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Inverse problem for the mean-field

monomer-dimer model with attractive

interaction

Pierluigi Contucci, Rachele Luzi, Cecilia Vernia

Abstract

The inverse problem method is tested for a class of monomer-dimer

statistical mechanics models that contain also an attractive potential and

display a mean-field critical point at a boundary of a coexistence line. The

inversion is obtained by analytically identifying the parameters in terms

of the correlation functions and via the maximum-likelihood method. The

precision is tested in the whole phase space and, when close to the coex-

istence line, the algorithm is used together with a clustering method to

take care of the underlying possible ambiguity of the inversion.

1 Introduction

In the last decade a growing corpus of scientific research has been built that
focus on the attempt to infer parameters by reconstructing them from statistical
observations of systems. The problem itself is known as statistical inference and
traces back to the times when the mathematical-physics description of nature
became fully operative thanks to the advances of mechanics and calculus, i.e.
with the French mathematicians Laplace and Lagrange. In recent times this field
and its most ambitious problems have deeply connected with statistical physics
[1, 2, 3] at least in those cases in which the structure of the problem include
the assumption of an underlying model to describe the investigated phenomena.
The aforementioned connection is surely related to the ability that statistical
physics has acquired to describe phase transitions. In this paper we study the
inverse problem for a model of interacting monomer-dimers in the mean-field,
i.e. in the complete, graph. The denomination comes from the fact that the
standard calculation in statistical mechanics, i.e. the derivation of the free en-
ergy and correlation from the assignment of the parameters is called the direct
problem. Monomer-dimer models appeared in equilibrium statistical mechanics
to describe the process of absorption of monoatomic or diatomic molecules in
condensed matter lattices [4]. From the physical point of view monomers and
dimers cannot occupy the same site of the lattice due to the hard-core interac-
tion i.e. the strong contact repulsion generated by the Pauli exclusion principle.
Beside such interaction though, as first noticed by Peierls [5], the attractive com-
ponent of the Van der Waals potentials might influence the phase structure of
the model and the thermodynamic behaviour of the material. In the mean field
setting analysed here the monomer-dimer model displays the phenomenon of
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phase coexistence among the two types of particles [6, 7, 8]. This makes the in-
verse problem particularly challenging since in the presence of phase coexistence
the non uniqueness of its solution requires a special attention in identifying the
right set of configurations. Under mean-field theory, the monomer-dimer model
can be solved for the monomer densities and the correlations between monomers
and dimers: the mean-field solution is inverted to yield the parameters of the
model (external field and imitation coefficient) as a function of the empirical
observables. The inverse problem has also been known for a long time as Boltz-
mann machine learning [9]. Its renewed interest is linked to the large number
of applications in many different scientific fields like biology [10, 11, 12, 13],
computer science for the matching problem [14, 15, 16] and also social sciences
[17, 18].

In this paper we follow an approach to the inverse problem similar to the one
introduced for the multi-species mean-field spin model in the work [19]. The
paper is organised in the following chapters and results. In the second section
we recall briefly the monomer-dimer model and we review the basic properties
of its solution [6, 8]. In the third section we solve the inverse problem: using the
monomer density and the susceptibility of the model, we compute the values of
the two parameters, here called coupling constants, J and h. The first measure
the preference for a vertex to be occupied by a monomer (respectively dimer),
by imitating his neighbours. Firstly we identify the analytical inverse formulas
providing an explicit expression of the free parameters in terms of the mentioned
macroscopic thermodynamic variables. Then we use the maximum likelihood
estimation procedure in order to provide an evaluation of the macroscopic vari-
ables starting from real data. The fourth section presents and discusses a set
of numerical tests for finite number of particles and finite number of samples.
The dependence of the monomer density and the susceptibility is studied with
respect to the system size. We find that both of them have a monotonic be-
havior which depends on the parameters value and reach their limiting values
with a correction that vanishes as at the inverse volume. We then investigate
how the experimental monomer density and susceptibility at fixed volume de-
pend on the number of samples. The effectiveness of the inversion is tested for
different values of the imitation coefficients and external fields. After observing
that the error of the inversion does not vanish when the parameters are close to
the coexistence phase we investigate the effectiveness of clustering algorithms
to overcome the difficulty. We find in all cases that the inverse method recon-
structs, with a modest amount of samples, the values of the parameters with a
precision of a few percentages. The paper has two technical appendices: the first
on the rigorous derivation of the exact inverse formulas, the second that sup-
ports the first and studies the non homogeneous Laplace method convergence
to the second order.

2 Definition of the model

Let G = (V,E) be a finite simple graph with vertex set V and edge set
E = {uv ≡ {u, v}|u 6= v ∈ V }.

Definition 2.1. A dimer configuration D on the graph G is a set of dimers
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(pairwise non-incident edges):

D ⊆ E and (uv ∈ D ⇒ uw /∈ D ∀w 6= v).

The associated set of monomers (dimer-free vertices), is denoted by

M(D) := MG(D) := {u ∈ V |uv /∈ D, ∀v ∈ V }.

Given a dimer configuration D ∈ DG, we set for all v ∈ V and e ∈ E

αv(D) :=

{

1, if v ∈ M(D)

0, otherwise

and

αe(D) :=

{

1, if e ∈ D

0, otherwise.

Definition 2.2. Let DG be the set of all possible dimer configurations on the
graph G. The imitative monomer-dimer model on G is obtained by assigning an
external field h ∈ R and an imitation coefficient J ≥ 0 which gives an attractive
interaction among particles occupying neighbouring sites. The Hamiltonian of
the model is defined by the function H imd

G : DG → R such that

H imd

G := −
∑

v∈V

hαv −
∑

uv∈E

J(αuαv + (1− αu)(1− αv)). (1)

The choice of the Hamiltonian naturally induces a Gibbs probability measure
on the space of configuration DG:

µimd

G (D) :=
exp(−H imd

G (D))

Z imd

G

∀D ∈ DG, (2)

where the partition function

Z imd

G =
∑

D∈DG

exp(−H imd

G (D))

is the normalizing factor.
The natural logarithm of the partition function is called pressure function and
it is related to the free energy of the model.

The normalized expected fraction of monomers on the graph is called monomer
density. It can also be obtained computing the derivative of the pressure per
particle with respect to h:

mimd

G :=
∑

D∈DG

|M(D)|
|V | µimd

G (D) =
∂

∂h

logZ imd

G

|V | .

