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In this paper we solve the inverse problem for the cubic mean-field Ising model. Starting from
configuration data generated according to the distribution of the model we reconstruct the free
parameters of the system. We test the robustness of this inversion procedure both in the region of
uniqueness of the solutions and in the region where multiple thermodynamics phases are present.

I. INTRODUCTION

In this paper we study the inverse problem for a class
of mean-field models in statistical mechanics with cubic
interaction. The direct problem of statistical mechan-
ics is to compute macroscopic variables (i.e. the average
values of magnetizations and correlations) when the cou-
plings and fields are known. In the inverse problem the
reverse is done: the couplings and fields are computed
using the (statistical) datum of the macroscopic quanti-
ties. This technique is known sometimes as Boltzmann
machine learning, a special case of learning in statistical
inference theory [1, 2] when the probability measure is
the Boltzmann-Gibbs one.
In recent years, studies in deep learning for artificial

intelligence have been approached in terms of inverse
problem in statistical mechanics [3–5]. The techniques
to study that case are of very different nature than those
we treat in this work because the parameters to be iden-
tified are of very high dimension and the involved models
concern the theory of disordered systems [6]. Although
in this study we are only interested in computing three
parameters, we believe that a robust understanding of
the statistical mechanics low-dimensional inverse prob-
lem may shed some light in the general Boltzmann ma-
chine learning problem due to the presence of phase tran-
sitions for very large systems.
A further reason of interest for the problem we deal

with is that, in recent times, this method has attracted
some attention due to it’s ability to advance a useful novel
approach for several applications like neural networks,
protein structures, computer vision [7–11], and the socio-
economic sciences [12–21].
The system we consider here is made of Ising spins and,

beside an homogeneous magnetic field and a constant two
body interaction, it contains a constant three body term.
One of the peculiarities of this model, which turns out
to have a cubic Hamiltonian function, is that it lacks the
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standard convexity property of its quadratic version and
its direct and inverse problems are therefore outside the
general methods of convex optimization problems. Tak-
ing into account the three-body term, we move from a
generic graph (network) structure where we consider only
dyadic or pairwise interactions into hypergraphs where
faces are also considered [22–24]. This allows for the con-
sideration of a large spectrum of applications that are
closely related to real-world phenomena, such as team
collaborations rather than collaborations between pairs
(see [25]). According to [23, 25] the presence of higher-
order interactions, such as three or more body interac-
tions, may have significant impact also on the dynamics
of interacting networked systems and potentially lead to
abrupt transitions between states. Abrupt transitions are
a prevalent phenomenon in nature that can be found in
everything from social networks to biology [25, 26].

The model we consider is invariant under the permu-
tation group but its extension to the case in which that
symmetry is not present has been already considered in
[27] with the same perspectives of the multi-populated
quadratic models [15, 28]. An intriguing feature of such
model is that it shows a discontinuous first-order phase

transition which is not present in the case of the standard
quadratic mean-field model.

To solve the inverse problem we first compute, exploit-
ing the exact solution of the model [27, 29], the analyti-
cal formulas for the system’s macroscopic variables in the
thermodynamic limit where they provide explicit expres-
sions for the interaction couplings (cubic and quadratic)
and the magnetic field. It is worth noticing that since
the number of necessary relations to compute the free
parameters is three we need to make observations up to
the third moment of the probability distribution. To re-
late the analytical inversion with the (statistical) obser-
vations we use the maximum likelihood criteria and we
advance a link between estimated and theoretical values.
Finally, we test how well the model’s free parameters
are reconstructed using the inversion formulas and how
their robustness is affected by both the system size and
the number of independent samples simulated from the
model’s equilibrium configuration.

The paper is organised as follows. The cubic mean-
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field model is introduced in Section II where it has been
shown how to compute and test the robustness of the an-
alytical inverse formulas using the maximum likelihood
estimation procedure. Section III is devoted to the nu-
merical testing of the robustness of the inversion formu-
las for unique stable solutions. In Section IV the case of
metastable or multiple solutions for finite-size systems is
discussed. The final section, Section V, provides a gen-
eral conclusion and the model’s future prospects.

