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The Griffiths inequalities for Ising spin-glass models with Gaussian randomness of non-
vanishing mean are proved using the properties of the Gaussian distribution and the gauge
symmetry of the system. These inequalities imply that the correlation functions are non-
negative and monotonic along the Nishimori line in the phase diagram. From this result,
the existence of the thermodynamic limit for the correlation functions and the free energy is
proved under free and fixed boundary conditions. Relations between the location of multi-
critical points are also derived for different lattices.

§1. Introduction

The Griffiths inequalities give us significant knowledge about phase transitions
in ferromagnetic Ising models.1),2) These inequalities are composed of two state-
ments: correlation functions are non-negative and increase monotonically with the
interaction among any set of the spins. From the Griffiths inequalities, the existence
of the free energy per spin and correlation functions is proved under several boundary
conditions. Furthermore, relations on critical points for various lattices are derived.
However, since the proof needs the conditions that all the interactions are ferromag-
netic, there was no proof of similar inequalities for the spin-glass models which have
both ferromagnetic and antiferromagnetic interactions with non-vanishing mean.

Recently, the first Griffiths inequality has been proved for the Sherrington-
Kirkpatrick model and the Edward-Anderson model using integration by parts.3),4)

Moreover, in 3) and 4), monotonicity of correlation functions is proved not with
respect to the strength of the interaction but with the variance of the randomness.
On the other hand, the gauge theory, which uses gauge symmetry of the system, is
known to be useful for analytic investigations in spin-glass models, yielding various
exact results on a line called the Nishimori line (NL).5),6) We have been able to
prove both Griffiths inequalities with respect to the mean of the randomness for the
Gaussian spin glass on the NL using the gauge theory and the technique of integra-
tion by parts.7) The resulting inequalities can be used to prove the existence of
the thermodynamic limit for correlation functions and the free energy and to derive
inequalities on the location of the multicritical point for various lattices. The present
contribution briefly reviews these results.

In the next section, we present our results and outline their proof. Applications
of these inequalities are discussed in the third section.
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§2. Inequalities

Let us consider a finite system Ω of Ising spins Si = ±1 and denote their product
by

SA =
∏

i∈A

Si

for a subset A of Ω. The partition function is defined as

Z =
∑

S

exp





∑

{A}

βAJASA



 , (1)

where βA ≥ 0 is the inverse of local temperature for subset A, and JA is a quenched
random variable which follows the Gaussian distribution PA(JA) with positive mean
JA0 and variance σ2

A
.

The NL is defined in terms of a parameter xA as

βA =
xA

σA

, JA0 = σAxA. (2)

Our results are the following inequalities:

[〈SB〉] ≥
x2

B

1 + x2
B

(B ∈ {A}), [〈SB〉] ≥ 0 (B 6∈ {A}) (3)

d

dxB

[〈SC〉] = 2xB

[

(〈SBSC〉 − 〈SB〉〈SC〉)
2
]

≥ 0, (4)

where the angular brackets denote the thermal average with local temperature β−1
A

and the square brackets stand for the configurational average. Both inequalities hold
for arbitrary subsets B,C as long as the parameters satisfy the NL condition (2).

The first inequality (3) is proved using the Cauchy-Schwarz inequality and the
gauge theory. This inequality yields a lower bound for correlation function [〈SB〉].
If the parameter xB for the corresponding subset B tends to infinity, this bound
increases toward unity. Therefore all the spins in the subset B are parallel to each
other. This result is natural because large xB implies that the interaction JB is
almost ferromagnetic and the local temperature is nearly zero.

For the proof of the second inequality (4), we express the total derivative by the
parameter xB as

d

dxB

[〈SC〉] =
1

σB

∂

∂βB

[〈SC〉]

∣

∣

∣

∣

NL

+ σB

∂

∂JB0
[〈SC〉]

∣

∣

∣

∣

NL

. (5)

To calculate the partial derivatives with respect to βB and JB , the following identities
for an arbitrary operator O are useful.