It is easy to check that
2|D|+ |M(D)| = |V |. (3)

In this paper we study the imitative monomer-dimer model on the complete
graph, that is

G = KN = (VN , EN )
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with VN = {1, . . . , N} and EN = {{u, v}|u, v ∈ VN , u < v}.
In order to keep the pressure function of order N , it is necessary to normalize
the imitation coefficient by 1

N because the number of edges grows like N2 and to
subtract the term logN

∑

e∈EN
αe to the external field. Thus we will consider

the Hamiltonian H imd

N : DN → R,

H imd

N := −
∑

v∈VN

hαv +logN
∑

e∈EN

αe−
∑

uv∈EN

J

N
(αuαv +(1−αu)(1−αv)) . (4)

All the thermodynamic quantities will therefore be functions of N and we are
interested in studying the large volume limits.

Before studying the inverse problem, we briefly recall the main properties of
the model (see [6, 8]).
Taking m ∈ [0, 1], the following variational principle holds

pimd = sup
m
p̃(m),

where pimd is the pressure of the model at the thermodynamic limit and

p̃(m(J, h), J, h) := −Jm2 +
1

2
J + pmd((2m− 1)J + h) ∀m ∈ R,

with pmd(ξ) := −1− g(ξ)

2
− 1

2
log(1−g(ξ)) = −1− g(ξ)

2
− log(g(ξ))+ξ ∀ξ ∈ R

and g(ξ) :=
1

2
(
√
e4ξ + 4e2ξ−e2ξ) ∀ξ ∈ R. The solution of the model reduces to

identify the value m∗ that maximizes the function p̃ and it is found among the
solutions of the consistency equation m = g((2m− 1)J+h) that include, beside
the equilibrium value, also the unstable and metastable points. It is possible to
prove that m∗ (which represents the monomer density) is a smooth function for
all the values of J and h with the exception of the coexistence curve Γ(J, h).
Such curve is differentiable in the half-plane (J, h) which stems from the critical
point (Jc, hc) = ( 1

4(3−2
√
2)
, 12 ln(2

√
2− 2)− 1

4 ).

3 The inverse problem

The evaluation of the parameters of the model starting from real data is
usually called inverse problem and amounts of two steps. The analytical part
of the inverse problem is the computation of the values J and h starting from
those of the first and second moment of the monomer (or dimer) density. The
statistical part instead is the estimation of the values of the moments starting
from the real data and using the maximum likelihood principle [20] or the equiv-
alent formulations in statistical mechanics terms [21]. For what it concerns the
analytical part, using the results of Appendix A and B, it can be proved that
in the thermodynamic limit the imitation coefficient and the external field can
be respectively computed as

J = − 1

2χ
+

2−m∗

4m∗(1−m∗)
, (5)
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and

h = g−1(m∗)− J(2m∗ − 1) =
1

2
log

(

m∗2

1−m∗

)

− J(2m∗ − 1). (6)

We denote by mN and χN the finite size monomer density average and suscep-
tibility N(〈m2

N 〉 − 〈mN 〉2), while their limiting values are denoted without the
subscript N .

For the statistical part we use the maximum likelihood estimation proce-
dure. Given a sample of M independent dimer configurations D(1), . . . , D(M)

all distributed according to the measure of Gibbs (2), the maximum likelihood
function is defined by

L(J, h) = µimd

N {D(1), . . . , D(M)} =

M
∏

i=1

exp(−H imd

N (D(i)))
∑

D∈DKN
exp(−H imd

N (D))
.

The function L(J, h) reaches its maximum when the first and the second mo-
mentum of the monomer density are calculated from the data according to the
following equations:











mN =
1

M

∑M
i=1mN(D(i)),

m2
N =

1

M

∑M
i=1m

2
N(D(i)).

(7)

The inverse problem is therefore solved by the composition of (7) with (5) and
(6). In particular, denoting by mexp and χexp respectively the average monomer
density and the susceptibility computed from the sample

mexp =
1

M

M
∑

i=1

mN (D(i)) and χexp = N

(

1

M

M
∑

i=1

m2
N (D(i))−m2

exp

)

, (8)

the estimators of the model’s free parameters are

Jexp = − 1

2χexp
+

2−mexp

4mexp(1−mexp)
(9)

and

hexp =
1

2
log

(

m2
exp

1−mexp

)

− Jexp(2mexp − 1). (10)

4 The inversion at finite volume and finite sample

size

The aim of this chapter is to study the robustness of the inversion proce-
dure, i.e. the computation of the parameters from real data. The idea is to
infer the value of J and h from the configurations generated according to the
distribution of the model. In order to compute efficiently the values of the statis-
tical estimators mexp and χexp and in order to obtain a good approximation of
the analytical inverse formulas in terms of finite size thermodynamic variables,
we have to choose a large number of configurations of the sample and a large
number of vertices of the graph, which are respectively identified by M and N .
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Since in real data we have a finite number of vertices and a finite number of
configurations, the robustness will be studied with respect to both these two
quantities.
The data that we are going to use are extracted from a virtually exact simula-
tion of the equilibrium distribution. In fact, the mean-field nature of the model
allows to rewrite the Hamiltonian (1) as a function of the dimer, or monomer,
density (see (3)):

H imd

N (dN ) = −N
(

J

(

16d2N − 4dN +
N − 1

2N

)

+ h (1− 4dN )− 2dN logN

)

,

(11)

where dN = dN (D) = |D|
2N , or equivalently

H imd

N (mN ) = −N
(

J

(

m2
N −mN +

N − 1

2N

)

+ hmN +
1

2
logN(mN − 1)

)

.

(12)
In particular we use the following definition of the partition function:

Z imd

N =

[N/2]
∑

|D|=0

cN (D)e−Himd

N (dN (D)), (13)

where the term cN (D) = N !
|D|!(N−2|D|)!2

−|D| is the number of the possible con-

figurations with |D| dimers on the complete graph with N vertices. Using the
previous representation of the partition function we extract large samples of
dimer densities values according to the equilibrium distribution. Those will be
used for the statistical estimation of the first two moments (7). We are going to
illustrate the results with some examples. Figure 1 shows the finite size average
monomer density mN and finite size susceptibility χN for the monomer-dimer
model at different N ’s for different couples of parameters (J, h). The figure
highlights the monotonic behavior of mN and χN as function of N . We point
out that the different monotonic behaviors of the finite size monomer density
and susceptibility provide a useful information about the phase space region at
which the system is found before applying the full inversion procedure. Figure
2 shows the power-law fits of the behavior of the finite size corrections both
for monomer density and susceptibility. In order to test numerically our proce-
dure, we consider 20 M−samples for each couple (J, h) and we solve the inverse
problem for each one of them independently; then we average the inferred values
over the 20M−samples. We denote by mexp, χexp, Jexp and hexp such averaged
quantities. The two panels of figure 3 represent the statistical dependence of the
estimators mexp and χexp on the number of the configurations of the sample.