II. INVERSE PROBLEM FOR THE CUBIC

MEAN-FIELD ISING MODEL

Let us consider the Hamiltonian of an Ising model onN
spin configurations, ΩN = {−1,+1}N , with cubic inter-
action and spin moments σi = ±1, i = 1, . . . , N , defined
as

HN (σ) = −

N∑

i,j,k=1

Ki,j,kσiσjσk−

N∑

i,j=1

Ji,jσiσj −

N∑

i=1

hiσi.

(1)
Assuming mean-field interaction, we set Ki,j,k =
K

3N2 , Ji,j = J
2N and hi = h where K, J are the cubic

and binary spin coupling and h is the external magnetic
field. Hence, the Hamiltonian per particle is

HN (σ) = −N

(
K

3
m3

N (σ) +
J

2
m2

N (σ) + hmN(σ)

)
, (2)

where

mN (σ) =
1

N

N∑

i=1

σi (3)

is the magnetisation per particle of the configuration σ.
The Boltzmann-Gibbs state on a configuration σ is given
by

PN,K,J,h(σ) =
e−HN (σ)

ZN

, (4)

where ZN =
∑

σ∈ΩN
e−HN (σ) is the partition function of

the system. As a result, we obtain the pressure function
per particle associated with the thermodynamic system
as:

pN =
1

N
logZN . (5)

For a given observable f(σ) the Boltzmann-Gibbs expec-
tation ωN (f(σ)) is defined as follows:

ωN (f(σ)) =

∑
σ∈ΩN

f(σ)e−HN (σ)

ZN

. (6)

Furthermore, the pressure function (5) can be used to
generate the moments of the system with respect to the

Boltzmann-Gibbs measure. Hence, one obtains the fol-
lowing finite-size quantities:

∂pN

∂h
= ωN (mN (σ)) (7)

∂2pN

∂h2
= χN = N [ωN(m2

N (σ)) − ω2
N (mN (σ))] (8)

and

∂3pN

∂h3
= ψN = N2[ωN (m3

N )− 3ωN(mN )ωN (m2
N )

+ 2ω3
N(mN )]

(9)

where ωN (mN (σ)), χN and ψN are the finite-size aver-
age magnetisation, susceptibility and third moment re-
spectively. The considered model can be solved exactly
[29] using the large deviations technique, which was pro-
posed in [30]. The thermodynamic limit of (5) admits
the following variational representation [29]:

p(K, J, h) = lim
N→∞

pN = sup
m∈[−1,1]

φ(m), (10)

where φ(m) = U(m)− I(m) with

U(m) =
K

3
m3 +

J

2
m2 + hm (11)

is the energy contribution and

I(m) =
1−m

2
log

(
1−m

2

)
+

1 +m

2
log

(
1 +m

2

)

(12)
is the entropy contribution. The stationarity condition,
that acts as a consistency equation, gives

m = tanh(Km2 + Jm+ h), (13)

and must be satisfied by the solutions of the variational
principle (10). In order to solve the inverse problem an-
alytically for a given configuration of spin particles, we
first find the relation between the model parameters and
the variational principle (10). Observe that,

∂p

∂h
= m, i.e., m = tanh (Km2 + Jm+ h), (14)

∂2p

∂h2
= χ =

(1−m2)

1− (1−m2)(J + 2Km)
and (15)

∂3p

∂h3
= ψ =

2χ2

(
(K(1− 3m2)− Jm)χ−m

)

(1−m2)
. (16)



3

The peculiar feature of the cubic mean-field model is the
presence of three distinct stable phases in the magnetic
order parameter m. Unlike the usual quadratic model,
here an unpolarised stable phase close to m = 0 appears
beyond the usual two phases of positive and negative
magnetization. From Figure 1 one can observe a triple
point (K, J, h) = (0, 1, 0) where all the three phases meet
[27].

FIG. 1. h = 0. Phase diagram of the stable solutions of
(13) showing the coexistence curves. For J < 1, three dis-
tinct phases are observed: the negatively polarised phase (in
blue), the zero or unpolarized phase (in gray), and the pos-
itively polarised phase (in red). As a result, in that region,
a progressive increase in K from negative to positive values
encounters two consecutive jumps.

