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Abstract

The number-theoretical spin chain has exactly one phase transi-
tion, which is located at inverse temperature .. = 2. There the mag-
netization jumps from one to zero. The energy density, being zero in
the low temperature phase, grows at least linearly in S — f.

1 Introduction

In [10] one of us showed that the quotient

¢(B-1)
¢(8)
of Riemann zeta functions could be interpreted for 3 > 2 as the canonical

partition function of an infinite ferromagnetic spin chain.
This partition function was shown to be the thermodynamic limit

2(B) = lim Z,(5)

Z2(B) =
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of k-spin partition functions Z;(3) := ¥_,cq, exp(—FHY (7)), G, := {0,1}*,
where the energy function H{ : G; — R of the canonical ensemble is given

by HY = In(h{) with

by i=1, h{,,(0,0):=h{(e) and hf, (1) := h{(#)+h{(l =), (1)

Y

l—o = (1—014,...,1—0) being the inverted configuration of o = (074, ..., 0%).
It was shown in [10] that the interaction coefficients jf' : Gy — R with

Hy (o) =— > ji(t) - (=)

teGy
are asymptotically translation invariant and saturate in the length k of the
chain. Moreover, the effective interaction between spins at positions r and [
was shown to decay like 1/(r — )%
It turned out to be useful to introduce the grand canonical energy func-
tions HY : Gb, — B, H(¢) := HY, (0, 1), partly because of their symme-
tries

HY(1—oy,....,1 —0r) =H(0y,...,00) = H (04, ..., 7).

In [12] the existence of the thermodynamic limit F(3) := limg_eo Fi(5)
of the free energy Fi(3) := —(8 - k)~ ' In(Zx(B)) was shown (due to the lack
of strict translation invariance of the interaction standard estimates cannot
be applied here).

In [11] thermodynamic expectations

Y e, O(0) exp(—H{ (0))
ZK(B)

of quantities like the internal energy U := <%Hg>k and magnetization

(0), (B) =

M, = <%Zf:1(—1)gl>k were analyzed. Due to the absolute convergence
of the Dirichlet series Z(3) = °2, p(n)n=" for Re(3) > 2 the limits
UB) = limpoeo Up(B) and M(3) 1= limgp_eo Mi(3) can be easily shown
to have the values U(3) = 0, M () = 1 in the frozen low temperature phase
B> 2.

In the high temperature regime 3 < 2 the estimates

In2 — 31In(3/2)
2-p

< U(B) <In(3/2) (2)



were derived.

In [13] it was shown that the values H{ (o) of the canonical energy func-
tion can be naturally interpreted in terms of geodesics coming from and going
to the cusp in the modular domain.

These geodesics are naturally organized in families of 2¥ members and
labelled by o € Gy. Then H{ () is the length difference between the geodesic
with index o and the shortest such geodesic (which carries index 0).

This related the spin chain to the quantum scattering theory in the mod-
ular domain, since these length differences arise naturally in the WKB ex-
pansion of the scattering matrix.

Moreover, numerical evidence was presented that the Riemann zeta func-
tion can be well approximated within its critical strip by statistical-mecha-
nical expectations. The reasons for this observation will be discussed in a
forthcoming paper [14] by one of us.

The study of the number-theoretical spin chain is mainly motivated by the
idea that probabilistic properties of statistical mechanics, and in particular
ferromagnetism, could be helpful in deriving new results in number theory.

We have a somewhat opposite motivation for this paper. Namely, we
want to use the above model for studying the phase transition of Thouless
type.

[t is known since a long time that spin chains with an effective (r — )=
interaction do not have a phase transition if @ > 2 and have one if a < 2
(see, e.g., Dyson [6, 7]).

In [16] Thouless argued that for the borderline case o = 2, magnetization
should be discontinuous at the critical point. More recently, Aizenman, J.
Chayes, L.. Chayes and Newman studied the @ = 2 case with pair interaction,
proving discontinuity of the magnetization and giving bounds for the critical
temperature [1, 2].

Functions related to Z; were treated earlier in the literature (but without
the interpretation as coming from a spin chain).

In [17] Williams and Browne related the values of the function h{ to
the radii of osculating circles and noticed the recursion relation Zp4,(—1) =
37k(—1).

