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Stability of the Spin Glass Phase under Perturbations
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We introduce and prove a new stability property of the quenched equilibrium state for the spin
glass phase and show that it implies the whole set of Ghirlanda-Guerra identities. The new stability
deals with perturbations which reproduces both thermal and disorder fluctuations, thus generalizing
the standard stochastic stability of disordered systems.

The Gibbs-Boltzmann state ωβ,N of a statistical mechanics system of N interacting spins σ = (σ1, ..., σN ), with
Hamiltonian H(σ) at inverse temperature β, admits the classical probabilistic interpretation as the deformation of
the uniform measure over spin configurations:

ωβ,N(f) =
µN (fe−βH)

µN (e−βH)
, (1)

with

µN (f) =
1

2N

∑

σ

f(σ) , (2)

and f a smooth bounded function of the spin configurations. Such a deformed state ωβ,N fulfills a remarkable stability
property with respect to further small deformations (perturbations): considering the Hamiltonian per particle

h(σ) =
H(σ)

N
(3)

and the perturbation with parameter λ defined as

ω
(λ)
β,N(f) =

ωβ,N(fe−λh)

ωβ,N(e−λh)
(4)

the Gibbs-Boltzmann measure is stable, i.e. λ-independent, in the thermodynamic limit N → ∞. In fact one can
observe that the perturbation amounts to a small temperature shift:

ω
(λ)
β,N(f) =

µN (fe−βH−λh)

µN (e−βH−λh)
= ωβ+ λ

N ,N (f) (5)

which implies that it has a vanishing effect in the large volume limit a part on isolated singularities, possibly related
to phase transitions. More precisely one can prove the stability as follows: since for all β intervals and all values of λ
one has, thanks to (5),

∫ β1

β0

dω
(λ)
β,N(f)

dλ
dβ =

1

N

∫ β1

β0

dω
(λ)
β,N(f)

dβ
dβ =

ω
(λ)
β1,N

(f)− ω
(λ)
β0,N

(f)

N
(6)

one obtains:

lim
N→∞

∫ β1

β0

dω
(λ)
β,N(f)

dλ
dβ = 0 ∀ λ, ∀ [β0, β1] . (7)

As a consequence, computing the derivative at λ = 0, one has

lim
N→∞

∫ β1

β0

[ωβ,N(fh)− ωβ,N(f)ωβ,N(h)] dβ = 0 . (8)
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For the special case f = h the previous formula implies that the Hamiltonian per particle converges to a constant for
large volumes with respect to the Gibbs measure, at least in β−integral average. Higher order derivatives with respect

to λ of ω
(λ)
β,N(f) (i.e. cumulants of h) are then enforced to vanish since cumulants are homogeneous polynomials of

the constant values of h with coefficients whose sum is zero.
Formula (8) has interesting consequences. It says, for instance, that the order parameter (i.e. the magnetization)

for a mean field ferromagnetic Hamiltonian has a trivial distribution. In the Curie-Weiss model at zero magnetic field,
for which the Hamiltonian per particle is the square magnetization, the previous identity implies that (by choosing
f = h),

ωβ(σ1σ2σ3σ4) = ωβ(σ1σ2)
2 (9)

in β−average [CGI]. One can indeed prove that (9) holds for all β using the methods developed in [EN]. The choice
f = hn, or equivalently higher order derivatives in λ of the perturbed state, gives the well known factorization property
of the 2n-point function as an n-th power of the 2-point function.
In a disordered system defined by a centered Gaussian Hamiltonian H(σ) of covariance (generalized overlap)

Av (H(σ)H(τ)) = NcN (σ, τ) (10)

the equilibrium measure is the quenched average of the random Boltzmann-Gibbs state ωβ,N : for a bounded random
function f it is defined by

〈f〉β,N = Av (ωβ,N(f)) . (11)

The thermodynamic properties of the system are expressed in terms of a set of random variables {ci,j} related
to the quenched expectation of the covariance entries. Namely, considering the Boltzmann-Gibbs product state
Ωβ,N = ωβ,N × ωβ,N , one defines the random variables ci,j and their joint distribution by:

Eβ,N (ci,j) = Av
(

Ωβ,N(c(σ(i), σ(j)))
)

. (12)

In [AC] it was identified a stochastic stability property of the quenched state, i.e. an invariance with respect to the
stochastic perturbation:

〈f〉(λ)β,N = Av

(

ωβ,N(fe
√
λK)

ωβ,N(e
√
λK)

)

, (13)

where K(σ) is a random field (independent from the Hamiltonian) whose covariance is cN (σ, τ), and it was shown
that the stochastic perturbation is equivalent to a temperature shift

〈f〉(λ)β,N = 〈f〉√
β2+ λ

N ,N
, (14)

from which stability follows [CG1]

lim
N→∞

∫ β1

β0

d〈f〉(λ)β,N

dλ
dβ = 0 ∀ λ, ∀ [β0, β1] . (15)

By consequence at λ = 0 one obtains:

lim
N→∞

∫ β1

β0

Av (ωβ,N(fh)− ωβ,N(f)ωβ,N(h)) dβ = 0 . (16)

The previous formula implies (taking f = h and integrating by parts)

lim
N→∞

∫ β1

β0

Eβ,N (c21,2 − 4c1,2c2,3 + 3c1,2c3,4) dβ = 0 . (17)