Let us consider the model in its simplest form with
zero quadratic coupling and magnetic field i.e. when
J = h = 0 and only the cubic coupling in (2) is present.
It is worth mentioning that when J = h = 0 and K
is progressively increased from negative to positive, one
encounters two transitions: from a negatively polarized
phase to an unpolarized one and from an unpolarized
phase to a positively polarized one (see Fig. 1; and Fig
1. of [27]). In Figure 2 we illustrate an example of crit-
ical behaviour for our model with the presence of phase
transitions occurring at J = h = 0 when K is varied.
The quantities,m,χ and ψ are the infinite volume limit

average magnetisation, susceptibility and third moment
corresponding to the finite-size quantities ωN , χN and ψN

respectively in the thermodynamic limit. The system of
equations (14), (15) and (16) has three unknowns K, J
and h which can be solved. Having knowledge of m,χ
and ψ one can compute the parameters (i.e. K, J and h)
of the model through the following equations:

K =
m

(1−m2)2
+

ψ

2χ3
, (17)
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(a) Magnetization
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(c) Third moment

FIG. 2. J = 0, h = 0. First three moments of the model as a
function of K: In (a) the total magnetisation shows indication
of phase transitions occurring at a critical point around ±2.
At the critical point the susceptibility as seen in (b) and the
third moment in (c) has a jump to 1 and a jump to around
±4 respectively.

J =
1

1−m2
−

1

χ
− 2Km (18)

and the external magnetic field is then obtained from
(13) as

h = tanh−1(m)−Km2 − Jm. (19)
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Let us observe that, in the region of the parameter space
where the consistency equation (13) has a unique stable
solution the following holds:

lim
N→∞

ωN (mN (σ)) = m. (20)

In analogy to the behaviour of the quadratic case [31],
the Boltzmann-Gibbs measure (4) may be multimodal for
some (K, J, h) in the parameter space for both the finite-
size system and in the thermodynamic limit. In this case
equation (20) fails to hold. We will discuss later how to
handle such a case, following the work done in [31, 32].
The procedure discussed so far deals with the analytical
inverse problem. The remainder of this section will be
devoted to the statistical procedure required to compute
the estimators of K, J and h.

We start by generating M independent configura-
tions σ(1), ..., σ(M) distributed according to (4) from the
model’s equilibrium configuration. Notice that the ana-
lytical inverse formulas of K, J and h in equations (17),
(18) and (19) respectively, are valid on the infinite vol-
ume limit of the observables, i.e. m, χ and ψ. Hence,
to compute the estimates of the model parameters K, J
and h, the maximum likelihood estimation procedure will
be adopted having knowledge of real data. This proce-
dure ensures that the estimated model parameters max-
imize the probability of getting the given sample of spin
configurations from the distribution. Furthermore, the
analytical inverse procedure requires statistical approxi-
mation of the infinite volume limit quantities (i.e. m,χ
and ψ) which are substituted by their finite-size forms
ωN , χN and ψN . The maximum likelihood function for
the measure (4) is defined as

L(K, J, h) = PN,K,J,h{σ
(1), ..., σ(M)}

=

M∏

l=1

PN,K,J,h{σ
(l)}

=

M∏

l=1

e−HN (σ(l))

∑
σ∈ΩN

e−HN (σ)
.

This procedure will enable defining the finite-size mag-
netisation ωN (mN (σ)) in terms of the empirical average
(i.e. mN ) for each of the M sampled spin configurations.
Further, we have that

lnL(K, J, h) =

M∑

l=1

[
(−HN (σ(l)))− ln

∑

σ∈ΩN

e−HN (σ)

]
.