In [8] and [9] Feigenbaum, Procaccia and Tél analyzed functionals on
multifractals defined by iterated functions, Using eigenvalue methods, they
predicted an infinite order phase transition for a related system (the "Farey
model’) describing intermittency.



In [4] and [5] Artuso, Cvitanovi¢ and Kenny stated that (in our notation)
the values Z7(3) for —3 € Ny of the grand canonical partition function
Z7(B) = Yseq, exp(—H{ (o)) could be written as largest roots of certain
polynomials of degree < |3|+ 1. The coefficients of these polynomials were
given by the coefficients of a linear recursion relation between Z(3) and
ZEB), k+B—-1<1<k.

Here we shall shortly present a different approach in which the above
polynomials are obtained as characteristic polynomials of square matrices
C’(ﬁ) of size |#| + 1. This approach will allow us to analyze arbitrary real
positive inverse temperatures (3 afterwards, a question which was posed in
[5].

For —f3,k € Ny let
Y/ (m):= Y (i (0, 1) (i (0,00, me{0,...,|8]},

CTEGk

so that Ykﬁ(()) = Z7(B). Then using the recursion relations h{ (c,0) =
h{ (o) and h{,(0,1) = h{ (o) + h{(1 — o) for h{, we obtain

alm) = 5 (b (o) + b1 =) ()"
= 3 (b, (1, 1) +hT, (1 -, 0)) 7P
weGy

(0 (1) + (B (1 — 11,0))"]
= > (hi(p, 1) + hiy(p,0))7™

reGy,
(0 (p, D)™ + (04 (,0))" ]
since h{, (g, 1) =h{, (1 — p,1). Thus

Bl=m /151 _
ae = X (707 S mgaen w0y

r=0 peGy

18]
+3 (V00 5 w0y

reGy

_ 'ﬁ'g(|ﬁ|—) +%(w| ) ).

r=0



So the vectors Ykﬁ € RIPH meet the recursion relation

Vi, =CB)YS  with C(B)m, = (|ﬁ| - m) . (|ﬁ| — m)

r r—m

Being composed of two Pascal triangles, C’(ﬁ) is a matrix of Perron-Frobenius
type, all the entries of (C’(ﬁ))s being strictly positive for s > 2. The ini-
tial vector Yy has the form Yy (m) = (h¥ (1))~ (h¢(0))™ = 275~ > 0.
Therefore limy_, Vi /||Y;|| converges to the normalized right eigenvector of

C(3) with the eigenvalue () of largest modulus, and

1- Zl?—l—l(ﬁ)

koo Z0(5) = AB).

Example. For 3 = —2,

2 4 2
cay=[1 21 and A(@):HT\/W.
101

It is remarkable that the asymptotic of the partition function leads to finite
expressions for negative integer arguments.

It is known that the values of zeta functions for integer arguments are
related to questions in analysis, topology and number theory. Here the free
energy is derived from finite approximants of the zeta function 7, so that
the finiteness of the expressions for negative integer arguments should not
come as a surprise. But it would be interesting to find a statistical mechanics
interpretation for the corresponding property of the analytically continued
Riemann zeta function.

2 The Perron-Frobenius operator

We will now make a similar construction in the case of arbitrary non-negative
inverse temperatures 3 € Rf. Thus we set for k € Ny

Ykﬁ(m) = Z (hkc+1(aa 1))—ﬁ—m(hg+1(070))m7 m € No. (3)
CTEGk
So Ykﬁ(m) =Y ,eq, exp(—(B+m)Hf (c)+mH{ (¢)) and in particular Ykﬁ(()) =
Z3(8).



