) and the k-th
approximation of a square-free arithmetical functions.

11



It clearly turns out that the approximating zeta function admits the inter-
pretation of a grand canonical partition function for a system of k& particles
interacting via a hard-core two-body potential:

Zo(s) = wr(mn™ =3 J]pi "™ TII + eie(g(pispi) = DI (18)

neN 1<

where o = (o, ..., ). A mean values is:

_ o S TP Tligs [+ aia(g(pis pj) = 1)]
Z () '

< f>r(s) (19)

The basic objects of our model are the r-points (r < k) correlation func-
tions:
<y o >y (), (20)

with i1 < 15 < -+ < 1,; it is interesting to notice that, by comparing with
(20), they represent the probability of divisibility by the integer p;, - - - p;,.
Without loss we assume i1,...,7, < k because otherwise (20) vanishes.

One of our main problems is to study the limit £ — oo of the correlation
functions, and to prove that they describe indeed, the equilibrium state of a
system of interacting polymers defined by the partition function (18).

There are various approaches in the study of the properties of the poly-
mer models. One of them, the one we consider here, is based on the use
of the Kirkwood-Salsburg type iterative equations to control the analytical
behaviour of the correlation functions and related quantities. We will follow
the ideas of [10] (see also [9, 16]) with a different proof of the convergence
theorems according to the number theoretical framework which requires a
slightly different identification of interaction and activity function.

5 The Iterative Equation for the Correlations

The analytic control of a polymer model is based on two interrelated axioms
carrying a deep statistical mechanics meaning.

Activity Bound: There exists a constant ¢ < 1 and a positive function
v(7y) (the volume) such that

|2(7)] < @ (21)
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Defining N(v,x) as the number of y-incompatible polymers for which the
function v stay inside the interval [z, 2 4+ 1) we impose the
Entropy Bound: There exist a constant ¢ such that

N(v,z) < v(y)c”. (22)

From an analytic point of view the two requirements are simply saying that
the terms we sum have to be not to large and not too many. In our context
the activity bound can be naturally fulfilled with the choice ¢ = ¢™* and
v(p) = log(p) and the entropy bound defines the class of function we are
treating. It is easy to see that the three concrete examples of the general
polymerization fulfill the entropy axiom for any ¢ > 1; for each of them
one could actually improve the general convergence strategy we are going to
present.

Our first goal is to express the correlation function at the temperature s
as a zeta function:

<oy oy, > (s) =) <n> (D)7, (23)

where n = p;, ---p;.. The algebraic properties of the Dirichlet convolution
imply that eq. (23) can be solved in the arithmetical function < n > and the
solution is:

<n>=n"(w" % Dywy), (24)

where we have introduced the operation D, as
D.f(k) = (k). (25)

One immediately realizes that the arithmetic function corresponding to the
correlations of a square-free model is not square-free. This is because the
Dirichlet inverse operation does not conserve the square-free property and it
is the main motivation to introduce a formalism able to handle generic poly-
mer configurations with the suitable convolution. Moreover it also implies
that, even for finite k, the correlations zeta function is no more a finite se-
ries; we want to show how it is possible to control its properties in the limit
k — oo using the statistical mechanics method of the iterative equations.
This will provide a statistical mechanics meaning to the limiting correlations
and a new point of view in the study of some number theoretical quantities.
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The idea, which is a central one in statistical mechanics, is to study the
“interaction” between one particle and the remaining ones or, in number
theoretical terms, to have some control on the non multiplicativity of the w.

Defining the function

I, = wlg_l) * D, wy, (26)

we consider an integer of the form pn, where p is a prime compatible with n
(otherwise I',,, = 0). By definition we have

Fot) = Sl dn(pm ) (1)

indicating 3°,-, a sum over all the divisors of n counted with multiplicity
(see appendix), we first observe that

[ [ P
wi(pn=) = wk<n3>2 A(r), (28)

i
TCE

where the 3" means a sum over all square-free integers build on p-incompatible
primes and the function X is the Liouville function defined by A(n) = (—1)%"
where ) is the number of prime factors counted with multiplicity. Since
w(p) = 1 the previous formula gives an evaluation of how much the interac-
tion w deviates from a completely multiplicative function; it can be proved,
for instance, observing that the factor G(p, h) defined by

w(ph) = w(h)G(p, h) (29)

G(p.h) =TT a(p.p) = T] ((g(p, ) = )+ 1) = Y "(=1)7), (30)

p'Ch p'Ch rCh

which is the (28) since the integer pn is supposed to be compatible. Substi-
tuting the (28) inside the (27) we have

Lpull) = 3ol (donpoe(n 5) 3N, (31)

dll TC%

14



and interchanging the summation order

_ nl
Pon(1) = XM 2w (e (), (32)
rCl d|%
which is, up to renaming the sets,
[
Pon(l) = 2 A()r (). (33)

rCl

This is the iterative equation we want to consider. In order to control its
solutions we observe that, by inspection, it lives naturally as equation for
the two-variable arithmetical function I'; moreover defining the “index” of
the quantity ', (/) as Q(nl), the equations (33) can be solved iteratively
observing that they allow to compute the family of index Q(nl) + 1 in terms
of that whose index is Q(nl). This fact not only makes it possible to study
the iterative solutions with the initial condition I'y(1) = 1 but it also gives
hints on the suitable Banach space structure to be introduced in order to
make use of the contraction principle.