(21)
The derivatives with respect to the parameters K, J and

h are given below as:

∂

∂h
lnL(K, J, h) = N

M∑

l=1

(
mN (σ(l))− ω(mN (σ))

)

∂

∂J
lnL(K, J, h) =

N

2

M∑

l=1

(
m2

N (σ(l))− ω(m2
N (σ))

)

∂

∂K
lnL(K, J, h) =

N

3

M∑

l=1

(
m3

N (σ(l))− ω(m3
N (σ))

)

and they vanish when

ωN (mN (σ)) =
1

M

M∑

l=1

mN (σ(l))

ωN (m2
N (σ)) =

1

M

M∑

l=1

m2
N (σ(l))

ωN (m3
N (σ)) =

1

M

M∑

l=1

m3
N (σ(l)).

(22)

The function L(K, J, h) is at its maximum when the first,
second and third moments of the magnetization in equa-
tion (22) are obtained. It is worth noticing that

mN(σ(l)) =
1

N

N∑

i=1

σ
(l)
i for l = 1, . . . ,M (23)

are the total magnetizations of theM sample spin config-
urations. Now, the inverse problem can be solved when
we make use of (17), (18), (19) and (22). The maximum
likelihood procedure computes the estimators of the infi-
nite volume quantities m, χ and ψ, from a sample data
set through the following:

m̂ =
1

M

M∑

l=1

mN (σ(l)), (24)

χ̂ = N

(
1

M

M∑

l=1

m2
N (σ(l))− m̂2

)
(25)

and

ψ̂ = N2

(
1

M

M∑

l=1

m3
N (σ(l))− 3m̂

1

M

M∑

l=1

m2
N (σ(l)) + 2m̂3

)
.

(26)
We now define the estimators of the three parameters

of the cubic mean-field model using the statistical es-
timators for the magnetization, susceptibility and third
moment (24), (25) and (26) in the infinite volume limit
relations among those quantities (17), (18) and (19)
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K̂ =
m̂

(1− m̂2)2
+

ψ̂

2χ̂3
, (27)

Ĵ =
1

1− m̂2
−

1

χ̂
− 2K̂m̂, (28)

and

ĥ = tanh−1(m̂)− K̂m̂2 − Ĵm̂. (29)

At the critical point (K, J, h) = (0, 1, 0) where all the
three phases meet the magnetization is zero and the infi-
nite volume magnetic susceptibility χ and the third mo-
ment ψ defined by equations (15) and (16) respectively
diverge. Hence, the inversion formulas (17), (18) and (19)
does not hold as it will be illustrated at the end of the
next section. We do not include the inversion formulas
at the critical point in this work but the problem will be
considered in future work.

III. TEST FOR THE CASE OF UNIQUE

SOLUTION

In this section we are going to examine how the in-
version equations perform for different and increasing
choices of N and M , respectively the number of parti-
cles and sampled configurations. The specific case we
consider is the inversion problem for those values of the
triple (K, J, h) where there is a unique stable solution of
(13). In this case, the Boltzmann-Gibbs distribution of
the total magnetisation has a unique peak always cen-
tered around the analytic solution m: some examples are
shown in Figure 3 for fixed N . The accuracy of the esti-
mation increases as N and M increase.

-1 -0.5 0 0.5 1
0
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0.01

0.015

0.02
K= 0.5 J= 0.3 h= 0.2

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015
K= 0.8 J= 0.4 h= 0.1

-1 -0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03
K= -1.2 J= 0.1 h= -0.3

-1 -0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06
K= 1.05 J= 0.8 h= 0.01

FIG. 3. Boltzmann Gibbs distribution of the total magneti-
sation for N = 1000 and different set of triples (K,J, h).

The parametersK, J and h are obtained from the com-
putation of the finite-size quantities mN , χN and ψN us-
ing configurations extracted from the Boltzmann-Gibbs
distribution of the data. Estimation of mN , χN and ψN

for fixed triples of the parameters (K, J, h) and varying
N ∈ [500, 10000] are shown in Figure 4. In the same
figure, the thermodynamic limits of those quantities are
also shown.
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0.27
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5
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140
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180