Lemma 1 For 3 > 0 the vector Y,ﬁ_l = C(B)Y] with

2-B=m g 14 (1—a)™

rldem (1 —a/2)m+0| 7

é(ﬁ)m,r =

(m,r € Np). (4)

Proof. We derive the recursion by decomposing Y,f_l_l = A+ B with

A(m) = 3 (hih (s 1) + hicy (1= 4,0) 777" (hiy (1, 1)

neGy
and
B(m) = 3 (hiy (1) + hiy (1= 4,0)) 777" (hiyy (1 = 1, 0))™.
neGy
Now h{ ;(1 —4,0) = h{/,;(¢,1) — h{;(4,0) so that
A(m) = ZC; (Qhkcﬂ( 1) - hg+1( ,0))777 m(hkc+1( ,1))"
=yt (T S () B0
r=0 weGy
= Z_% 9—B—m—r (_ﬁr_ m) (_1)7’3/]65(74)

with generalized binomial coefficients (Z) = (1224 (a — 1)) /b, a € R, b € No.
The above series expansion converges since hf,; (¢, 0) < hf, (x,1). Fur-
thermore (—1)" (_ﬁr_m) > 0 since 3 +m > 0.
The treatment of the vector B is slightly different.
B(m) = Z (Qhkc+1(/~‘v 1) - hkc+1(ﬂvo)) - m(hgﬂ( ) - hkc+1(/~%0))m

neGy

r

_ iﬂ—m—*(‘ﬁ ‘m)<—1> S (B, (s 1)) (W, (1,0

gu)s (") st 1>>m—5:;§;<u,o>>s
_ gég—ﬁ—m—r(_l)m (—ﬁr— m) (”;) Y2 (r + )



Now
1 d 1
rldar (1 —a/2)m+6

Lo ()

and
i d” (1 —a)™
rlder (1 —a/2)m+0

r=

NGDES (T) 2 T1 (=6 —m i)E(m ~ )

|
r. s=0 S 1=0

g ()

so that the formula for C'(3) is proven. O

Lemma 2 For 3 >0 and m,r € Ny the entry C(3),., > 0.

Proof. We first consider the case f = 0. For |z| < 2 the Taylor series of
(1 —x/2)~™ converges, and

e = () (- Fer)

is a convergent power series with non-negative coefficients, the zeroth coeffi-
cient being 2.

Moreover for 3 > 0 the Taylor expansion of the multiplicative factor
(1 —x/2)7% in (4) has strictly positive coefficients. Thus the product (1 +
(1 —2)™)/(1 —x/2)™*P too has strictly positive Taylor coefficients, proving
the lemma. O

We want to estimate the k-dependence of Ykﬁ, using the recursion Y,f_l_l =
C(B)Y} and starting with

Y (m) =27 (m eNy). (5)

Since Y € [*(Np) for all 3> 0, it is natural to consider C’(ﬁ) as an operator
on [*(INg).

We will show that C'(3) is conjugate to a positive operator C'(3) by using
the following representation



Lemma 3 For 3> 0 and m,r € Ny

C(B)y = 277" mi%mu (=1 (”l”‘) (T +5— 1)

r—1

Proof. For |z| <2

U ) (- )
geen(Z) () e

Using

and

& (a2 N
deb \ 1 — /2 _0_

for a € Ny, b, € N, we have for r > [

r

(1 af2) (1 i/j/g)l =
-2 ()7
_ g—rr!(ﬁ“_l)' .

r—1

This formula holds true for [ = 0, too. Thus inserting (7) in the representa-
tion of C'(3) of Lemma 1, we obtain with (6)

C@ =2 S+ () (),

= r—1
Clearly we need only sum up to [ = min(m,r) since for [ > r eq. (7) = 0. O

8



In order to develop some understanding of C’(ﬁ), consider the special case

B =1. Then C(f) is symmetric:

CWnr = ?J‘Wﬂfmgfwll+<—ay>C7)(§)

(=0

() E (0]

and large only near the diagonal.
For general 3 > 0 define the diagonal operator ¢g(/3) by

9Bk = 5i,k/ (ﬁ + Z B 1), (i,k € Np) .

Lemma 4 For 3 >0

C(B) = g(B)C(B)g(B)™"  with C(B) = D(B)" D(B)
where for k,r € Ny

" B+r—1
DBk, = 9=z (B+1) =1 Em;lg(l +(—
Proof.

Cn = (D" D) = 27777 J 5”—1 5+m—1).

L )0)

1=0 (ﬁ+ll _1) '

2—1—m—7’

3

On the other hand




which equals (8) since

() () ,
(ﬁ+r—1) o (ﬁ-l—l—l)' (9)

r {

a

Lemma 5 For 3 >0 C(() is a bounded positive operator on l5(No), and the
part o(C(B)) N (1,00) of the spectrum is purely discrete.