6 The Contraction Regime for the Iteration

In our number theoretical context we can introduce the seminorms for the
family of the < n > (I) with Q(nl) = m, depending on a parameter § to be
optimized at the end,

Nn(6) = sup Yoo l<n> (D))~ nl==9); (34)

m1<Q(n)<m g Q(nl)y=m

we claim that, for suitable values of §, this norm is contractive for the iterative
equations. The proof is along the following lines. Using the (33) we observe

that it holds the bound

[
S I<pn > ()Y < Y pTY e <rn > (;)Il_s(pn)(s_s),

1,Q(nl)=m 1,Q(nl)=m rCl
(35)
since the Liouville function is bounded in modulus by one. It follows that
> I<pn > O () < Na(@)pT R (36)
1,Q(nl)=m r

15



where the last sum runs over the square-free r build on p-incompatible primes.
We also observe that, since r runs over square-free integers,

Zp —(s—8)logr < Z (Zp —(s— 5)logp) ) (37)

T p’

Making use of the entropy bound it is possible to control the sum on p-
incompatible primes observing that it can be written as

Z Z e—(s—S)logp' — (38)

v=1 p’ v<log p'<v+1

Ce—(s—S)

S (= (=0 — o CE
S 10ng(C€ ) - logpl . ce_(s_5)7

v=1

(39)

provided ce™® < e~%; we notice that the extension of the previous sum up
to infinity makes the resulting bound uniform in k. Taking the supremum
norm of the (35) we obtain

—(s=8)
ce
which means that the we are in the contraction regime when ce™ < 51‘:?;.

The right hand side can easily be optimized observing that it is, on the
positive real line, a function with the only maximum reached at the golden
ratio § = @ (see [6] for a discussion). The previous convergence theorem
means that the limit & — oo of the correlation functions exist in the range
defined by
5 -6

€ 158 (41)
)
and describe the equilibrium state of an hard-core interacting polymer sys-
tem.

ce” <

An easy corollary to be used in the control of connected correlations
functions is that, for all the s defined by the (41), one has the bound

Nop1 < Npe™®, (42)
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glig —ce™* one has p = ee’ log 2(2+

§). In particular it is possible to check that, since Ny < 1, it results N, <

—mp

where, defining the positive number ¢ :=

e
The reader should compare this general result with the one for the mul-
tiplicative case (Appendix B), where one has optimal convergence estimates.

7 The Exponential Decay of the Correlations

The statistical mechanics theory of the low activity expansion gives a system-
atic way to obtain bounds for the free energy and for all its derivatives with
respect to external parameters. It is well known that those bound are equiv-
alent to the bounds for the truncated correlation function and are usually
given in terms of the distance between the polymers.

In our context the convolutory algebra permits a natural rephrasing of
all these properties: the bound we present are given in terms of the volume
of each polymer, i.e. log p.

The quantities we are mainly interested in are the generalization of the
two point truncated correlation function

< @iy, >T (8) =< i, > (8)— < gy > (8) < ayy, > (3). (43)

This function represents the deviation from the independence of the two
events “p;, divides an integer” and “p;, divides an integer”. As for the simple
correlations an easy computation shows that it is possible to express them
as Dirichlet series of a suitable arithmetical function:

< Qg Oy >T (S) = Z(pi1pi2)_s(rpi1pi2 - sz‘l * szg)l_s' (44)
{

We recognize that the two point truncated expectation is the Dirichlet series
of the arithmetical function given by the second order of the formal logarithm
of the functions I" with respect to the lower variable:

I'" .= Logl. (45)

Let us clarify the geometrical meaning of the operations which naturally
appear considering the simple and the truncated correlation functions. First
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we notice that for the operation D, it holds (see [22]) the Leibnitz rule with
respect to the circle product (see appendix):

Di(fog)=Dufog+foDug. (46)
From it one can easily prove that the operation 9, defined by

c(nk)
c(k)’