200

0 5000 10000
0.9876

0.9877

0.9878

0.9879
K= 1.8 J= 0.6 h= 0.2

0 5000 10000
0.0268

0.027

0.0272

0.0274

0 5000 10000

-0.067

-0.066

-0.065

0 5000 10000

-0.9598

-0.9597

-0.9596

K= -0.2 J= 1 h= -0.8

0 5000 10000

0.0884

0.0886

0.0888

0.089

0 5000 10000
0.213

0.214

0.215

FIG. 4. Finite-size average magnetization mN , susceptibility
χN and third moment ψN as functions of N for three different
set of triples (K,J, h). Blue crosses represent the values ofmN

(upper panels), χN (middle panels) and ψN (lower panels)
for varying N . As N increases mN , χN and ψN approach
their true values in the thermodynamic limit given as the red
horizontal lines for the chosen values of K,J and h.

From Figure 4 we can observe the monotonic behaviour
of mN , χN and ψN as N increases. In Figure 5 we study
the relationship between the absolute difference of the
finite-size quantities and their corresponding thermody-
namic values as a function of the system size N . We find
evidence that the finite-size quantities mN , χN and ψN

converge to their true values with a power law behaviour
as N increases. The obtained results indicate that using
N = 10000 one can estimate the infinite volume magneti-
sation, susceptibility and the third moment with vanish-
ing error. We will proceed to use N = 10000 as the
size for each of the M independent spin configurations
σ(1), ..., σ(M). Further numerical tests will be performed
to determine a suitable number of sample configurations
M that can be used for reconstructing the model param-
eters using the inversion formulas.

To obtain the standard deviations associated to the
reconstruction of the estimators, we simulate from the
model’s equilibrium configuration 50 different instances
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FIG. 5. K = 1.8, J = 1.3, h = 0.2. Absolute error of the
finite size quantities mN , χN and ΨN as functions of N to-
gether with the best power law fits. In the upper panel,
|mN −m| is shown as a function of N together with the best
fit aNb, where a = 0.28 ∈ (0.06, 0.50) and b = −1.37 ∈
(−1.49,−1.25) with a goodness of fit R2 = 0.9829. The mid-
dle panel displays |χN − χ| as a function of N together with
its corresponding best fit cNd, with c = 0.62 ∈ (0.14, 1.09),
d = −1.37 ∈ (−1.49,−1.25) and R2 = 0.9830 as good-
ness of fit. The lower panel represents |ψN − ψ| as a func-
tion of N together with its corresponding best fit gNf , with
g = 1.47 ∈ (0.32, 2.62), f = −1.37 ∈ (−1.49,−1.25) and a
goodness of fit R2 = 0.9826.

of theM−iid sample configurations, i.e. (σ(1), . . . , σ(M)),
apply the maximum likelihood estimation procedure to
each of them separately, solve the inverse problem using
(27), (28) and (29) and then average the inferred val-
ues over the 50 different M -samples. The mean value

of the estimators m̂, χ̂, ψ̂, and (K̂, Ĵ , ĥ) over the 50 dif-
ferent M -samples of spin configurations are denoted by

m̂, χ̂, ψ̂, and (K̂, Ĵ , ĥ) respectively. The results are shown
in Figures 6 and 7.

Figures 6 and 7 illustrate that at M = 20000 we get
smaller error bounds for the reconstruction as compared
to lesser values of M .
In the sequel, we study the behaviour of the recon-

structed parameter for fixed values of J and h and vary-
ingK (Figures 8 and 9) and also for fixed values ofK and
h and varying J (Figures 10 and 11). The simulations are
performed using M = 20000, N = 10000 and error bars
are standard deviations on 50 differentM -samples of the
same system. We find all the reconstructed parameter
values in good agreement with the exact ones. We can
observe that as the intensity of the cubic and quadratic
coupling increases the error bars associated to the recon-
structed parameters grow, as we can expect since in that

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

0.1585

0.159

0.1595
K= 0.5 J= 0.3 h= 0.1
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104

-20

0

20

FIG. 6. K = 0.5, J = 0.3, h = 0.1. Reconstructed average

magnetization m̂, susceptibility χ̂ and third moment ψ̂ (blue
crosses) as a function of M with standard deviation on 50
different M -sample and N = 10000. The continuous red line
corresponds to m, χ and ψ in the thermodynamic limit.
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104
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2
K= 0.5 J= 0.3 h= 0.1
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104
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104
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FIG. 7. K = 0.5, J = 0.3, h = 0.1. K̂, Ĵ and ĥ as a function of

M for N = 10000. The blue crosses are the estimation of K̂, Ĵ

and ĥ with standard deviations on 50 different M -samples of
configurations of the same system. The horizontal red line in
each panel corresponds to the exact values of K,J and h.

region of the parameter space the system is more disor-
dered due to the presence of multiple local stable states
and the fluctuations are greater.