To check out that dependence on the sample D(1), . . . , D(M), we computed the
values of the experimental estimators over a set of 20 independent instances of
such samples. The errors are standard deviations on 20 different M−samples of
the same simulation: we find numerical evidence that M ≥ 5000 stabilizes the
estimations.
To test numerically the inversion procedure, we take a sample of M = 5000
dimer configurations {D(i)}, i = 1, . . . ,M over a complete graph with N = 2000
vertices. We consider J ∈ [0.1, 1.5] and we fix h = 0.1; the obtained values for
this case are shown in the left panel of figure 4, where Jexp and hexp are plotted
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Figure 1: Finite size average monomer density mN (upper panels) and suscep-
tibility χN (lower panels) as a function of N for the monomer-dimer model at
different values of J and h. The red continuous lines represent the values in the
thermodynamic limit.
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Figure 2: J = 0.5, h = 0.1. Upper panel: |mN −m| as a function of N together
with the best fit aN b for the data in the left upper panel of figure 1. We obtain
a = 0.306, a ∈ (0.1703, 0.4418) and b = −0.8549, b ∈ (−0.9459,−0.7639) with a
goodness of fit R2 = 0.9815. Lower panel: |χN −χ| as a function of N together
with the best fit cNd for the data in the left lower panel of figure 1. We obtain
c = 1.277, c ∈ (0.9883, 1.566) and d = −0.9765, d ∈ (−1.024,−0.929) with a
goodness of fit R2 = 0.9971.
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Figure 3: N = 2000, J = 0.6 and h = 0.1. Error bars are standard deviations on
20 differentM−samples of the same simulation. Upper panel: average monomer
density mexp (blue crosses) as a function of M (number of the configurations in
the sample). The red continuous line represents the finite size monomer density
mN . Lower panel: susceptibility χexp (blue crosses) as a function of M (number
of the configurations in the sample. The red continuous line represents the finite
size susceptibility χN .
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Figure 4: Error bars are standard deviations on 20 different M−samples of
the same simulation. Left panel: Jexp as a function of J ∈ [0.1, 1.5] (blue
crosses). The red continuous line corresponds to the exact value of the imitation
coefficient. Right panel: the value of hexp (blue crosses) calculated from (10)
for the values of Jexp in the left panel, as a function of J ∈ [0.1, 1.5]. The red
continuous line corresponds to the exact value of h.

as functions of J . Note that the inferred values of the parameters are in opti-
mal agreement with the exact values. Observe that for large values of J , the
reconstruction get worse since the interaction between particles grows.
In figure 5 we represent the absolute errors as a function of the imitation coef-
ficient in reconstructing J and h in the cases of figure 4.

Figure 6 shows relative errors in recostructing parameters for increasing sizes
of the graph. It highlights that for large values of N and M , the inference of
parameters doesn’t give good results only in the case that the couple (J, h) is
close to the coexistence line, but when we deal with real data, it may happen
that we don’t have a model defined over a graph with a large number of vertices
or numerous configurations of the sample. In these cases, when J and h take
values in the region of metastability, the inversion at finite volume and finite
sample size can’t be made using the method descripted above and we need
another procedure to solve the problem, as it is shown in the following section.

5 The inversion at finite volume and finite sample

size with clustered phase space

We are now going to work over the monomer-dimer inverse problem when
the phase space doesn’t present only one equilibrium state, i.e. when the sys-
tem undergoes a phase transition. We explain how to modify the mean-field
approach we have seen above. If the model is defined for the parameters J and
h such that the couple (J, h) ∈ Γ, the Gibbs probability density of the model
presents two local maxima and we cannot study the inversion problem in a
global way as we have done in the second section but we have to understand
what happens in a local neighborhood of each maximum. Given M indepen-
dent dimer configurations D(1), . . . , D(M) all distributed according to the Gibbs
probability measure for this model, we can understand their behavior around
m1 and m2 separating them in two sets, before applying formulas (9) and (10),
i.e. we divide the configurations of the sample in clusters using the so called
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Figure 5: Inference of parameters of the monomer-dimer model on 20 different
M−samples of the same simulation. Absolute errors in reconstructing J and h,
where J ∈ [0.1, 1.5] and h = 0.1.

clustering algorithms which classify elements into classes with respect to their
similarity (see [22, 23, 24, 25]). The clustering algorithms we use are based on
the distance between the monomer density of the configurations: we put them
in the same group if they are close enough and far from the other clusters (the
concept of distance between clusters will be discussed later).
The method we use is the density clustering [22], which is based on the idea
that the cluster centers are encircled by near configurations with a lower local
density and that they are relatively far from any other configuration with a
high local density. For each configuration we compute two quantities: its local
density ρi and its distance δi from configurations with higher density. These
quantities depend on the euclidean distance dij = |m(i) −m(j)|, where m(i), for
i = 1, . . . ,M is the monomer density of the configuration D(i).
The local density ρi of D(i) is defined by

ρi =

M
∑

j=1

ϕ(dij − dc), (14)

where dc is an arbitrary cutoff distance (we will discuss later the choice of dc)
and

ϕ(x) =

{

1 if x < 0

0 otherwise.

In other words, the local density ρi corresponds to the number of configurations
that are closer than dc to the configuration D(i).

Remark 5.1. The choice of the cutoff distance dc is crucial for the results of
the algorithm: if we take a too large or a too small value for dc it is possible
that the algorithm is not able to find correctly the cluster centers. From the
results of our simulations it emerges that, if we want to solve the inverse problem
over a complete graph with N = 3000 vertices working with a sample made of
M = 10000 dimer configurations, we have the best reconstruction of the free
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Figure 6: Left panels: relative errors in reconstructing the imitation coefficient
J . Right panels: relative errors in reconstructing the external field h. The
points of the phase space are coloured with respect to the errors which assume
the highest values along the coexistence line. The graybar on the right gives a
range for the computed errors: the scale goes from white for the lowest to black
for the highest. The blue curves ψ1 and ψ2 define the region of metastability (see
[6, 7, 8]), the red curve is the coexistence line while (Jc, hc) is the critical point;
the blue and red colors do not identify any error. The number of configurations
of the sample is set to be M = 500.
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parameters when dc is setted to be equal to 0.01. Obviously the choice depends
on the range where the clusters centers have to be found and on the number of
configurations of which the sample is made. More in general we have seen that
for large values of M , the minimum absolute error in reconstructing parameters
occurs when the cutoff distance is equal to C

M .

The distances δi are the minimum distance between the configuration D(i)

and any other configuration with higher local density:

δi = min
j:ρj>ρi

dij , (15)

while for the configuration with the highest local density we take δī = max
j
dij .

