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Winner selection by majority, in an election between two candidates, is the

only rule compatible with democratic principles. Instead, when the candidates

are three or more and the voters rank candidates in order of preference, there

are no univocal criteria for the selection of the winning (consensus) ranking

and the outcome is known to depend sensibly on the adopted rule. Building

upon XVIII century Condorcet theory, whose idea was to maximize total voter

satisfaction, we propose here the addition of a new basic principle (dimen-

sion) to guide the selection: satisfaction should be distributed among voters as

equally as possible. With this new criterion we identify an optimal set of rank-

ings. They range from the Condorcet solution to the one which is the most

egalitarian with respect to the voters. We show that highly egalitarian rank-

ings have the important property to be more stable with respect to fluctuations
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and that classical consensus rankings (Copeland, Tideman, Schulze) often turn

out to be non optimal. The new dimension we have introduced provides, when

used together with that of Condorcet, a clear classification of all the possi-

ble rankings. By increasing awareness in selecting a consensus ranking our

method may lead to social choices which are more egalitarian compared to

those achieved by presently available voting systems.

Introduction A voting process starts with individuals giving a formal indication of a choice

(ballot) or, more generally, a set of preferences between two or more candidates (or alterna-

tives)1. The process ends with an aggregation procedure (winner selection method) of these

indications, in order to produce the consensus ranking, that is the ranking on which voters

should agree more upon and which should be the output of the election. The complexity of the

selection process comes, in general, from the presence of competing interests and conflicting

opinions which make it impossible to satisfy all the preferences expressed by the voters. With

his seminal work on voting theory, Condorcet discovered (1) that the majority rule, applied to

pairwise preferences, may lead to invalid solutions. For instance in an election among three

candidates the preferences may sum up to prefer the first to the second, the second to the third

and the third to the first. Similarly, from the formal logic perspective, Arrow’s theorem (2)

states that a perfectly fair voting system can not exist. The lack of an ideal voting system in

case of more than two candidates implies that any winner selection procedure contains some

kind of arbitrariness and makes the studies on voting methods an interesting research problem.

Typical examples of voting processes are political elections (3). In that case the need of a

single winner, or a single winning ranking, has encouraged the use of very elementary selection

rules, easy to compute and to understand by voters and competitors at the expense of making

1For the sake of simplicity, we prefer not to discuss partial rankings, because the meaning of not ranking a
candidate may change a lot from application to application.
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sub-optimal choices. Voting theory include also cases beyond political matters. Survey rankings

for instance, typically made for commercial purposes, like hotel listings, movie rankings, best

product on the market etc, are selected with totally different criteria. The choice of the ten best

smartphones, say, is not made by maximizing the voters total satisfaction, but rather to ensure

that each customer finds, among those ten, a satisfactory model.

A similar problem is very much studied in computer science under the name of Rank Ag-

gregation: a typical example is the merging of webpage rankings produced by different search

engines or obtained according to different criteria (4). The main difference from the examples

above is that here the number of voters (engines/criteria) is small, while the number of candi-

dates (webpages) is large. This is why in that field of research the focus is more on the algorith-

mic challenge of computing the consensus ranking efficiently. Here we are more interested in

presenting the new criterion for better selecting the consensus ranking; thus we concentrate on

small number of candidates, so that all possible rankings (with ties) can be easily computed.

It is therefore clear that the problem of finding a good consensus ranking is an interdisci-

plinary topic of research: it is inspired and guided by studies in sociology, marketing, economy

and political sciences. The disciplines technically involved in the solutions are statistics, math-

ematics and computer science.