Furthermore, Figure 12 show the reconstructed param-
eters as a function of N at the critical point (K = 0, J =
1, h = 0). It can be noticed that the reconstruction at
the critical point for K and h agrees with their exact val-
ues with only a small percentage of error and that of J
is underestimated.
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FIG. 8. K̂ as a function of K for N = 10000 and M = 20000.
J = 0.3, h = 0.1 in left panel and J = 0.4, h = −0.3 in

the right panel. The estimations of K̂ are given as the blue
crosses in both panels with standard deviations on 50 different
M -samples of configurations of the same system. The red

continuous line represents K̂ = K.
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FIG. 9. Ĵ and ĥ as a function of K for N = 10000 and
M = 20000. J = 0.3, h = 0.1 in the left panels and J =

0.4, h = −0.3 in the right panels. The estimates of Ĵ and ĥ

are given as the blue crosses in all the panels with standard
deviations on 50 different M -samples of configurations of the
same system. The red continuous lines represent the exact
values of J and h.
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FIG. 10. Ĵ as a function of J for N = 10000 and M = 20000.
K = 0.05, h = 0 in the left panel and K = 0.05, h = −0.02 in
the right panel. The blue crosses are the reconstructed values
of J in both panels with standard deviations on 50 different
M -samples of configurations of the same system. The red

continuous line represents the exact value Ĵ = J .
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FIG. 11. K̂ and ĥ as a function of J for N = 10000 and
M = 20000. K = 0.05, h = 0 in the left panels and K =

0.05, h = 0.02 in the right panels. The estimate of K̂ and ĥ

are given as the blue crosses in all the panels with standard
deviations on 50 different M -samples of configurations of the
same system. The red continuous lines represent the exact
values of K and h.

It worth observing that when K = h = 0 and J > 1
the consistency equation (13) has two stable solutions.
In this case, for the finite-size system and in the ther-
modynamic limit, the Boltzmann-Gibbs distribution of
the total magnetization presents two peaks each centered
around one of the stable solutions. In such a case the in-
verse problem procedure discussed in Section II cannot
be used for the reconstruction of the model parameters.
We refer readers to [28] where this case has been studied
using the spin flip approach due to symmetry of the solu-
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FIG. 12. K = 0, J = 1, h = 0. K̂, Ĵ and ĥ as a function of
N for M = 20000. The reconstructed estimates of K,J and
h are given as the blue crosses on statistical error bars of 50
different M−samples. The red continuous line is the exact
value of the parameters K,J and h in the respective panels.

tion in both finite-size and infinite volume systems for the
quadratic mean-field model. The clustering algorithm to
be outlined in the next section provides a more general
approach to handle the reconstruction of the model pa-
rameters when the phase space has multiple locally stable
solution.

IV. CLUSTERING ALGORITHM FOR

METASTABLE STATE SOLUTIONS

Here, we focus on cases where equation (13) has a
metastable solution. This corresponds to the case where
there are more than one locally stable solution of the
consistency equation (13). For this model, equation (13)
can have at most three solutions and φ has at most two
local maxima for fixed (K, J, h). The existence of the
metastable solution in the infinite volume limit is repre-
sented at finite N by the occurrence of an extra peak in
the distribution. Therefore, while in the thermodynamic
limit the Boltzmann-Gibbs distribution of the magneti-
sation is unimodal with the peak corresponding to the
stable solution, in the finite size case also the peak cor-
responding to the metastable one is present and the dis-
tribution is bimodal. Hence, in this case, the inversion
problem cannot be studied globally, as done in the pre-
vious section. Instead, the procedure has to be applied