Proof. First we show that the operator norms Hé(ﬁ)“l < oo and Hé(ﬁ)Tﬂl <
00, if one considers C’(ﬁ) as an operator on the Banach space [1(Np). Since
the entries of C'(3) are positive (Lemma 2), we can do this by estimating the
column sums of C'(3) resp. of C(5)7.

For r € Ny by Taylor’s formula and analyticity of @ — (14 (1 —x)™)/(1—
z/2)™*0 for |z| < 2

> 0@ = -0 3 [(725) 4 (5= ]

L d (2- :1;)2_5
rldz” 1—2

=0

=0

— i(_ml (2 ; 5) 22-h-1, (10)

As

=0

e 2 — > 1 d
22—512(—1)’( lﬁ)z—l — lzl—d— (1 —x/2)*"
=0
270 (1 —2/2p7"| _ =1,

the sum of the rth column converges to one as r — oo, so that HCN'([?)Hl < 0.
More precisely, one sees from (10) that

HC( M= sup Z C = max(22771).

No ;=0

10



Similarly for m € Ny

< = 1 d 14(1—a)"
_ B—m
;}C(ﬁ)m =7 Zr'dxr — z/2)m+8

1+ (1- :1;)
(1 —a/2)45| _

— 9-f-m

=1+ 80, (11)
1

So [C(8)" |l = 2.
Using these estimates we can bound C(f3):

Cm,r = Umyp wm,T’ a‘nd (CT)mvr = CmJ’/:EmJ’

with o 1= Gmm/Grr SO
Cm,r . (xm,r + 1/$m,7’) = ém,r + (CYT)m,r

But (z +1/2)/2 > 1 for > 0 so that

IC@I < 3UCHN+ICEB) ) (8> 0).

We can also interpret C'(3), C'(3)T and C(j3) as operators acting on the
dual space [,(Ng) = [1(Np)*. Then the matrix transpose C’(ﬁ)T on [ (Np)
is the Banach space adjoint of C’(ﬁ) on [1(No), and similarly for C’(ﬁ) and
C(8). Thus [C(B)e = ICGB) I, 1CB) oo = G and [C(5)] =
1C(B)

Now for 1 < p < ¢ < oo we have the inclusion {,(Ng) C [,(INg). Therefore,
using the Riesz-Thorin interpolation theorem (Thm. IX.17 of Reed and Simon
[15], Vol. IT), we conclude that C'(3), C(8)T and C'(3) have also finite norms
as operators on [,(Ng), I < p < oo, and in particular on the Hilbert space
[2(Np) of sequences.

;From the definition of C () in Lemma 4 we see that it is a positive
operator.

By the estimates (10) and (11) for 3 > 0 and ¢ > 0 there exist an my € N
such that for m > my

S CB)r <14 and 3 C(B)m <1+

r=mo r=mo

11



Thus defining for n € Ny the projector P, by

r>n

v,
(P””)*‘_{ 0 0<r<n’

we get
1Prg C(B)Puolls <1 e and [Py C(B) Prnglls <1+

which implies || P, C(8)T Py, ll2 < 1 + &, using Riesz-Thorin interpolation.

The range of P,,, has codimension mgy. But that implies that the spectral
projection of C'(3) on the interval (1 4 £,00) is at most mo-dimensional, be-
cause otherwise that subspace would have non-empty intersection with the
range of P,,. So o(C(3))N (1,00) is purely discrete. O

Remark. One can show that there is at most one eigenvalue of C'(3) which
is strictly larger than one, using eq. (11). This is of interest when one dis-
cusses the convergence speed of the free energy Fi.(/3) in the thermodynamic
limit £ — oo.