Definition of the problem Each of n voters expresses a preference about m candidates by

sorting them in a ranked list, possibly with ties, resulting in n ballots. Valid ranked lists for

m = 4 candidates are for instance B>A>D>C, D>A=C>B and C>A=B=D. We call

rv the ballot of voter v. Each voter wishes the consensus ranking to be as close as possible

to his ballot and, following Condorcet (1), a good winner selection method should work by

maximizing the total sum of those wishes, i.e. minimizing the sum of the distances between

the consensus ranking and the ballots. Therefore the search for a consensus ranking needs to
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be based on a notion of distance between the rankings. There are several definitions of distance

between rankings and many studies on the relations among them (5). Among these, the Kemeny

distance dKem (6) is widely used due to its robust properties (7). Intuitively, when restricted

to rankings without ties, dKem is twice the minimum number of swaps of nearby candidates

required to transform one ranking into another. Alternatively, it counts the number or pairwise

preferences that do not match in the two rankings. When ties appear, these count 1
2

in the

distance, if they do not match between the two rankings. Since our theory is rather insensitive to

the type of distance used, we will conventionally use Kemeny distance to develop the discussion

in the next sections (see the Supplementary Material for a discussion on other distances, see

also (8) and references therein).

The Condorcet consensus ranking c∗ has been defined as the ranking (or more properly the

rankings) minimizing the function

µ(c) =
1

n

n∑
v=1

dKem(rv, c) , (1)

in formulae, c∗ = argmin µ(c) (see (9) for a review of mathematical methods in social choice

theory). The computation of c∗ is in general a NP-hard problem, since the space of all possible

rankings with ties grows faster than m!. In practice several polynomial time algorithms have

been developed that return an approximated answer to the problem of selecting a consensus

ranking. Most of these are the voting rules used in everyday applications. Among them it is

worth recalling the Pairwise comparison (or Copeland), Schulze and Tideman methods, which

are perhaps the most used single-round ranked-ballot winner selection methods (they are all

described in the Supplementary Material).

None of the above voting methods is perfectly fair (in the sense of Arrow’s theorem), how-

ever they all return a “reasonable” consensus ranking, and this is why they are used in practical

applications. Nonetheless some problems and inconsistencies remain unsolved: (i) different
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voting methods return different consensus rankings (this is the well known problem that the

outcome of an election may very well depend on the electoral system); (ii) by returning a unique

consensus ranking, a lot of information about voter preferences is lost; (iii) often there are con-

sensus rankings with a value of µ(c) very close to the optimal µ(c∗), and it is unclear why they

should be discarded. It is worth noting that, in an election/survey with n voters, fluctuations of

O(1/
√
n) in µ(c) are somehow unavoidable: if µ(c1) < µ(c2), but with µ(c2)−µ(c1) ∼ 1/

√
n,

then choosing c1 as the consensus ranking instead of c2 is equivalent to taking a decision based

on the toss of a coin.

A new dimension for choosing the consensus ranking In order to solve the above problems

we suggest to consider as valid consensus rankings all the rankings c close enough to the optimal

one (i.e., those for which µ(c)−µ(c∗) ∼ 1/
√
n), and we introduce a new dimension to select the

best among these valid consensus rankings. Our idea is that not only the global (i.e., societal)

number of satisfied preferences is to be maximized, but also each individual voter should have

more or less the same number of satisfied preferences. With this aim we propose to consider

also the voter-to-voter satisfaction variability (standard deviation) as

σ(c) =

√√√√ 1

n

n∑
v=1

[
dKem(rv, c)− µ(c)

]2
=

√√√√ 1

n

n∑
v=1

dKem(rv, c)2 − µ(c)2 . (2)

If σ(c) = 0, the consensus ranking c satisfies equally each voter; while, if σ(c) is large, then

there are voters more satisfied and others less satisfied than the average. Clearly the smaller is

σ(c) the more egalitarian is c.

To illustrate the new criterion, we start with a very simple (and almost paradoxical) example.

We consider an election with m = 4 candidates and we do not allow for ties; the number of

possible rankings is m! = 24, as shown in the table included in Figure 1. The distance between

these 24 rankings can be easily visualized in the same figure, top left panel, which includes a
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Figure 1: A very simple example with four candidates. There are 24 possible rankings without
ties (listed in panel (b)), whose relative distances are given by the graph in panel (a). In panel
(c) we report (µ, σ) values for possible consensus rankings in case the electorate is equally
polarized on opposite ballots (codes 1 and 24); panels (d) and (e) have been computed by adding
a small noise to the perfectly balanced situation. Our web platform allows one to interact with
panels c, d and e. 6

http://www.sapienzaapps.it/rateit.php?ex=1c
http://www.sapienzaapps.it/rateit.php?ex=1d
http://www.sapienzaapps.it/rateit.php?ex=1e


graph where each vertex corresponds to a ranking, with an edge connecting rankings at distance

2 (differing only by a swap of two neighbouring candidates). For rankings at distance larger

than 2, it is enough to count the edges along the shortest path between the rankings in this

graph.