Observe that the quantity δi is much larger than the typical nearest neighbor
distance only for the configurations that are local or global maxima in the den-
sity. Thus cluster centers are recognised as configurations for which the δi is
anomalously large (this situation will be illustrated in example 5.1 in the fol-
lowing).
After the cluster centers have been found, each remaining configuration is as-
signed to its closest neighbor with higher density.

Remark 5.2. We tested our inversion formulas using two other clustering al-
gorithms, obtaining analogous results, which put a number of data points into
K clusters starting from K random values for the centers x(1), . . . , x(K): the
K-means clustering algorithm and the soft K-means clustering algorithm [23].
However the results we are going to talk about have been obtained using the
density clustering algorithm: by using this algorithm we do not have to specify
the number of clusters since it finds them by itself.

Remark 5.3. From the results of our simulations, according to the example 5.1
in the following, it emerges that, if the couple of parameters which defines the
model is not close enough to the coexistence line, we have a better reconstruc-
tion of the parameters applying equations (9) and (10) to the configurations
which belong to the largest cluster.
On the other hand, when the couple (J, h) is near to the coexistence line Γ(J, h),
we solve the problem applying equations (9) and (10) to each cluster and aver-
aging the inferred values as follows. We define the respective observables of the
two classes as

m(k)
exp =

1

Mk

∑

i∈Ck

mi

and

χ(k)
exp = N

(

1

Mk

∑

i∈Ck

m2
i − (m(k)

exp)
2

)

,

where k ∈ {1, 2}, Ck is the set of indices of the configurations belonging to the
kth cluster and Mk = |Ck| is its cardinality.
We now apply (9) separately to each group in order to obtain two different

estimators J
(1)
exp and J

(2)
exp; finally we take the weighted average of all the different

estimates

Jexp =
1

M1 +M2
(M1J

(1)
exp +M2J

(2)
exp) (16)

in order to obtain the estimate for the imitation coefficient.
To estimate the parameter h, we first compute the values h

(1)
exp and h

(2)
exp within

12



each cluster using equation (10) and the corresponding J
(k)
exp; the final estimate

for h is given by the weighted average over the clusters

hexp =
1

M1 +M2
(M1h

(1)
exp +M2h

(2)
exp). (17)

We now focus on some cases of clustered phase space and we solve the inverse
problem applying the density clustering algorithm.
In order to test numerically the inversion procedure for the monomer-dimer
model, we consider a sample of M = 10000 dimer configurations {D(i)}, i =
1, . . . ,M over a complete graph with N = 3000 vertices. We denote by the bar
averaged quantities and the errors are standard deviations over 20−M samples.

Example 5.1. Consider a monomer-dimer model defined by the couple

(J, h) = (2.001,−0.4145);

the Gibbs probability distribution of the monomer densities for this choice of
parameters is represented in figure 7. Given M = 10000 independent dimer
configurations D(1), . . . , D(M) all distributed according to the Gibbs probabil-
ity measure for this model, we use the density clustering algorithm in order to
divide them in two sets to reconstruct the parameters.
As we can see by figures 7 and 8, configurations are divided in two clusters C1 and
C2 respectively centered in m1 = 0.1507±5.7·10−17 andm2 = 0.9402±9.9·10−4;
moreover the cluster centered in m1 contains more configurations than that cen-
tered in m2. Let start observing that the reconstructed parameters are better
solving the problem only respect to the largest cluster.
Applying equations (9) and (10) both to the configurations in C1 and C2 ac-
cording to remark 5.3, by formulas (16) and (17) we obtain the following recon-
structed values of parameters:

Jexp = 2.0141± 0.0802 and hexp = −0.4196± 0.0828. (18)

Applying instead equations (9) and (10) only to the configurations in the largest
cluster C1, we obtain the following reconstructed values of parameters:

Jexp = 2.0036± 0.0353 and hexp = −0.4091± 0.0247. (19)

In order to justify our choice for the cutoff distance, we focus on figure
9, which shows the euclidean distances between Jexp and the true parameter
J (blue stars) and between hexp and the true parameter h (red circles) for
each choice of dc, that takes value 10−j, for j = 1, . . . , 6. We can see that,
taking a sample of M = 10000 dimer configurations over a complete graph
with N = 3000 vertices, we obtain the minimum absolute error considering
dc = 0.01. According to what we have told above, the choice is arbitrary and
it depends on the range of values of the monomer densities and on the number
of configurations in the sample: obviously, working with a larger set of dimer
configurations we have more freedom in the choice of the cutoff distance.
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Figure 7: Gibbs probability distribution of the monomer densities for the dimer
configurations of the monomer-dimer model defined by the couple of parameters
(J, h) = (2.001,−0.4145).
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Figure 8: Density clustering algorithm. Left panel: plot of the vector ρ,
whose components are computed according to (14), of the density of config-
urations around each configurations of the considered sample as a function of
the monomer densities. Right panel: decision graph, plot of the vector δ, whose
components are computed according to (15), as a function of the vector ρ.
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Figure 9: Density clustering algorithm: choice of the cutoff distance. Absolute
errors in reconstructing J and h. Distance between the reconstructed Jexp and
the true value J (blue stars) and distance between hexp and h (red circle) for
each choice of the cutoff distance dc, which takes value 10−j, for j = 1, . . . , 6.
The values of Jexp and hexp are averaged across 20 M−samples. The errors are
plotted as a function of dc.

In conclusion we have seen that in the case that the couple of parameters
(J, h) belongs to the region of metastability and is far enough from the coexis-
tence line, at finite volume and at finite sample size, there are two clusters and
one of them is much larger than the other one. According to remark 5.3, the
obtained results confirm that the reconstruction of the parameters is better if
we apply formulas (9) and (10) only to the largest set of configurations. The
goodness of results is estimated comparing (18) and (19): the distance between
the reconstructed parameters Jexp and the true value J is smaller in the first
case, while the respective recontructions of h are equivalent.

We proceede considering ten different couples of parameters which are nearby
the coexistence line Γ(J, h) descripted above. In order to define them we take
ten equispaced values for the imitation coefficient J in the interval [1.6, 2] and
we compute the corresponding values for the parameter J using equations (16)
and (17). The obtained values are shown in figure 10, where Jexp and hexp are
plotted as a function of J .
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Figure 10: N = 3000, J ∈ [1.6, 2], h takes values over the coexistence line. Error
bars are standard deviations on 20 different M−samples of the same simulation.
Parameters are reconstructed using the density clustering algorithm. Left panel:
Jexp (blue crosses) calculated from (16) as a function of J . The red continous
line represents the true value of J . Right panel: the value of hexp (blue crosses)
calculated from (17) for the values of Jexp in the left panel, as a function of J .
The red continuous line corresponds to the exact value of h.