O f(k) = f(nk) (47)

plays the role of a multiple derivative with respect to the Dirichlet product
since it fulfills the composition rule 9,,0,, = 0,,n, and, when n is a prime
number, the Leibnitz rule with respect to the Dirichlet multiplication. This
can be seen observing that defining the operation D from the set of the
one-variable to that of the two-variable arithmetical functions by

c(nk)
Df)(n, k) = f(nk)——F=; 48
(D)) = k) (13)
it holds for it the important property:
D(f + g) = Df + Dy, (19)

where the convolution at the right hand side is the two variable Dirichlet
convolution.
In particular it holds the

OyFxpf = 8,/ * Bxpf, (50)

and

D % 9,9. (51)

Since w is a square-free function D,w = d,w we have, with w” := Logu,

0pLogg =g

Opw’ =TT, (52)

Choosing n = p it holds d,w? =T, which is

() = L2 () (53)



This relation enable us to obtain a bound, inside our contraction regime,
on a quantity which represents the free energy density centered around the
prime p:

S oWl (54)

I=1,p|l

In fact applying the (53) and the contraction scheme for the norm one

has:
| Z Nl < Z Yo T(Dp~el = (55)
I=1,p|l k=11,9(pl)=k
5 (0] e_p
Ze = S)Igpl_e_p; (56)

which is the claimed exponentlal decay in terms of the polymer volume (no-
tice that s > & in the contraction regime). In the same way it is possible
to obtain the decay for the multiple truncated correlations functions; let us
show it for the two-point case.

From (44) we have

| < iy 0, >T (s)] < (pipiy)~° Z(|Fp¢1pi2 (O + |sz‘1 * Tpips (Hhi—. (57)
=1

The term with the convolution product of the right hand side is bounded
using the (56) and the multiplicative property of the relative Dirichlet series.
For the first terms one has:

Zlfpnpw W = (piapiz) Z S <papn > (7 (papi) T =
k=2 1,Q(pi, pi, )=k

(58)
(59)

—2p

5 s . (s—6) log(piq pi
pnpm Ze = Vlog(pirpiz)

Summing the two contrlbutlons we obtain

1 —er’

e~

(P lox(o:. s e=2r
<o ST (] € I (LS )

which is the desired result. In the same way one can obtain the same expo-
nential decay for all the other truncated correlation functions.
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A  Some Arithmetical Functions

Some arithmetical functions considered on this work are: the identity for the
pointwise multiplication:

u(n) =1 Vn, (61)
the identity for the Dirichlet product

1, ifn=1;

I(n) = {0: otherwise, (62)
the identity map from N to N
N(n) =n, (63)
and the “square” function:
Q(n):{l’ ifnise.lsquare;. (64)
0, otherwise,

In terms of them it is easy to express other important functions: the Mobius

function
p=ul, (65)
its absolute value
e = ux QY (66)
the Liouville function
A=pxQ=lul. (67)

It can be useful to introduce another convolution product: considering an
integer as an unordered sequence of primes n = {Pi,, oy Piys Piny vy Pins --o» Pin |
the natural definition of convolution is the sum over all the subsequences

fogtn) = X F(d)g(), (68)

where, for instance, the set of subsequences of 4 is {1,2,2,4}. Tt is easy to
see that it is related to the Dirichlet one by:

n

fo g(n) = Z f(d)g(g)c(d, 3)7 (69)

d|n
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Function 1 2 3 4 5 6 7 8 9 10
0 1 0 0 1 00 0 0 L 0
QY 1 00 -1 00 0 0 -1 0
A 1 1 -1 1 11 -1 -1 1 1
[ 1 110 -11-10 0 1
ws 1 1 1 0 1 10 0 0 1
w(™Y 1 1 -1 1 110 -1 1 1
Daws 1 0 1 0 1 0 0 0 0 0
W% Dows |1 -1 0 1 0 0 0 -1 0 0
where ¢(l,m) = C(Cl()lcT;L) with c(pzi1 pj:’“) = Hle a;. . This property is

equivalent to the fact that the o-product plays the role of the convolution for

the deformed zeta functions with the non-character activity Z(n) = ZL(—;L)

Zi(s) =3 f(n)z(n), (70)

i.e. it holds . . .

Z1(8)Z4(8) = Zyog(s)- (71)
For both the convolution products it is possible to define the powers of a func-
tion and, in some cases, power series like exponential and logarith: Defining
the sets of arithmetical functions Ay and Ay respectively by the conditions
f(1) =0and f(1) =1 it is possible to construct well defined power series in
the convolution products; in particular the arithmetical function correspond-
ing to the exponential for f € Ajg is

co fk)
Expf = Z T (72)
k=0 .

and the logarithm, for & € A; which is, defining h = I + h,

0 j (k)
Logh = > (—1)"—. (73)
k=0 k

It is easy to see that the operation Exp: Ag — A; and Log: A; — Ap are
mutually inverse.