Lemma 6 For 0 < 3 < 2 the operator C([3) on l3(No) has a largest eigen-
value A\(B) > 1, and

A(ﬁ)Zl—l—c% for1 < [ <2,

with ¢ := (1 —In(2)) - exp(—m?/48) ~ 0.2498.
Proof. For arbitrary > 0 let () : Ng — R be given by

)

o), =

For 8 = 2 we have 0(3), = 1/3/r 4+ 1, whereas for 0 < < 2 the vector
0(f) € l3(Np). This follows from

(ﬁ+r—1):ﬁ(1+5_1) :exp(gln(lJr#))- (12)

r =0 r=t

12



In particular (ﬁ"':_l) is monotone increasing in 5 > 0. We estimate (12)

from below and above.
So for 0 < 8 < 2 and r € N, using the inequality In(1 + z) < x, 2 > —1,

iln(l + #) <(B-1In(r+1)+Cg
=1

with Euler’s constant C'g & 0.5772. This implies
(ﬁ +r—1

r

) <P (r4 1), (r € Np), (13)

so that for 0 < 3 < 2 the vectors 0(3) € [3(INp).
For more precise estimates we specialize to the interval 1 < g < 2.

The function f.(8):=>_;In(1 + (8 —1)/l) is concave so that

LB) = (B-=1[2)+2-8)f(1)=(8-1)In(r+1).
On the other hand

r r

0<— (B =Y U+8- 1) <Y< =76,
=1 =1

=1

This estimate can be used to improve the upper bound (13). Namely, we
have for 1 < g < 2

H(8) S pe(B) = (B= V@) + @ =B)f(1) + S(B=1)- (2= B),
since (1) = pe(l)y [1(2) = pe(2), and f1(B) > p(8) = —m*/6. Thus
LH(B) < (B—=1)In(r+1)+m2/48, since (8 —1)-(2—3) < 1/4, and including

the case r =0

s

The choice of the vectors (/) is motivated by the fact that ©(2) is an
[-eigenvector of C'(2).
We will derive the inequality

g+r—1

r

) < exp(n?/48) - (r 4+ 1)771, (r € No).  (14)

)ﬁ)) > 1, (8 <2) (15)



for the expectation which then, together with Lemma 5, implies the existence
of a largest eigenvalue A(3) > A(3) > 1 of C(f3).
By Lemma 4 C(8)0(8) = D(B)" D(8)0(B).

. 04y o o () (647
S Dusi = ()

W ror—l—l r

_ 38+ )(1+( ) )(5+:_1)§: 9-" (ﬁjigl)

r:kr—l_l

since the (9) holds.
On the other hand for |z| < 1

= L (B+r—1 xk
Zx( N ):(1_x)k+ﬁ

r=k

and 277 /(r +1) = 2f01/2 x"dr so that

S Dot = 27500 = D14 (1)) (5 * Z B 1) /01/2 ﬁdw.

r=0

(Co) = > DiiDy,0,

k,r=0

Taﬂ+m—l(ﬂ+fﬁ)yaﬁ—m

o) e
e [T [0 () )
_ ﬁ—l-l—l /1/2 z—l—l—z)}dz (16)

with z :=1/(2(1 — 2))

14



Thus for 3 =2

(Ci)y = (z+l1)/11 4 (1 )] de = ——— = .

For 0 < 8 < 2 we write (C(8)0(8)) = o(8)i(1 4+ I(5,1)) with

1B, 0) = (1 +1) /;2 (72— 1) [+ (1 = 2)] d=

1

But for these values of 3 and z we can estimate z°~2—1 = exp((8—2) In(2))—
1> (8 —2)In(z) so that

[E——

180> (B—2)-(I+ 1)/1;2 In(z) [+ + (1 — )] d=. (17)
So I(3,0) > (2—70)- (1 —In(2)) and for [ > 1
18,0) > (B-2)-(+ 1)/;2 In(z)='dz

- -0

[N]

[+1

@®

1 —2-(+1)
[+1

— 21 m(z)) > (1 —1n(2)).

Using (14) we get for 1 < 3 < 2 the estimates (0,0) < exp(72?/48) - ((3 — )
and

(5,08) > (6,8) + (1~ In(2)) - (2 — )C(4 - ).
So

(5(8), C(8)(3) -4
GE.o5) Tz —py

with ¢ := (1 —In(2)) exp(—m?/48).
So A(B) =2 MB) = 1 +¢(2—B)/Z(4 - B) for 1 < < 2. Moreover, the
strict positivity of (17) implies that A(F) > 1 for 0 < 8 < 2. O

Now we can apply the Perron-Frobenius and Kato-Rellich theorems.

Lemma 7 For 0 < 3 < 2 the largest eigenvalue A and the corresponding
positive eigenvector v, ||v|la =1, of C are analytic functions of 3.