In figure 11 we can see the results in reconstructing parameters crossing
the coexistence line Γ(J, h). Fixed J = 1.8 we take increasing values of the
parameter h in the interval [−0.3940,−0.3924]. In figure 12 we can see how the
distribution of Gibbs of the monomer densities changes for different values of h.

In figure 13 the euclidean distances between Jexp and the value J = 1.8 (blue
stars) and between hexp and h ∈ [−0.3940,−0.3924] (red circles) are shown for
each of the nine couples (J, h).
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Figure 11: N = 3000, J = 1.8, h ∈ [−0.3940,−0.3924]. Error bars are standard
deviations on 20 different M−samples of the same simulation. Parameters are
reconstructed using the density clustering algorithm. Left panel: the value of
Jexp (blue crosses) calculated from (16) as a function of h together with the
statistical error. The red continous line represents the true value of J . Right
panel: the value of hexp (blue crosses) calculated from (17) for the values of
Jexp in the left panel, as a function of h together with the statistical error. The
red continuous line corresponds to the exact value of h.
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Figure 12: N = 3000, J = 1.8, h ∈ [−0.3940,−0.3924]. Gibbs probability distri-
bution of the monomer densities for the dimer configurations of the monomer-
dimer model defined by each couple of parameters (J, h) defined in figure 11.
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Figure 13: N = 3000, J = 1.8, h ∈ [−0.3940,−0.3924]. Absolute errors in
reconstructing J and h using the density clustering algorithm. Distance between
the reconstructed Jexp and the true value J (blue stars) and distance between
hexp and h (red circle) for each couple of parameters. The values of Jexp and
hexp are averaged across 20 M−sample. The errors are plotted as a function of
h.

A Monomer-dimer model. Thermodynamic limit

of the susceptibility.

In this appendix, using the extended Laplace’s method studied in Appendix
B, we prove that

lim
N→∞

∂

∂h
〈mN (J, h)〉 = ∂

∂h
m(J, h).

We have used this result in the fourth section.

Theorem A.1. Given an imitative monomer-dimer model defined by a couple
of parameters (J, h) over a complete graph of N vertices, it holds:

lim
N→∞

∂

∂h
〈mN (J, h)〉 = ∂

∂h
m(J, h). (20)

Remark A.1. According to results in [7], write the partition function of the
monomer-dimer model as

ZN(J, h) =

∫

R

eNFN (x)dx,

where
FN (x) = −Jx2 + p

(0)
N ((2x− 1)J + h), (21)

pN (J, h) =
1

N
log

(∫

R

eNFN (x)dx

)

, (22)

p
(0)
N (J, h) = pN (J, h)|J=0 .

Let cN be the maximum point of the function FN (x). In order to simplify the
notations set x̄ := (2x− 1)J + h and c̄ := (1− 2c)J + h.

18



Proof. Let start computing the expectation of the monomer density using the
definition of the pressure function given in (22):

〈mN (J, h)〉 =∂pN(J, h)

∂h
=

1

N

∂

∂h
log

(∫

R

eNFN (x)dx

)

=

=

∫

R

eNFN (x) ∂

∂h
p
(0)
N (x̄)dx

∫

R

eNFN (x)dx

.

The finite size susceptibility can be written as:

χN (J, h) =
∂〈mN (J, h)〉

∂h
=

=

∫

R

eNFN (x)



N

(

∂p
(0)
N (x̄)

∂h

)2

+
∂2p

(0)
N (x̄)

∂h2



 dx

∫

R

eNFN (x)dx

−N

(∫

R

eNFN (x) ∂

∂h
p
(0)
N (x̄)dx

)2

(∫

R

eNFN (x)dx

)2 =

=

∫

R

eNFN (x) ∂
2

∂h2
p
(0)
N (x̄)dx

∫

R

eNFN (x)dx

+ (23)

+N











∫

R

eNFN(x)

(

∂

∂h
p
(0)
N (x̄)

)2

dx
∫

R

eNFN (x)dx

−









∫

R

eNFN (x) ∂

∂h
p
(0)
N (x̄)dx

∫

R

eNFN (x)dx









2










. (24)

Now we are going to use the extended Laplace’s method in order to evaluate
the behavior of (23) and (24) at the thermodynamic limit.
Observe that, since all the quantities computed above are limited, the second
order extended Laplace’s method suffices to study the behavior of the finite size
susceptibility as N → ∞.
As N → ∞, the numerator of (23) can be approximated as:

√

2π

−NF ′′(c)
eNFN (cN )



















∂2p(0)(x̄)

∂h2

∣

∣

∣

∣

x̄=c̄

+
1

N











−

d2

dx2
∂2p(0)(x̄)

∂h2

∣

∣

∣

∣

x̄=c̄

2F ′′(c)
+

+

∂2p(0)(x̄)

∂h2

∣

∣

∣

∣

x̄=c̄

F (iv)(c)

8(F ′′(c))2
+

d

dx

∂2p(0)(x̄)

∂h2

∣

∣

∣

∣

x̄=c̄

F ′′′(c)

2(F ′′(c))2
−

5
∂2p(0)(x̄)

∂h2

∣

∣

∣

∣

x̄=c̄

(F ′′′(c))2

24(F ′′(c))3





























.

(25)
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As N → ∞, the numerator of the first fraction in (24) can be approximated as:

√

2π

−NF ′′(c)
eNFN (cN )























(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

+
1

N













− d2

dx2

(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

2F ′′(c)
+

+

(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

F (iv)(c)

8(F ′′(c))2
+

d

dx

(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

F ′′′(c)

2(F ′′(c))2
+

−
5

(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

(F ′′′(c))2

24(F ′′(c))3



































=

=

√

2π

−NF ′′(c)
eNFN (cN )

[

(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

+
A(J, h)

N

]

. (26)

As N → ∞, the numerator of the second fraction in (24) can be approximated
as:










√

2π

−NF ′′(c)
eNFN (cN )



















∂p(0)(x̄)

∂h

∣

∣

∣

∣

x̄=c̄

+
1

N











− d2

dx2
∂p(0)(c̄)

∂h

∣

∣

∣

∣

x̄=c̄

2F ′′(c)
+

+

∂p(0)(x̄)

∂h

∣

∣

∣

∣

x̄=c̄

F (iv)(c)

8(F ′′(c))2
+

d

dx

(

∂p(0)(x̄)

∂h

∣

∣

∣

∣

x̄=c̄

)2

F ′′′(c)

2(F ′′(c))2
−

5
∂p(0)(x̄)

∂h

∣

∣

∣

∣

x̄=c̄

(F ′′′(c))2

24(F ′′(c))3







































2

=

=

(√

2π

−NF ′′(c)
eNFN (cN )

[

∂p(0)(x̄)

∂h

∣

∣

∣

∣

x̄=c̄

+
B(J, h)

N

]

)2

=

=

(√

2π

−NF ′′(c)
eNFN (cN )

)2 [
(

∂p(0)(x̄)

∂h

)2
∣

∣

∣

∣

∣

x̄=c̄

+ 2
∂p(0)(x̄)

∂h

∣

∣

∣

∣

x̄=c̄

B(J, h)

N
+
B2(J, h)

N2

]

.