Suppose the electorate is equally polarized on two opposite rankings: half of the voters rank

candidates A > B > C > D and the other half D > C > B > A. A simple calculation shows that

any possible ranking has µ(c) = 6, therefore there is no way to choose one of them according to

the Condorcet criterion alone. However the 24 possible consensus rankings have very different

σ(c) as can be seen in the middle panel of Figure 1: the point with largest σ(c) corresponds

to rankings A > B > C > D and D > C > B > A that fully satisfy half of the voters and fully

deceive the second half, while the point with σ(c) = 0 corresponds to the six rankings that are

at the same distance from the ballots, thus satisfy them equally well. It is clear that the latter are

the more egalitarian consensus rankings. In other words, spreading satisfaction as equally as

possible among voters, i.e. minimizing σ(c), is a new criterion to select the consensus ranking

that deserves, at least, the same consideration as the Condorcet criterion of minimizing µ(c).

Even more interesting is the case when some noise is added to the example above. For

instance we can consider small fluctuations in the number of electors participating to the poll,

resulting in a fraction 1
2
+ ε of voters ranking the candidates as A > B > C > D and the com-

plement fraction 1
2
− ε ranking them as D > C > B > A. For an election with n voters a noise

of order ε = O(1/
√
n) is somehow unavoidable. In lower panels in Figure 1 we report µ(c)

and σ(c) values for the 24 possible consensus rankings. For ε > 0, the small unbalance de-

creases µ for ranking A > B > C > D, making it the consensus ranking under the Condorcet

criterion. For ε < 0, the opposite ranking would win. The difference between the two cases is,

however, only due to noise; so selecting a consensus ranking by strictly minimizing µ(c) would

be equivalent to selecting the winner on a coin toss. Rankings with lower σ(c), as lower panels
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in Figure 1 shows, are much less sensitive to noise: by minimizing σ(c) one gets always the

same consensus rankings independently on the noise. This is a very important observation in

favour of the new criterion, given that a fair voting system should be robust to noise induced

fluctuations.

Although very simplified, the example above contains in a stylized form the relevant facts

we have observed in real data, to be discussed below.

Analysis of data from real polls We have two criteria for the identification of the best consen-

sus ranking: minimizing µ(c) and minimizing σ(c) (among rankings of small µ(c)). In general

is not possible to find a consensus ranking satisfying both criteria, and some compromise must

be adopted, as we will exemplify with data from real polls.

The first dataset consists of ratings for jokes from the Jester database (10). The full dataset

is made of 100 jokes rated by 24938 users. Ratings are continuous values between -10 and 10.

We have selected the five jokes rated by most users, and considered only those users who rated

all five jokes, resulting in 24921 voters. For each voter, the ballot is obtained by ranking the 5

jokes according to the continuous-valued rating.

In the upper panel of Figure 2 we show the
(
µ(c), σ(c)

)
values for all possible consensus

rankings of the m = 5 jokes: the 120 black circles correspond to rankings without ties, while

gray diamonds are the 421 rankings with ties. One ranking was excluded from the plot, for

better visualization: ranking A=B=C=D=E at position (9.81,0.63). The consensus ranking

minimizing µ(c) is c∗ : D=E>C>B>A and has µ(c∗) = 8.615. However, close to c∗ we see

a cloud of points with small values of µ(c). The lower panel in Figure 2 zooms over this set

of rankings, all having a distance from the Condorcet optimum c∗, comparable with O(1/
√
n)

fluctuations. So, from the point of view of the Condorcet criterion, all these rankings are equally

good within the noise. On the contrary they show a much larger variation in σ(c), that changes
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Figure 2: Aggregation of 24921 ballots rankings 5 jokes. The upper panel shows the entire set
of possible rankings, except for A=B=C=D=E, at position (9.81,0.63) which is omitted for
visualization purposes. The lower panel zooms in the leftmost part of the first plot. Solutions
found by Copeland, Tideman and Schulze coincide in this example. None of these is optimal
under the Condorcet criterion of minimizing µ or under the new criterion of minimizing σ. Here
you may interact with this figure.
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between 3.36 and 4.29, allowing for a better consensus ranking selection by minimizing σ(c).