We stress the fact that the previous identity holds for a general Gaussian Hamiltonian, both mean field or short range,
in terms of its own covariance. For f = hn one can see [CG1] that the identities that can be derived from (16) are, like
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the (17), zero average polynomials in the ci,j with respect to the quenched measure. See also [Ba] for an alternative
derivation.
In [Gu] it was introduced a method, based on bounds for the energy fluctuations, which leads to the set of Ghirlanda-

Guerra identities [GG, CG2, Bo, T1]; the lowest order are for instance:

Eβ,N (c1,2c2,3) =
1

2
Eβ,N (c21,2) +

1

2
Eβ,N (c1,2)

2 (18)

Eβ,N (1,2c3,4) =
1

3
Eβ,N (c21,2) +

2

3
Eβ,N (c1,2)

2 . (19)

Unlike the set of identities that can be derived from stochastic stability, these also include non-linear terms of the
overlap expectations. In recent times it was shown that an invariance under reshuffling introduced in the framework
of competing particle systems [ArAi] implies the whole set of Ghirlanda-Guerra identities [A].
To this purpose we introduce and prove here a novel stability property for the spin glass quenched state. We show

that from such a stability property the whole set of Ghirlanda Guerra relations can be derived.
We define the perturbation of quenched state as

〈〈f〉〉(λ)β,N =
Av
(

ωβ,N(fe−λh)
)

Av (ωβ,N(e−λh))
. (20)

We observe that this new perturbation is the analog, for the quenched measure of a random Hamiltonian, of the
standard perturbation (4) introduced for deterministic systems with respect to the Boltzmann-Gibbs measure. On
the other side we notice that while the stochastic stability perturbation (13), as much as the standard perturbation
for deterministic system, amounts to a small temperature shift, the newly introduced perturbation cannot be reduced
to just a small temperature change but it also involves a small change in the disorder. More precisely the explicit
expression of (20) reads

〈〈f〉〉(λ)β,N =
Av
(∑

σ f(σ)e−(β+λ/N)H(σ)

∑
σ e−βH(σ)

)

Av
(∑

σ e−(β+λ/N)H(σ)
∑

σ e−βH(σ)

) (21)

where it clearly appears that only the numerator of the random Boltzmann-Gibbs state is affected by the change.
Our main result is summarized by the following

Proposition 0.1 With the definition given above, the quenched state of a Gaussian spin glass is stable under the
deformation (20), i.e.

lim
N→∞

∫ β1

β0

d〈〈f〉〉(λ)β,N

dλ

∣

∣

∣

∣

∣

λ=0

dβ = 0 . (22)

Moreover the property (22) implies the whole set of the Ghirlanda-Guerra identities: for a bounded f function of the
generalized overlaps {ci,j} (with i, j ∈ {1, ..., n}):

Eβ,N(f c1,n+1) =
1

n
Eβ,N(f)Eβ,N (c1,2) +

n
∑

j=2

Eβ,N (fc1,j) (23)

Proof: A simple calculation shows that

d〈〈f〉〉(λ)β,N

dλ

∣

∣

∣

∣

∣

λ=0

= < fh >β,N − < f >β,N< h >β,N . (24)

The right hand side can be decomposed into two terms which can be identified as the thermal and the disorder
correlations:

d〈〈f〉〉(λ)β,N

dλ

∣

∣

∣

∣

∣

λ=0

= Av (ωβ,N(fh)− ωβ,N(f)ωβ,N(h)) +

+Av (ωβ,N(f)ωβ,N(h))−Av (ωβ,N(f))Av (ωβ,N(h)) . (25)

In [CG2] the two previous terms were proved to converge to zero in β average and using integration Gaussian by parts
it was shown how they imply formula (23). �



4

Remark 1 It is interesting to notice that the new stability property introduced in this paper as well as those introduced
in the past admit a simple formulation in terms of cumulant generating function. Defining that function for the
quenched state as

ψβ,N(λ) = lnAv

(

Zβ+λ/N

Zβ

)

= ln〈eλh〉β,N (26)

the (22) is equivalent to the property of asymptotic flatness at the origin

lim
N→∞

∫ β1

β0

d2ψβ,N(λ)

dλ2

∣

∣

∣

∣

λ=0

dβ = 0 . (27)

In particular defining the generating function of thermal fluctuations as

ψ̄β,N(λ) = Av
(

lnωβ,N(eλh)
)

(28)

and the generating function of disorder fluctuations as

ψ̃β,N (λ) = lnAv
(

eλωβ,N (h)
)

(29)

one has

d2ψβ,N(λ)

dλ2
=

d2ψ̄β,N (λ)

dλ2
+
d2ψ̃β,N (λ)

dλ2
. (30)

The results shown in this paper provides a straightforward method to obtain the Ghirlanda-Guerra identities of
the spin glass phase by a simple computation of a derivative and a Gaussian integration by parts. This provides a
new interpretation, using a stability argument, of the vanishing fluctuation property from which they were originally
derived [GG].
The relevance of the stability properties and of the Ghirlanda-Guerra identities has been shown in the work [ArAi]

and [Pan] where, under the hypothesis of discreteness of the overlap distribution it was proved, respectively, that
competing particle systems satisfying invariance under reshuffling or spin systems satisfying Ghirlanda-Guerra iden-
tities do fulfill the hierarchical structure (ultrametricity) originally introduced in the Parisi work for the mean field
spin glass [MPV].
The present work provides a further bridge between those two approaches, whose mutual relation has still to be fully

clarified [T2], suggesting that the invariance under reshuffling is well represented by our newly introduced stability
under perturbation.
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