(27)

As N → ∞, the integral

∫

R

eNFN (x)dx can be approximated as:

√

2π

−NF ′′(c)
eNFN (cN )

{

1 +
1

N

[

F (iv)(c)

8(F ′′(c))2
− 5(F ′′′(c))2

24(F ′′(c))3

]}

=

=

√

2π

−NF ′′(c)
eNFN (cN )

[

1 +
C(J, h)

N

]

. (28)
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Putting together (25) and (28) we obtain:

(23)
N→∞−−−−→ g′(x̄). (29)

Putting together (26),(27) and (28), we obtain:

(24)
N→∞−−−−→ −8J2(g′(c̄))2

2(−2J + 4J2g′(c̄))
. (30)

Using (29) and (30), we find that as N → ∞

χN (J, h)
N→∞−−−−→ g′ +

8J2(g′)2

2(−2J + 4J2g′)
=

4Jg′(1− 2Jg′) + 8J2(g′)2

4J(1− 2Jg′)
=

(g′)2

1− 2Jg′
.

(31)

At the thermodynamic limit, the susceptibility is the partial derivative of the
solution m(J, h) of the consistency equation with respect to the parameter h,
so that:

χ =
∂m(J, h)

∂h
=

d

dh
g((2m− 1)J + h)

(

1 + 2
∂m(J, h)

∂h
J

)

=

= g′((2m− 1)J + h)(1 + 2χJ)

⇒ χ =
(g′)2

1− 2Jg′
.

Hence, (20) is proved.

B Extended Laplace’s method. Control at the

second order.

The usual Laplace method works with integrals of the form

∫

R

(ψ(x))nu(x)dx

as n → ∞. In this appendix we prove an extension at the second order of the
previous method when the functions ψ and u may depend on n (see [7] for the
control at first order). We have used that in Appendix A.

Theorem B.1. For all n ∈ N, let ψn : R → R and un : R → R. Suppose that
there exists a compact interval K ⊂ R such that ψn, un > 0 on K, so that in
particular

ψn(x) = efn(x) ∀x ∈ K.

Suppose that fn ∈ C4(K) and that un ∈ C2(K).
Moreover suppose that

1. fn
n→∞−−−−→ f uniformly on K with its derivatives;

2. un
n→∞−−−−→ u uniformly on K with its derivatives;

3. there exixts a positive constant c1 <∞ such that |un| < c1;
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4. max
K

fn is attained in a unique point cn ∈ int(K);

5. max
K

f is attained in a unique point c ∈ int(K);

6. lim sup
n→∞

(

sup
R\K

log |ψn| −max
K

fn

)

< 0;

7. f ′′(c) < 0;

8. lim sup
n→∞

∫

R
|ψn(x)|dx <∞.

Then, as n→ ∞,

∫

R

(ψn(x))
nun(x)dx =

√

2π

−nf ′′(c)
enfn(cn)

{

u(c) +
Λ

n
+ o

(

1

n

)}

, (32)

where

Λ = − u′′(c)

2f ′′(c)
+
u(c)f (iv)(c)

8(f ′′(c))2
+
u′(c)f ′′′(c)

2(f ′′(c))2
− 5u(c)(f ′′′(c))2

24(f ′′(c))3
.

In the proof we use the following elementary fact:

Lemma B.2. Let (fn)n∈N be a sequence of continuous functions uniformly
convergent to f on a compact set K. Let (In)n∈N and I be subsets of K such
that

max
x∈In,y∈I

dist(x, y) → 0, as n→ ∞.

Then

a) max
In

fn
n→∞−−−−→ max

I
f

b) argmax
In

fn
n→∞−−−−→ argmax

I
f , provided that f has a unique global maximum

point on I.

We proceed with the proof of the theorem.

Proof. Since cn is an internal point of maximum of fn (hypothesis 4 ), f ′
n(cn) = 0.

Moreover ∀x ∈ K

fn(x) = fn(cn) +
1

2
f ′′
n (cn)(x − cn)

2 +
1

6
f ′′′
n (cn)(x − cn)

3 +
1

24
f (iv)
n (ξ′x,n)(x − cn)

4,

(33)

with ξ′x,n ∈ (cn, x) ⊂ K, and

un(x) = un(cn) + u′n(cn)(x − cn) +
1

2
u′′n(ξ

′′
x,n)(x − cn)

2, (34)

with ξ′′x,n ∈ (cn, x) ⊂ K.

Fix
ǫ

2
= ǫ and Nǫ such that |f (i)

n (ξ) − f (i)(ξ)| < ǫ, i = 1, 2, 3, 4 and |u(j)n (ξ) −
u(j)(ξ)| < ǫ, j = 1, 2 ∀ξ ∈ K and ∀n > Nǫ. Since f and u and their respective
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derivatives are continuous in c, there exists δǫ > 0 such that B(c, δǫ) ⊂ K and
∀ξ : |ξ − c| < δǫ

|f (i)(ξ)− f (i)(c)| < ǫ

2
, i = 1, 2, 3, 4,

and

|u(j)(ξ)− u(j)(c)| < ǫ

2
, j = 1, 2.

By lemma B.2, cn
n→∞−−−−→ c because c is the unique maximum point of f on

K(hypothesis 5 ). Thus there exists N δǫ such that

|cn − c| < δǫ =
δǫ
3

∀n > N δǫ . (35)

Observe that by hypothesis 7 and for n > Nǫ ∨Nδǫ , f
′′
n (cn) < 0.