The consensus ranking minimizing σ(c) in this region is D=E>A=B=C with coordinates

(µ, σ) = (8.66, 3.36). It seems to convey all the relevant information contained in this set of

low µ(c) rankings: indeed the only information shared by all the rankings in the lower panel of

Figure 2 is that jokes D and E are better than jokes A, B and C. Any consensus ranking more

refined that D=E>A=B=C would just amplify the noise, rather than providing further useful

information.

Three commonly used winner selection methods were also applied to the data (Copeland,

Schulze and Tideman2), and the corresponding consensus rankings are marked in Figure 2. All

of them rank jokes as E>D>C>B>A with (µ, σ) = (8.62, 4.12). This consensus ranking

differs from c∗, the Condorcet consensus ranking, and it has a quite large σ(c) value, hence

being among the less egalitarian rankings.

In applying the criterion of minimizing σ(c) one has to be careful, because this criterion

tends to select consensus rankings with ties (gray diamonds are on average below black circles

in Figure 2). If ties are not allowed in the consensus ranking, one should focus only on black

points in Figure 2: even in this case, the consensus ranking D>E>B>A>C with (µ, σ) =

(8.74, 3.65) looks much more egalitarian than the consensus ranking E>D>C>B>A found

by common voting methods: it gains more than 10% in σ(c), while loosing just 1% in µ(c).

The final decision on which rule is to be used to select the consensus ranking is left to the

organizers of the poll/survey, but clearly a plot in the (µ, σ) plane is much more informative

than any previously available method.

Similar to the simple example discussed earlier, the data from real polls also show that

consensus rankings of smaller σ(c) are less sensitive to noise. In this case we investigate the

effect of small fluctuations in participation by using a subsampling procedure: from the joke

2These three algorithms have been chosen also because they never rank first a Condorcet loser.
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Figure 3: Uncertainties on the values of µ(c) and σ(c) as obtained from resampling experiments
using either 80% or 90% of the original data (α = 0.2 and α = 0.1 respectively). Rankings
with smaller σ(c) are more reliable, since they have smaller fluctuations.

ratings provided by 24921 users, a fraction α of randomly chosen votes has been removed, and

µ(c) and σ(c) recomputed. Resampling was repeated 100 times with α = 0.1 and α = 0.2.

From the variations of µ and σ between different subsamplings we may compute the noise

fluctuations on µ and σ (see Supplementary Material for a detailed definition of the fluctuation

scaling). In Figure 3 these fluctuations are reported, showing a very clear and strong correlation

with the value of σ(c). A good consensus ranking should be as robust as possible to noise

produced by fluctuations in e.g. the number of voters. For example, suppose a poll/survey is

run for 10 days, then the outcome of the survey is reliable if it does not change sensibly in

case the data were collected for one or two days less. What we observe in Figure 3 is that

noise sensitivity is larger for points of large σ(c), while no relation can be observed between

noise sensitivity and µ. So, choosing a consensus ranking according to the new criterion of
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• Rankings with no ties ♦ Condorcet solution (A=B=C=D>E)
♦ Rankings with one tie � Copeland solution (B>C>A>D>E)
♦ Rankings with two ties H Schulze solution (B>C>A>D>E)
♦ Rankings with three ties N Tideman solution (B>C>A>D>E)
♦ Rankings with four ties ♦ Optimal set

Figure 4: Aggregation of 930 ballots ranking 5 movies. Here rankings with ties play an impor-
tant role. Again the solution found by standard voting methods (Copeland, Schulze, Tideman)
is far from the optimal set. Here you may interact with this figure.

minimizing σ(c), provides in general a result much more robust to noise (e.g. unavoidable

fluctuations in the number of participants to the poll/survey/election). We also analysed noise

in opinion for this dataset, similar to the analytical example of Figure 1, and results show same

robustness for rankings with lower σ(c) (see Supplementary Material for details).