locally, that is to each subset of configurations clustered
around the two local maxima. Given M spin configu-
rations, σ(1), ..., σ(M), we perform the reconstruction by
first partitioning theM configurations in clusters accord-
ing to their local densities around each local maximum.
More precisely, using the clustering algorithm discussed
in [32–36] we divide the M configurations into different
clusters using the mutual distances between their mag-
netizations of each configuration. Configurations form
a cluster if the magnetization distances are less than a
fixed threshold dc. The choice of the optimal threshold
is obviously crucial: a too small threshold will produce
too many clusters, while a too large one will give only one
cluster. Given dc, for each configuration l the algorithm
computes two quantities: the local density ρl, defined
as the number of magnetizations within the given dis-
tance dc to the magnetization of σ(l), and the minimum
distance δl between the magnetization of configuration l
and any other configuration with a higher density.
The algorithm is based on the assumptions that the

cluster centers are surrounded by points with a lower
density, and that the centers are at a relatively large dis-
tance from each other. For each configuration, plotting
the minimum distance δ as a function of the local den-
sity ρ provides a decision graph that gives the cluster
centers: the cluster centers are the outliers in the graph.
Finally, each remaining configuration is assigned to the
same cluster of its nearest neighbor of higher density. In
this study, we identify two clusters Ck, k = 1, 2, using the
optimal threshold dc = 0.001. Notice that it is not pos-
sible to observe three clusters in the inverse problem due
to the analytical properties of the consistency equation
(13).
Then, for each cluster Ck, k = 1, 2 we compute the

estimates of the finite-size quantities, m̂, χ̂ and ψ̂, and

the corresponding K̂, Ĵ , ĥ. More precisely, we can define
the estimators of the finite-size quantities with reference
to the clusters as follows:

m̂Ck
=

1

Mk

∑

l∈Ck

mN(σ(l)), (30)

χ̂Ck
= N

(
1

Mk

∑

l∈Ck

m2
N (σ(l))− m̂2

Ck

)
(31)

and

ψ̂Ck
= N2

(
1

Mk

∑

l∈Ck

m3
N (σ(l))− 3m̂Ck

1

Mk

∑

l∈Ck

m2
N (σ(l)) + 2m̂3

Ck

)
, (32)

where Mk is the size of the cluster Ck, k = 1, 2 such that
M1 +M2 =M . After obtaining the quantities above, we

now compute the estimated values, K̂Ck
, ĴCk

, ĥCk
, using

equations (27), (28) and (29) for each cluster and com-
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pute the final estimates of the parameters K, J and h as
the weighted averages:

K̂ =
1

M

2∑

k=1

MkK̂Ck
, (33)

Ĵ =
1

M

2∑

k=1

MkĴCk
(34)

and

ĥ =
1

M

2∑

k=1

MkĥCk
. (35)

Observe that if a point (K, J, h) in the parameter space
corresponds to a metastable solution (at finite volume)
and it is sufficiently distant from the coexistence curve,
we can expect a better reconstruction of the parameters
by applying equations (27), (28) and (29) to the con-
figurations in the largest cluster. However, if the point
(K, J, h) is close to the coexistence curve, a better recon-
struction can be expected using the density clustering
algorithm, i.e. by using (33), (34) and (35).
Figure 13 illustrates how the Boltzmann-Gibbs mea-

sure of the magnetization is changing with varying K, J
and h in each column starting from the left respectively.
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FIG. 13. Boltzmann-Gibbs distribution of the total magneti-
sation with metastable states for fixed K,J, h at N = 1000.
The peaks of the distribution are centered around the two
solutions of the consistency equation.