Moreover, for n > Nǫ ∨N δǫ , ∀x ∈ B(c, δǫ) ⊂ B(c, δǫ) and ∀ξx,n ∈ (cn, x) ⊂ K,
it holds:

|ξx,n − c| ≤ |ξx,n − x|+ |x− c| ≤ |cn − x|+ |x− c| ≤ |cn − c|+ |c− x|+ |x− c| < 3δǫ = δǫ ⇒







|f (i)
n (ξ′x,n)− f (i)(c)| ≤ |f (i)

n (ξ′x,n)− f (i)(ξ′x,n)|+ |f (i)(ξ′x,n)− f (i)(c)| < ǫ

2
+
ǫ

2
= ǫ

|u(j)n (ξ′′x,n)− u(j)(c)| ≤ |u(j)n (ξ′′x,n)− u(j)(ξ′′x,n)|+ |u(i)(ξ′′x,n)− u(i)(c)| < ǫ

2
+
ǫ

2
= ǫ

(36)

By substituing (36) in (33) and in (34), we obtain that for n > Nǫ ∨ N δǫ and
x ∈ B(c, δǫ)

fn(x)



































≤ fn(cn) +
1

2
f ′′
n (cn)(x − cn)

2 +
1

6
f ′′′
n (cn)(x − cn)

3+

+
1

24
(f (iv)(c) + ǫ)(x− cn)

4

≥ fn(cn) +
1

2
f ′′
n (cn)(x − cn)

2 +
1

6
f ′′′
n (cn)(x − cn)

3+

+
1

24
(f (iv)(c)− ǫ)(x− cn)

4

(37)

and

un(x)











≤ un(cn) + u′n(cn)(x− cn) +
1

2
(u′′(c) + ǫ)(x− cn)

2

≥ un(cn) + u′n(cn)(x− cn) +
1

2
(u′′(c)− ǫ)(x− cn)

2
. (38)

Now split the integral into two parts:
∫

R

enfn(x)un(x)dx =

∫

R\B(cn,δǫ)

(ψn(x))
nun(x)dx +

∫

B(cn,δǫ)

enfn(x)un(x)dx.

(39)
To control the first integral on the r.h.s. of (39) we claim that there exists
ηδǫ > 0 and N̂δǫ such that

log |ψn(x)| < fn(cn)− ηδǫ ∀x ∈ R \B(cn, δǫ) ∀n > N̂δǫ ; (40)
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this implies that

lim sup
n→∞

sup
x∈R\B(cn,δǫ)

(log |ψn(x)| − fn(cn)) < 0.

Indeed, using lemma B.2:

lim sup
n→∞

sup
R\B(cn,δǫ)

(log |ψn(x)| − fn(cn)) =

(

lim sup
n→∞

sup
x∈K\B(cn,δǫ)

(fn(x)− fn(cn))

)

∨
(

lim sup
n→∞

sup
x∈R\K

(log |ψn(x)| − fn(cn)

)

=

(

sup
x∈K\B(cn,δǫ)

(f(x)− f(c))

)

∨
(

lim sup
n→∞

sup
x∈R\K

(log |ψn(x)| − fn(cn))

)

.

Moreover, since c is the unique maximum point of the continuous function f on
the compact set K,

sup
x∈K\B(cn,δǫ)

(f(x)− f(c)) < 0

and this proves the claim.
Now using (40) and hypothesis 8 we can say that there exist C1 and N such
that for all n > N ∨ N̂δǫ

∫

R\B(cn,δǫ)

enfn(x)un(x)dx ≤ e(n−1)(fn(cn)−ηδǫ)

∫

R

|ψn(x)||un(x)|dx ≤

≤ e(n−1)(fn(cn)−ηδǫ)

∫

R

|ψn(x)|c1dx ≤

≤ C1e
n(fn(cn)−ηδǫ). (41)

In order to find an upper bound for the second integral of the r.h.s. of (39), we
proceed as follows:

∫

B(cn,δǫ)

enfn(x)un(x)dx ≤

≤
∫

B(cn,δǫ)

en(fn(cn)+
1
2 f

′′

n (cn)(x−cn)
2+ 1

6 f
′′′

n (cn)(x−cn)
3+ 1

24 (f
(iv)(c)+ǫ)(x−cn)

4)un(x)dx =

=

∫

B(cn,δǫ)

enfn(cn)+
n
2 f ′′

n (cn)(x−cn)
2

en(
1
6 f

′′′

n (cn)(x−cn)
3+ 1

24 (f
(iv)(c)+ǫ)(x−cn)

4)un(x)dx.

(42)

Since δǫ may be chosen small, the second exponential term can be expanded as

exp

[

n

(

1

6
f ′′′
n (cn)(x − cn)

3 +
1

24
(f (iv)(c) + ǫ)(x − cn)

4

)]

≤

≤1 + n

[

1

6
f ′′′
n (cn)(x− cn)

3 +
1

24
(f (iv)(c) + ǫ)(x− cn)

4

]

+

+
n2

72
(f ′′′

n (cn))
2(x− cn)

6 + n2C2|x− cn|7, (43)
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where C2 is a positive real constant. Substitute (43) and (38) in (42). Collecting
powers of (x−cn) and observing that odd powers don’t contribute to the integral,
we claim that:

(42) ≤enfn(cn)
∫

B(cn,δǫ)

e
n
2 f ′′

n (cn)(x−cn)
2

[

un(cn) + (x− cn)
2u

′′(c) + ǫ

2
+

+ (x− cn)
4

(

n
u′n(cn)f

′′′
n (cn)

6
+ n

un(cn)(f
(iv)(c) + ǫ))

24

)

+

+ (x− cn)
6

(

n2un(cn)(f
′′′
n (cn))

2

72
+ n

(u′′(c) + ǫ)(f (iv)(c) + ǫ)

48

)

+

+(x− cn)
8n2

(

(u′′(c) + ǫ)(f ′′′
n (cn))

2

144
+ u′n(cn)C2

)]

dx+

+enfn(cn)
∫

B(cn,δǫ)

e
n
2 f ′′

n (cn)(x−cn)
2

n2C2|x− cn|7dx.

Making the change of variable

t =
√

−nf ′′
n (cn)(x− cn),

we obtain:

(42) ≤ enfn(cn)
√

−nf ′′
n (cn)

∫

B(0,
√

−nf ′′

n (cn)δǫ)

e−
t2

2

{

un(cn) +
1

n

[

−t2u
′′(c) + ǫ

2f ′′
n(cn)

+

+t4
(

un(cn)(f
(iv)(c) + ǫ)

24(f ′′
n(cn))

2
+
u′n(cn)f

′′′
n (cn)

6(f ′′
n (cn))

2

)

− t6
un(cn)(f

′′′
n (cn))

2

72(f ′′
n (cn))

3

]

+

+
1

n2

[

−t6 (u
′′(c) + ǫ)(f (iv)(c) + ǫ)

48(f ′′
n(cn))

3
+ t8

(

(u′′(c) + ǫ)(f ′′′
n (cn))

2

144(f ′′
n(cn))

4
+
u′n(cn)C2

(f ′′
n (cn))

4
+

)]}

dt

+ 2
enfn(cn)

√

−nf ′′
n (cn)

∫

t∈B(0,
√

−nf ′′

n (cn)δǫ):t≥0

e−
t2

2 t7
C2

n3/2(f ′′
n (cn))

7/2
dt =

=
enfn(cn)

√

−n(f ′′
n (cn))

∫

B(0,
√

−nf ′′

n (cn)δǫ)

e−
t2

2

{

un(cn) +
a
(1)
n,ǫ(t)

n
+
b
(1)
n,ǫ(t)

n2

}

dt+

+ 2
C2e

nfn(cn)

n2(f ′′
n (cn))

4

∫

t∈B(0,
√

−n(f ′′

n (cn))δǫ):t≥0

e−
t2

2 t7dt, (44)

where a
(1)
n,ǫ(t) and b

(1)
n,ǫ(t) are the arguments inside square brackets which are

respectively multiplied by 1
n and by 1

n2 .