15



Proof. For 3 > 0 the operator C(3) on [3(Np) is bounded, positive, and
positivity improving, that is, for w € [3(Ng) \ {0} with entries wy > 0 one
has (C(f)w)r > 0 for all k € Ng. This follows since by Lemma 2 the entries
C’(ﬁ)mr > 0 and thus by Lemma 4 the entries C(f3),,, > 0, too.

Moreover, for 0 < [ < 2 its operator norm ||[C(3)||2 on [2(INg) is an
eigenvalue, since C'(3) is positive so that ||C(8)]|s = sup o(C(/)), and since
by Lemma 6 sup o(C(3)) = A(f3) is an eigenvalue.

Thus by the Perron-Frobenius Theorem XII1.43 of [15], Vol. IV A(3) is a
simple eigenvalue with strictly positive eigenvector v(f3).

Moreover, the map RT — B(l3(Np)), 3 — C(f) is an analytic family in
the sense of Kato. Therefore, by the Kato-Rellich Theorem (Thm. XIIL.8 of
[15], Vol. IV) for 0 < 8 < 2 the eigenvalue A is an analytic function of 3, and
the positive normalized eigenvector v is analytic in 3, too. O

Lemma 8 For 0 < 3 < 2 the free energy F' is given by

BE(B) = —In(A(B)).

Proof. First we show that for these inverse temperatures the limit
klggo Z!?+1(6)/Z1?(ﬁ)

of quotients of grand canonical partition functions exists and equals A(/3).
;From Definition (3) of the vector Ykﬁ we see that its zeroth component

YO(0) = 3 (hily(o,1))7 = 3 exp(=pH{(0)) = Z{(8).  (18)

CTEGk CTEGk

Now by (5) ifkﬁ = C’(ﬁ)kYOﬁ with Yoﬁ(m) =27~ (m € Np). Lemma 4 allows
us to write C'(8) = g(8)C(3)g(8)~" so that

VU =g(@)C@)Yy with Y5 = g(8)7YG . (19)
Y € 1,(Ny) since Y (m) =,/ (ﬁ"':nn_l)Q_ﬁ_m. We have the norm limit
lim MB)~FC ()Y = T1(3)YY (20)
—00

16



with the orthogonal projector II(/3) on span(v(/3)).
We prove (20) by decomposing
MB) OBV = M) TFO(8) (1 = T(B))Yg + 1I(5)YF.
Then 1 — II(/) is an orthogonal projector commuting with C(3). So C(5) -
(1 = II(5)) is self-adjoint, and
1C(8) (1 =B Bv0)) = NC BN = TN Bty = #(B)",

where p(3) < A(f) is the supremum of o(C(3))\ {A(3)}. So
k

_ ~ (s A
1) 40180 = D oy < (55)) 155 e
converges to zero as k — co. On the other hand, H(ﬁ)ffoﬁ > 0 since v(3) and
Yoﬁ have strictly positive entries. )
By (18) and (19) we have Z(3) = (C(ﬁ)kYOﬁ)o, using that ¢(3)ox = do i
independent of the temperature. So by (20) we obtain

78,9
78 05)

= \(8). (21)

The free energy F(3) = limg_oo Fi(3) is defined in terms of the canonical

partition function Z(8): BFi(3) = —¢ In(Zx(3)).

In turn, Z,(3) is related to the grand canonical partition functions Z7(3)

via 1
Zu(B) =14 27 (B), (22)
=0
Z(B) = Y exp(—GHE(0)
CTEGk
k
= exp(—ﬁH?(O))—l—Z Z exp(—ﬁHkC(,o,l,Ok_l))
=1 peG;_4
k k—1
= 14>, > exp(=FH{(p,1)) =1+ > exp(—FH[ (p))
I=1 peG,_, =0 peGy
k—1
= 1+Y Z7(B)
=0

17



with 0;_; = (0, RN 0) € Gi_.

If the quotient (21) were < 1, the statement of the lemma would be wrong.
But here we can set Ay () := A(3) £ e with 0 < & < (A(B) —1)/2 and get
constants ¢y > 0 such that

coAE < Z7(B) <ep A (ke y).