The second example from real polls considers the rankings of 5 movies provided by 930

users. These are a subset of a larger database consisting of 1,000,209 ratings from 6040 users

for 3952 movies (11). Here, users rated the movies on a discrete scale from 1 to 5. As before,

we sorted the movies for each user, to obtain the ballots. Since equal ratings are very probable

here, given that only 5 possible rating values exist, many ballots have ties.

Once again the plot in (µ, σ), shown in Figure 4 is very informative. First of all we notice

12
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that consensus rankings with ties, although having much smaller values of µ(c), are not chosen

by any commonly used voting method. Moreover the optimal consensus ranking according to

the Condorcet criterion seems to have a very large value for σ(c). There are a few other rankings

worth to be considered, that have slightly higher µ(c) but much lower σ(c). Indeed we identify

a set of optimal rankings (red diamonds in Figure 4) combining the two criteria. These optimal

rankings start from the Condorcet ranking c∗ and include other rankings in the bottom left part

of the plot, that cannot be improved in terms of both µ(c) and σ(c) (the Supplementary Material

includes a more formal definition of this sequence). In the example from the movie data, two

additional rankings should be considered, along with the Condorcet ranking, to be part of the

optimal set: these are A=B=C=D=E with (µ, σ) = (5.48, 2.30), and B>A=C=D=E with

(µ, σ) = (6.37, 2.08), both are red-marked in the bottom left corner of the plot. We suggest that

the consensus ranking should be selected from the optimal set, and the choice should be made

after careful analysis of the (µ, σ) plot. The set of optimal rankings resembles somehow the

Pareto efficient frontier used in economic theory (12).

Both examples above have a large number of voters and one may think that the complex

behaviour we have illustrated could be due to the large number of voters. This is not actually

the case, as we are going to show with an example from a poll with a small number of voters

(n = 14), that ranked m = 5 alternatives. This is a poll organized on the Airesis platform (13),

which is a web platform freely available to organizations to manage internal decision making.

The data shown in Figure 5 represent a real election where the consensus ranking has been

selected according to the Schulze method. The first evidence is that the consensus ranking of

that election (Schulze) is far from the optimal one: the Condorcet optimal consensus ranking

is better (i.e. lower) both in µ(c) and σ(c). Additionally, a large number of rankings are part

of the optimal set, defined previously, and marked with red diamonds in the plot, which should

be taken into consideration. Even willing to restrict to consensus rankings without ties (this is

13
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• Rankings with no ties ♦ Condorcet solution (C=D=E>A=B)
♦ Rankings with one tie � Copeland solution (C>E>D>B>A)
♦ Rankings with two ties H Schulze solution (C>E>D>B>A)
♦ Rankings with three ties N Tideman solution (C>E>D>B>A)
♦ Rankings with four ties ♦ Optimal set • Optimal without ties

Figure 5: AIRESIS data. Here you may interact with this figure.

an election, and ties may be problematic for the decision process), it is clear that the consensus

ranking selected by Schulze, C>E>D>B>A with (µ, σ) = (5.78, 2.99), has a quite large

σ(c) with respect to consensus rankings C>D>E>B>A with (µ, σ) = (5.92, 2.89), and

C>E>D>A>B with (µ, σ) = (6.21, 2.48). The latter correspond to the two leftmost purple

circles in Figure 5.

Discussion We have proposed to analyze voting results by plotting potentially winning rank-

ings on the plane (µ, σ) in such a way that both the Condorcet criterion and the new criterion

that we have introduced can be considered at the same time in order to identify the optimal

consensus ranking. To help in this new analysis we have set up a webpage with an interactive

tool that produces the graph in the (µ, σ) plane (14), once the list of ranked ballots is given as

14
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input.3 A publicly available Android mobile application has also been developed, to facilitate

organisation of large scale ranked-ballot polls and collection of new data for future studies (15).

We have analyzed many different datasets coming from real polls and in general the plots in the

(µ, σ) plane are similar to those shown above. Moreover we expect polynomial time algorithms

can be developed that minimize (approximately) both µ(c) and σ(c) in analogy to presently

used voting rules that tend to minimize only µ(c).