In order to find a lower bound for the second integral of the r.h.s. of (39),
we proceed as follows:

∫

R

(ψn(x))
nun(x)dx ≥

≥
∫

B(cn,δǫ)

enfn(cn)+
n
2 f ′′

n (cn)(x−cn)
2

en(
1
6 f

′′′

n (cn)(x−cn)
3+ 1

24 (f
(iv)(c)−ǫ)(x−cn)

4)un(x)dx.

(45)
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Since δǫ may be chosen small, the second exponential term satisfies

exp

[

n

(

1

6
f ′′′
n (cn)(x − cn)

3 +
1

24
(f (iv)(c)− ǫ)(x − cn)

4

)]

≥

≥1 + n

[

1

6
f ′′′
n (cn)(x− cn)

3 +
1

24
(f (iv)(c)− ǫ)(x− cn)

4

]

+

+
n2

72
(f ′′′

n (cn))
2(x− cn)

6 − n2C3|x− cn|7, (46)

where C3 is a positive real constant.
Analogously as above, expand the second exponential term of (45) as in (43)
and the function un(x) as in (34). Collecting powers of (x− cn) and making the
change of variable

t =
√

−nf ′′
n (cn)(x− cn),

we obtain:

(45) ≥ enfn(cn)
√

−nf ′′
n (cn)

∫

B(0,
√

−nf ′′

n (cn)δǫ)

e−
t2

2

{

un(cn) +
1

n

[

−t2u
′′(c)− ǫ

2f ′′
n(cn)

+

+t4
(

un(cn)(f
(iv)(c)− ǫ)

24(f ′′
n(cn))

2
+
u′n(cn)f

′′′
n (cn)

6(f ′′
n (cn))

2

)

− t6
un(cn)(f

′′′
n (cn))

2

72(f ′′
n (cn))

3

]

+

+
1

n2

[

−t6 (u
′′(c)− ǫ)(f (iv)(c)− ǫ)

48(f ′′
n (cn))

3
+ t8

(

(u′′(c)− ǫ)(f ′′′
n (cn))

2)

144(f ′′
n(cn))

4
− u′n(cn)C3

(f ′′
n (cn))

4

)]}

dt+

− 2
enfn(cn)

√

−nf ′′
n (cn)

∫

t∈B(0,
√

−nf ′′

n (cn)δǫ):t≥0

e−
t2

2 t7
C3

n3/2(f ′′
n (cn))

7/2
dt =

=
enfn(cn)

√

−nf ′′
n (cn)

∫

B(0,
√

−nf ′′

n (cn)δǫ)

e−
t2

2

{

un(cn) +
a
(2)
n,ǫ(t)

n
+
b
(2)
n,ǫ(t)

n2

}

dt+

− 2
C3e

nfn(cn)

n2(f ′′
n (cn))

4

∫

t∈B(0,
√

−n(f ′′

n (cn))δǫ):t≥0

e−
t2

2 t7dt, (47)

where a
(2)
n,ǫ(t) and b

(2)
n,ǫ(t) are the arguments inside square brackets which are

respectively multiplied by 1
n and by 1

n2 .

It is easy to verify that:

∫

B(0,
√
nδǫ)

e−
t2

2 un(cn)dt
n→∞−−−−→

√
2πu(c),

∫

B(0,
√
nδǫ)

e−
t2

2 t2kdt
n→∞−−−−→

∫

R

e−
t2

2 t2kdt =
√
2π(2k − 1)(2k − 3) . . . (3)(1), ∀k ∈ N,

∫

t∈B(0,
√
nδǫ):t≥0

e−
t2

2 t7dt
n→∞−−−−→

∫ +∞

0

e−
t2

2 t7dt = 48. (48)

In conclusion, using (39),(41),(44), (47) and (48), we obtain that for ǫ ∈ (0, ǫ0]
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and n > N ∨Nǫ ∨Nδǫ ∨ N̂δǫ

∫

R

(ψn(x))
nun(x)dx −

√

2π

−nf ′′(c)
enfn(cn)u(c)

√

2π

−nf ′′(c)
enfn(cn)

Λ

n

≤

≤

∫

B(0,
√

−nf ′′

n (cn)δǫ)

e−
t2

2

{

un(cn) +
a
(1)
n,ǫ(t)

n
+
b
(1)
n,ǫ(t)

n2

}

dt

√

−f ′′
n(cn)

−
√

2π

−nf ′′(c)
u(c)

√

2π

−f ′′(c)

Λ

n

+

+

2
C2

n2(f ′′
n (cn))

5

∫

t∈B(0,
√

−nf ′′

n (cn)δǫ):t≥0

e−
t2

2 t7dt+
C1

enηδǫ
√

2π

−f ′′(c)

Λ

n

n→∞−−−−→

n→∞−−−−→

√

2π

−f ′′
n (cn)

√

2π

−f ′′(c)

ǫ→0−−−→ 1 (49)

and

∫

R

(ψn(x))
nun(x)dx −

√

2π

−nf ′′(c)
enfn(cn)u(c)

√

2π

−nf ′′(c)
enfn(cn)

Λ

n

≥

≥

∫

B(0,
√

nf ′′

n (cn)δǫ)

e−
t2

2

{

un(cn) +
a
(2)
n,ǫ(t)

n
+
b
(2)
n,ǫ(t)

n2

}

dt

√

−f ′′
n(cn)

−
√

2π

−nf ′′(c)
u(c)

√

2π

−f ′′(c)

Λ

n

+

−
2

C3

n2(f ′′
n (cn))

5

∫

t∈B(0,
√

−nf ′′

n (cn)δǫ):t≥0

e−
t2

2 t7dt+
C1

enηδǫ
√

2π

−f ′′(c)

Λ

n

n→∞−−−−→

n→∞−−−−→

√

2π

−f ′′
n (cn)

√

2π

−f ′′(c)

ǫ→0−−−→ 1. (50)

Hence, by (49) and (50), (32) is proved.
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