Thus \; \;
—1 —1
_—= <7 < + 1
c)\_—l_ k(ﬁ)_c+)\+—1+

so that A_ < exp(=(F(7)) < Ay and A(B) = exp(—FF(0)). O

Lemma 9 [fthe largest eigenvalue A\(3) > 1, then the magnetization M ([3) =
0.

Proof. We only have to prove that limsup,_,.. Mi(3) < 0, since the spin
chain of length k € N has been shown to be weakly ferromagnetic in [10].
Then the GKS inequalities imply that Mi(3) > 0. Let AL(B) := AN(B) - ¢
with 0 < e < (A(B) —1)/2. Then by (21) there exists a ki, such that for all
k > kmin

NZEB) < Z8B) S NTFZEB), (e {0 k). (23)

Thus we have for k& > kuyin + 1 by (22)

k—1 k—1
ZiB) = 1+ X720 (8) = (Z A’;’““) 7
(=0 (=0
1—X*
= 1_7;14?_1(5)- (24)
+
The idea of the proof now consists in writing a generic spin configuration o €
Gy \ {0} in the form o = (7,1, 04—m—1) With 7 € G, 1 € G and 0p_,1 =
(0,...,0) € Gg_m—1. That is, we sort according to the position m + 1 with
m € {0,...,k—1} of the rightmost 1. Then we have ch(a) = HTCH_H(T, 1) =
Hg(T), but the grand canonical energy function Hg is invariant w.r.t. spin
flipr=(r,....,7m) =1 —7=(1—=7,...,1 —7,): Hg(r) = Hg(l - 7).
That is, the first m spins do not contribute to the magnetization if ¢,,,11 = 1.
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The spin configurations o = (0, ..

.,0) and o0 = (1,0,...,0) are treated

separately.
Zr(P) - Mi(5)
1 k
- ¥ [z )exp(—ﬂH;?(U))
CTEGk =1
2
= 1+0 E?"#Z > k- m =24 Y (1)) exp(~FHE (1)
m=1rcQG,, =1
2.5, k- nl——2
= L= 27 D ———7(h)
Now we use the upper bound in (23) for the grand canonical partition func-
tion ZC.
MLk —m =2 o
Zr(B)- My (B) = 1+ Zizm(ﬁ)
k— 1l o
k—1 I—1
< 1+ ZE(8) 3
=0
Zia(B) d 1
= 14+ —— — A
TR D E:
G k-|—1
— 1_|_ Zk—l(ﬁ) . d )\_)\— —
k dA_ 1 —\Z
plany L(1—=AF)(1—2x2h
= 14277 — = — 1.
+ k—l(ﬁ) [(}\_ )—I_k (1_)\:1)2

With the lower bound (24) for Z(/3) we obtain

ATkt 1 1

ML) < ((ZE_IW—I s

since by (21) limy—o, Z5 ,(3) =
0. 0O

o—1)

E(l—A:I)?)/G:g);

oo, and A_ > 1 this implies lim sup,_, .. My(3) <
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3 Discussion of the Results

Putting together the lemmata of the last section and the results of [11], we
obtain

Proposition 10 The free energy F is real-analytic in BT\ {2}, and
e the magnetization M(B) =1 and F(B) =0 for 3 > (e :=2
e M(3)=0 and

(g - 1) n(2) < BF(B) < B1n(3/2) — In(2)

for B < Ber.
e In addition BF () < —i(ﬁcr —B)? for 1 <3 < B

Proof. Real analyticity of the free energy in (0,2) follows from Lemma 7
and Lemma 8. For 8 > 2 the Dirichlet series of the partition function Z(53)
converges absolutely so that F/(8) = 0. It was shown in [11] that M(5) =1
for these inverse temperatures.

For 3 < 2 the lower bound (g — 1)In(2) < BF(p) follows from concavity
of BF(B), F(2) = 0 and lims_oBF(B) = —In(2), the last limit being a
consequence of Z;(0) = 2%,

The linear upper bound SF(3) < #1In(3/2) — In(2) was derived in [11].

Thus we need only show the quadratic bound BF(8) < —4(Ber — 3)* in
the subinterval [3,,2) of [1,2) where {(fe:—3)* > In(2)—51n(3/2), 31 ~ 0.75
and [y :=2- (1 —log(3/2) + \/ln —21In(3/2) +1n*(3/2)) =~ 1.6209 being
the solutions of the corresponding quadratic equation.