Once the graph in the (µ, σ) plane is available, we believe any good consensus ranking

should be chosen from the optimal set. A point belongs to the optimal set if no other point

exists improving both in µ(c) and σ(c) or improving only one of them while keeping the other

constant. This set has been red-marked in the examples above and it extends from the Condorcet

optimal ranking c∗, that minimizes µ(c), to the ranking c minimizing σ(c). The meaning of

moving along this set should be clear: while the ranking c∗ maximizes total societal satisfaction

ignoring individual satisfaction, c is the more egalitarian in terms of individual satisfaction

regardless of the total satisfaction. There are polls, like political elections, where the consensus

ranking must produce a unique winner among the candidates. In this case one can restrict the

analysis to rankings having no tie at the first position and a line of optimal rankings can be

defined as well in this subset of rankings.

It is important to stress that we are not claiming that c should be the consensus ranking:

often µ(c) is much larger that µ(c∗) and the optimal consensus ranking is actually in the middle

of the optimal set. Instead, we are proposing a new tool that provides a quantitative meaning

to each possible choice. Which consensus ranking should be chosen among the optimal set is

no longer a technical matter, it is rather a decision to be taken by the people in charge and the

criteria may change according to the domains: political elections, marketing, web page ranking,

etc. In some cases, like for instance in political election, the decision on which point to select

3All plots in this manuscript, using the standard Kemeny distance, are based on those produced by the web tool.
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along this line must be taken before the poll is run.

The cases where the plot in the (µ, σ) plane is even more useful is when the final decision

can be taken after the poll/survey is run. In this case having a data aggregation like the one

we are presenting in terms of µ(c) and σ(c) provides a lot of information and allows for a

much better choice. A typical example is when politicians want to decide a list of priorities

based on suggestions coming from the electorate: the politicians can run a poll/survey among

the electorate and this would determine the optimal rankings, leaving to the politicians the

final choice of the consensus ranking, to be chosen among those. We believe this is an ideal

compromise between taking in serious consideration the desiderata of the electorate (the line of

optimal consensus rankings is fully determined by the votes) and leaving the political decision

to those in charge.

It is worth mentioning that the applications where technical tools provide a set of optimal

preferences among which the final choice is left to the user are not new in other fields. For

example in quantitative financial risk management the mathematical analysis produces a risk-

return curve (called efficient frontier (16)) and the choice of a point along such a curve is left

to the investor. From a different perspective a voting theory purely based on the maximization

of voters satisfactions would be equivalent, in political economy, to the maximization of total

wealth in a country regardless of its distribution and welfare criteria.

The voting method we have presented here provides an efficient technical tool to determine

the line of optimal rankings, among which a political decision has to be taken. While it is gen-

erally understood and acknowledged that democratic organizations should not only maximize

their goods but also distribute them as equally as possible, such awareness did not lead so far

to a proper solution in social choice theory. We believe therefore that the quantitative method

we have introduced is a fundamental tool to apply democratic principles, especially in voting

processes.
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Supplementary Material for

Egalitarianism in the rank aggregation problem:
a new dimension for democracy

Combinatorics

The set of rankings without ties for m candidates, Rm, has cardinality m!. Let us call Tm

the cardinality of the set of rankings including ties, Rm. Tm are sometimes called Fubini, or

Cayley numbers. One can show (see (1) and references therein) that their exponential generating

function is

F (x) =
∞∑
m=0

Tm
m!

xm =
1

2− ex
,

whose radius of convergence is ln 2. This can be used to find Tm from derivatives and gives

T0 = 1, T1 = 1, T2 = 3, T3 = 13, T4 = 75, T5 = 541, T6 = 4683, T7 = 47293, T8 = 545835,

T9 = 7087261, T10 = 102247563, etc. These numbers grow according to the formula

Tm '
m!

2(ln 2)m+1
' (1.44)mm! ,

with a sub-leading correction decaying exponentially fast(
Tm −

m!

2(ln 2)m+1

)
1

Tm
' (0.11)m .