[JBO] = JB0[O] + σ2
B

[

∂O

∂JB

]

(6)

∂

∂JB0
[O] =

[

∂O

∂JB

]

. (7)
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These equations are derived from the properties of the Gaussian distribution PB(JB):
a) it is the function of JB − JB0, b) its derivative is proportional to itself, and c) it
decays rapidly as |JB | → ∞. Note that both equations are valid on and away from
the NL. From Eqs. (6) and (7), we obtain

d

dxB

[〈SC〉] = 2xB [〈SBSC〉 − 〈SB〉〈SC〉 − 〈SB〉〈SBSC〉 + 〈SB〉
2〈SC〉]. (8)

The following identities are derived by the local gauge transformations on the NL
under certain boundary conditions (free, periodic and fixed)5),6) :

[〈SBSC〉] = [〈SBSC〉
2]

[〈SB〉〈SC〉] = [〈SB〉〈SBSC〉] = [〈SB〉〈SC〉〈SBSC〉]

[〈SB〉
2〈SC〉] = [〈SB〉

2〈SC〉
2].

(9)

Therefore we obtain the second inequality (7) from Eq. (8).
The inequality (4) implies that an arbitrary n-point correlation function, which

includes the order parameter, monotonically increases with parameter for any sub-
set. Since a two-point correlation function is also an increasing function of x, the
correlation length becomes larger as x increases.

It is also possible to prove the monotonicity and concavity of the pressure func-
tion P = [log Z] , which corresponds to the free energy. From Eqs. (3) and (4), we
obtains that the first and second derivatives of the pressure are positive as

dP

dxB

= xB [〈SB〉] + xB ≥ 0, (10)

d2P

dxBdxC

=











xB

d

dxC

[〈SB〉] ≥ 0 (B 6= C)

[〈SB〉] + 1 + xB

d

dxB

[〈SB〉] ≥ 0 (B = C).
(11)

§3. Discussions

Let us consider the case that a parameter xA is equal to zero. The interaction
JA of the subset A is not zero because it distributes with variance σA. However,
since the local temperature TA = β−1

A
is infinity, the interaction of the subset A is

negligible. Thus, xA = 0 implies that there is no interaction among the subset A.
From the second inequality (4), addition of an interaction for any subset increases
all correlation functions.

From this result, we can prove that the correlation functions have a thermody-
namic limit under free boundary conditions. Let us consider two finite sets Ω ′ ⊂ Ω.
Since the subset Ω is obtained from Ω ′ by adding interactions, the previous argument
yields

[〈SB〉]
(free)
Ω′ ≤ [〈SB〉]

(free)
Ω

. (12)

Thus, correlation functions are increasing functions with respect to the system size.
Since we consider Ising spins Si = ±1, correlation functions are bounded by unity.
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Therefore each of them has its unique limit as the volume of Ω tends to infinity.
Similarly, we can prove the existence of the thermodynamic limit for correlation
functions under another boundary condition that all the boundary spins are fixed
up. In addition, Eq. (10) can be applied to prove that the thermodynamic limit of
the pressure (free energy) exists.

The location of the multicritical points, which are believed at the boundary
between paramagnetic and ferromagnetic phases on the NL,5) for the various lattices
in the ±J Ising models has been discussed by Kitatani.8) The same result for the
Gaussian spin glass is obtained from the second inequality (4). For instance, we
consider the simple cubic (SC) and square (SQ) lattices. Since the simple cubic
lattice is obtained from the square lattice by adding interactions, the magnetization
of the simple cubic lattice is greater than that of the square lattice. Therefore, we
obtain

T SC
c ≥ T SQ

c . (13)

Another example is the simple lattice with only nearest neighbor interactions and
the simple lattice with nearest and next-nearest neighbor interactions. In this case,
the multicritical temperature of the former lattice is less than that of the latter one.

§4. Summary

Inequalities similar to the Griffiths inequalities have been proved for the Gaussian
spin glass. These inequalities are valid for any lattices and any range of interactions.
However, we proved them using the properties of the Gaussian distribution and the
exact result from the gauge theory under the NL conditions. Therefore, it is a future
problem to extend similar inequalities to other models, and away from the NL.
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