We showed in Lemma 6 and Lemma 8 that for 1 < 3 < 2

ﬁFW)g—h1@+m§%;%§)

with ¢ = (1 — In(2)) exp(—7?/48) ~ 0.2498.

Thus we must show that

2-43 1
ln(l—l—c - ﬁ)) Z2-80 (B8 <2) (25)
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First of all (Z(4—3))™' = gg:g;, and 3 +— ((4 — ) is monotone increasing.

Moreover, by Theorem 12.21 of Apostol [3]

((s) = i —S/IWx_[x]dx for s > 1.

xs—l—l

o _ _ 9l-s _9—s o _
/ T [:zj]dx _1-27 12 -I-/ T [w]dx,
1 2

st s—1 S st

and ]
o g —x o (s .

/z s+l dr > %f5/2:1; o+ dz = (24? ’

so that |
((s) < 2F L2741 - 4(2/5)
S —_

Therefore

(CB—5))" = (2 B)/h(B)
with h(B) 1= (4= 3)2°=2 4+ (2 = 8) (1 + 3(2/5)*~).

Inspection of the terms in A’(3) shows that h|j ) is monotone decreasing.

Thus

I e ERNCEC R R

with ¢ := ((4 — (2)/h(B2) ~ 1.0338.
The estimate In(1 + 2) > x — 2?/2 for @ > 0 implies for 3, < 8 < 2
2—0 2
ln(l—l—cm) > ln(l—l—c-cl-(Z—ﬁ) )
> el — %001(2 — (2)?) - (2 = 3)?
~ 0.2531- (2 — B)?,

proving (25).

So the free energy F/(3) < 0 for # < 2 or, equivalently, the eigenvalue
A(B) of the Perron-Frobenius operator is strictly larger than 1. Therefore,
by Lemma 9 the mean magnetization M(3) = 0 in this regime. O
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Corollary 11 The internal energy U(S) = 0 for > Bep, and

In(2) — #1n(3/2)
2-p

Moreover, U(B3) > 1(Bexr — B) for 1 < 3 < Ber (See Figure 1).

<UMB)<In(3/2) (0<8<2).

Proof. That U() = 0 in the frozen state was shown in [11], and similarly
the upper bound U(3) < In(3/2). To prove the lower bounds we use that
Up) = d%ﬁ - F(3), and that § +— U(() is monotone decreasing. So

B F(3) = /; Ub)db < U(B)- (2 —8),

since F'(2) =0, or U(B) > —BF(3)/(2— ). Then the estimates follow from

the above proposition. O

The lower bound on U shows that the phase transition is at most of sec-
ond order. One cannot exclude from the upper bound a first-order phase
transition, but we conjecture that U is continuous in f3.

The mechanism of this Thouless type phase transition becomes very clear
if one considers the logarithmic energy density D(F).

We compare with the Ising chain Hy, : {—1,1}F = &, Hy(0) := =% ;.
There one has

D(E)=-1((1+ E)ln(1+ E)+ (1 - E)In(1 — E)),  (E € (-1,1))

so that D'(F) = %ln(;—g) has limits limg_,41 D'(F) = Foo. Moreover, the
smooth function D is strictly concave, so that the internal energy U(f3) =
(dD/dE)~*(3) = — tanh(f) is smooth in 3 € R.

In Figure 2 we show a numerical approximation to the logarithmic energy
density D(F) of the number-theoretical spin chain. In [10] we derived the
sharp estimates 1 < h{ < F(k +2), F/(k) being the kth Fibonacci number.
So the energy per particle is bounded by 0 < %Hg < +In(F(k + 2)), and
we consider D(E) on the interval [0,1n(g)], g := (1 + V/5) being the golden
mean.

The phase transition at 3., = 2 corresponds to an initial slope D'(0) = [e;.
For 3 > 3., there is no energy £ with D'(E) = [3, so that U(3) = 0. It seems
that limg\,0 D"(E) = 0 which would imply limg »5, U'(3) = —oc.
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Figure 1: Upper and lower bounds for the energy density U(/)
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Figure 2: The logarithmic energy density D(F), with a line of slope G, = 2
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