One can also consider the set of rankings with l ties, where 0 ≤ l ≤ m − 1: R(l)

m . Clearly

Rm = R(0)

m and Rm = ∪m−1l=0 R
(l)

m . Another interesting set for applications is the set R̂m

containing rankings where the first candidate is untied. For each set of rankings our method

provides a subset of optimal rankings according to the following definition.

Optimal set

For two rankings s and r in S, we say s improves r if σ(s) ≤ σ(r) and µ(s) ≤ µ(r), and at least

one of the two inequalities is strict. The optimal set OS is the set of points in S that cannot be
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improved by other elements of S.

In the web platform that we have developed (2) we show the global optimal set ORm
(red

diamonds) and the one with no ties ORm (purple circles). In other contexts, like engineering or

economics, the optimal set of vectors of a d-dimensional space is called Pareto frontier (3). In

general the computation of such an optimal set requires a time proportional to the cardinality

Tm (4), that is a time exponential in the number m of candidates.

Indeed also the computation of the Condorcet optimal consensus ranking with Kemeny

distances (which is one element of the optimal set) is in general a NP-hard problem. However,

if the n ranked ballots given in input are not too dissimilar, such an optimum can be computed

in polynomial time (5). Nonetheless the cases where our new criterion is meaningful are exactly

those where the ranked ballots are not too similar. We believe that for the computation of the

optimal set in the largem limit, one should resort to Monte Carlo methods, already successfully

used in the computation of Kemeny optimal rankings (6).

Distribution of distances

For the joke dataset discussed in the main paper, Figure 6 presents a deeper analysis of the

ten rankings belonging to the optimal set. These range from the Condorcet solution c∗, with

minimal µ but large σ, to the solution c with minimum σ, but larger µ. The figure shows

the distribution of the distance between these rankings and the voter ballots (in other words

distribution of voter dissatisfaction for these rankings). These distributions change from wide

for the Condorcet ranking, where voter satisfaction is very uneven, to more narrow distributions

as σ decreases, and satisfaction becomes more comparable among voters.

It is worth noting that the consensus ranking D=E>A=B=C (fourth subplot on the first

line in Figure 6) that we have proposed as the optimal one, based on the criterion of minimizing

σ(c) among rankings of low µ(c), is indeed the one that avoids strongly unsatisfied voters
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Figure 6: For the jokes rating data discussed in the main paper, we show the distribution of
distances to voter ballots for each of the rankings belonging to the optimal set. The title of each
subplot indicates the ranking and its coordinates in the (µ,σ) plane.

(distances larger than 15 are almost absent), without changing sensibly the mean value of the

distribution.

Distance between rankings

The Kemeny distance (7) dKem(r, s), that we have used in the main text, is one of the possible

means of quantifying how dissimilar two rankings r and s are. Intuitively, the distance relates

to how many pairwise comparisons of candidates do not match between the two rankings. For

instance, if candidate A is preferred to candidate B in one ranking, but B is preferred to A in the

other, that would count 1 in the distance. If one ranking considers A=B while the other does

not, then that would count 1/2 in the distance. By summing over all possible pairs, with (A,B)

and (B,A) counted separately, one obtains the Kemeny distance between the two rankings.

The computation of dKem(r, s) is simpler if rankings are rewritten in terms of the score
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matrices M(r):

Mij(r) =


1 if candidate i is preferred to candidate j in ranking r
−1 if candidate j is preferred to candidate i in ranking r
0 otherwise

(3)

The Kemeny distance between rankings r and s is thus given by

dKem(r, s) =
1

2

∑
i,j

|Mij(r)−Mij(s)| (4)

Some winner selection methods

In the plots in the main paper we have shown the consensus rankings obtained by some well-

known winner selection methods, Copeland, Schulze and Tideman (8). Here we provide a

detailed description of these methods, which are the most commonly used in situations where

the voter ballots are lists of candidates ordered by preference (ranked ballots).