From a combinatorial point of view the main advantage to consider the
circle product is that it permits to define the exponential of a function as the
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sum over the partitions. Example: the o-exponential of f in 12 =2?-3is in
fact

Exp(f)(12) = f(12) + 2f(2)f(6) + f(3).f(4) + [(2)f(2)f(3); (74)

On the other hand the Dirichlet exponential implies the important formal
property:
Z1(s) = exp(ZLogs(5)), (75)

which permits to obtain the free energy series expansion starting from the
partition function series expansion on a Dirichlet series.

B Convergence in the Multiplicative Case

First keeping within the context of general polymer models, we set (X)) :=
#(X)z¥ so that the partition function equals 7 = Y xep~ ¥(X). Then the
probability that the k-polymer X is present is defined by

ZYe]5<><> ¢(Y - X
X):=
/0( ) EYePOO ¢(Y)

Lo S A (76)

yepee

with AX(Y) = (77/)_1 * DXL/))(Y)
The terms Ax(Y) meet the following recursive equation w.r.t. addition
of a polymer v € P to X:

Ax(Y) = () 3 (- D) A s(V/S). (77)

SCY

Here the superscript 4 means that summation is restricted to multi-polymers
S of Y which are incompatible with ~.
We now express the correlation function

pr(X) =< ai, - a;, > (s) = Y A(Y)

YeN

at the inverse temperature s as a series in the activities. By definition

A% (Y) = (wi' * Dxwy)(Y) - %27, with D, defined in (25).
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Now by (77) for a prime p € Py,

Apx(Y) = zs(p);p(—l)'S'A’é.X(Y/S)

= z(p) D MS)AL(Y/S), (78)

S:p|S|Y

since S € N is incompatible with p € N iff p|S. Furthermore for an integer
S of the form S = T[; p;"* by definition |S| = ¥, o = Q(S). Moreover, the
Liouville function A is defined by A(S) = (—=1)%5) showing (78).

Eqs. (78) are the iterative equations we want to consider. Defining the
“index” of the quantity A%(Y) as Q(XY), the equations (78) can be solved
iteratively observing that give the the family of index Q(XY) + 1 in terms
of that whose index is Q(XY'). This fact not only makes it possible to study
the iterative solutions with the initial condition A¥(1) = 1 but it also gives
hints on the suitable Banach space structure to be introduced in order to
make use of the contraction principle.

In our number-theoretical context the seminorms N° have the form

N:(pr) = sup > |AL (V) |e~ (@) +6)v(X)
XeENy N Q(XY)=m
= sup Y. AR (Y)[XH (79)

XENy en,Q(XY)=m

with A= —In(a)/In2, 6" =§/In2 and v(X) = In(X)/In(2).
In the multiplicative case w = |u| we can improve the convergence esti-
mate to the optimal value.

No(pe) = sup 3 Jwit * Dxwi(Y)|]zY2Y |em @) +)u(x)
XNy en,o(XV)=m

= sup 3w Dyw(Y) [N et g0)
XePX yepr Q(XV)=m

Remember that Py consists of of the first k& primes. So
P ={nenN|perandpn=pecn).
Since we have assumed w = |ul, w™' = A. So

W x Dxw(Y) = YD MY/d)|ul(Xd)
dy
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= = {0 e

d|V,(d,X)=1

Now if there is a m-independent bound b on the minimal number of prime
factors of an X which attains the supremum in (79), then m — NZ (p;)
converges exponentially fast to zero, since then there are only O(b™) terms
in the sum (79). Then we are done.

So we can assume w.l.o.g. that the maximal number of prime factors of
the X grows with m. Now since m + 1 > 2, the X € N which attain the
supremum in N? »+1(pr) are unequal 1 so that we can write them in the form
XO = pX and assume that p € P is the largest prime factor. Then we use
the recursion relation (77):

Noalpr) = sup > AT ()X

XeENy en,0(XY)=m+1

= > IA()I(pX)

YeNQXY)=m

= Z |2s(p Z A(S XS (Y/9)|(pX) (A=)

YEN,QXY)=m S:p|S|Y

<Y > 1Aks(Y/S)|(sx)H g

YeN,QXY)=m S:p|S|Y

= p 7 3 S 3T aks(Y/S)|(s X))

SplS Y:S|Y,.Q(XY)=m
< T SE=AY NS ()
S:p|S
= (A = )N (or) (81)

Now we assume that A’ > 1 and ' = $(A’ — 1). Then as m and thus p
become large, the constant ¢ := p~4" (A’ — §') in

Noga(p) < eNyi(p)
coming from (81) is getting strictly smaller than one, implying convergence.
In other words, we have absolute convergence if |z(p)| < p~'~° for some
¢ > 0. This is clearly optimal.
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