A. Test for metastable state solutions

The inverse problem is solved using the density clus-
tering algorithm as discussed and identifying a suitable

number of samples M for better reconstruction of the
model parameters. The test is performed with M =
20000 and standard deviations are computed over 50 dif-
ferent M -samples from the same distribution. As an
example, consider the reconstruction of the parameter
values (K, J, h) = (1.67, 0.01, 0.1) for M = 20000 and
N = 3000. The distribution of the magnetization at this
point is given as the blue dashed curve in Figure 14,
where the two peaks are centered around m1 = 0.1311
and m2 = 0.8973, the stable solution and the metastable
solution of the consistency equation (13), respectively.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015
K= 1.67 J= 0.01 h= 0.1

N=1000
N=3000
N=10000

FIG. 14. K = 1.67, J = 0.01, h = 0.1. Boltzmann-Gibbs
distribution of the total magnetization at fixed values of N .
The peaks of the distribution are centered around the two
solutions of the equation (13), with m1 = 0.1311 being the
stable solution and m2 = 0.8973 the metastable solution. We
can observe that the probability of the metastable solution
vanishes to 0 as N goes to infinity (black continuous curve).
The red dot-dashed line corresponds to the distribution for
N = 1000, blue dashed line corresponds to the distribution for
N = 3000 and the black continuous line for the distribution
with N = 10000.

As is evident from Figure 14, the cluster centered
around m1 (i.e. C1) has more configurations as com-
pared to the other cluster centered around m2 (i.e. C2).
We get the following reconstructed estimates for the pa-
rameter values by applying equations (27), (28) and (29)
to the setups in both clusters (i.e. C1 and C2) according
to formulas (33), (34) and (35):

(K̂, Ĵ , ĥ) = (1.76± 0.67,−0.11± 1.11, 0.15± 0.49).

Instead, we obtain the following reconstructed parameter
values by applying equations (27), (28) and (29) just to
the configurations in the more dense cluster C1:

(K̂, Ĵ, ĥ) = (1.69± 0.23, 0.01± 0.06, 0.10± 0.004).
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Note that, the reconstructed parameters using only the
configurations in the more dense cluster are in better
agreement with the exact ones when compared to the
reconstructed parameters on both clusters. This is an
indication that the point (K, J, h) = (1.67, 0.01, 0.1) is
sufficiently distant from the coexistence curve. Observe
that if two clusters have the same density, we do not
choose between them and the clustering algorithm pro-
vides an optimal reconstruction.
Now, we perform reconstruction of the parameters us-

ing the cluster with largest size for fixed values of the
model parameters and observe its performance for vary-
ing M in Figure 15. It can be observed that the re-
constructed parameters are in good agreement to their
corresponding exact values.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

0

2

4
K= 1.67 J= 0.01 h= 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

104

0.08

0.1

0.12

FIG. 15. K = 1.67, J = 0.01 and h = 0.1. K̂, Ĵ and ĥ as a
function of M using the largest cluster and N = 3000. The

reconstructed estimates, K̂, Ĵ and ĥ, are blue crosses on sta-
tistical error bars on 50 different M -samples of configurations
of the same system. The horizontal red lines in each panel
correspond to the exact values of K,J and h.

As a last remark, note that, given a point (K, J, h) in a
neighbourhood of the coexistence curve, one can observe
a metastable state when the number of particles N is
not large enough. In this case, the clustering algorithm
is useful to reconstruct the parameters, but it has a high
computational cost. This is easily overcome by using
large number of particles, which cause the metastable
state to vanish (see Figure 14) and the inversion formulas
in equations (27), (28), (29) become efficient.

V. CONCLUSION

In this work we consider a mean-field statistical me-
chanics model with three-body interaction displaying a
first order phase transition. We studied and solved the
inverse problem and tested the statistical robustness of
the inversion method. We numerically tested the inver-
sion method for cases where the consistency equation (13)
has a unique stable solution as well as more than one lo-
cally stable solution. For the case where the consistency
equation (13) has multiple locally stable solution, we used
the clustering algorithm to reconstruct the model param-
eters.

Robustness was tested for different values of the num-
ber of particles N and samples M and reached the pre-
cision of a few percent for M = 2 × 104. We plan to
investigate in the future two extensions of the inverse
problem: first to the critical point where some of the
observables, such as χ and ψ, diverge and to the multi-
populated version of the model that found applications
to the description of human-AI ecosystems [27].
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