We consider the same situation as in the main paper, where n voters express their preferences

about m candidates. The ballot of each voter can be conveniently mapped in a vector r of m

integers representing the positions of each candidate in the preference list. For example the

ballot C>A>E>D>B corresponds to the vector r = (2, 5, 1, 4, 3). From the n vectors r(k),

with k = 1 . . . , n, representing the voter ballots we can build the matrix of total preferences

whose elements are

Pij =
n∑
k=1

I(r(k)j > r
(k)
i ) ,

where the indicator function I is defined as

I(condition) =
{

1 if condition is true
0 if condition is false

In practice the matrix element Pij counts how many voters prefer candidate i to candidate j.

The result of any voting method based only on pairwise comparisons between candidates can

be obtained from matrix P .
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A method of selecting a consensus ranking based on scores is Copeland, also known as the

pairwise comparison. Candidates are ranked according to the score Ci that counts the number

of pairwise comparisons won plus half of those tied

Ci =
m∑
j=1

[
I(Pij > Pji) +

1

2
I(Pij = Pji)

]
.

The Copeland candidate(s) is the one with maximum Ci.

The Schulze method is also based on pairwise comparisons between candidates. To compute

the Schulze ranking from the matrix P we first have to compute the matrix B of beatpaths, by

initialing it as Bij = Pij and then iterating until convergence

Bij = max
(
Bij, max

k
min(Bik, Bkj)

)
.

The number of iterations to make the matrix B converge is given by the length of the longest

beatpath, which is at most the number of candidates m. Successively, candidates are ranked

according to a score similar to the pairwise one for the B matrix, that is

Zi =
m∑
j=1

[
I(Bij > Bji) +

1

2
I(Bij = Bji)

]
.

The Schulze candidate(s) is the one with maximum Zi.

Tideman is a further method of selecting a consensus ranking. To compute the Tideman

solution, the elements of matrix P are sorted in a decreasing order and taken into account one

by one. When element Pij is considered, the relative order i > j in the final ranking is as-

signed unless in contrast with the partial ordering already fixed by larger values of P previously

considered.

Statistics of the raw data

In order to provide a better view over the datasets used in the main paper, we include here

the distributions of rating values for the five jokes and five movies analyzed (Figures 7 and 8,

respectively).
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Figure 7: Distribution of ratings for the five jokes discussed in the main paper. Mean and
standard deviation (sd) values of the ratings are also shown for each joke.
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Figure 8: Distribution of ratings for the five movies discussed in the main paper. Mean and
standard deviation (sd) values of the ratings are also shown for each movie.
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Number of voters Ballot value
1 E>C>D>A=B
1 E>A=B=C=D
1 C=D=E>A=B
1 C=E>D>A=B
1 D>E>C>A=B
1 D>C=E>A=B
1 E>C>B>D>A
1 C=D>A=B=E
1 C>B=E>A>D
1 C>A>B=E>D
1 C>D>E>A=B
1 C>B>E>D>A
2 A=B=C=D=E

Table 1: Ballot values for the AIRESIS data discussed in the main paper.

Joke data have wide distributions for the ratings of each joke, with jokes D and E having

right-skewed distributions unlike the other jokes, thus explaining their supremacy in the con-

sensus rankings provided by different winner selection methods (see discussion of Figure 2 in

the main text). It is worth noting that, although mean ratings for jokes D and E are larger than

mean ratings for jokes A, B and C, any other difference among the means is not significative,

given that rating standard deviations are of order 5.

All the five movies we have considered have very high ratings (see Figure 8), thus explaining

the results obtained in Figure 4 in the main text.

For the AIRESIS dataset analyzed in the main paper, we include directly the votes expressed

by users, since a small number of ballots are present here. Table 1 shows the number of voters

opting for a particular ranked ballot.

Further results on real polls

Due to space restrictions, the discussion in the main paper was reduced to only a few examples

of vote instances. However the new method of analysis we have introduced seems to work
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• Rankings with no ties ♦ Condorcet solution (C>D>A>B=E)
♦ Rankings with one tie � Copeland solution (C>D>A>E>B)
♦ Rankings with two ties H Schulze solution (C>D>A>E>B)
♦ Rankings with three ties N Tideman solution (C>D>A>E>B)
♦ Rankings with four ties ♦ Optimal set

Figure 9: One more example from the jokes rating data, where a different set of 5 jokes rated
by 16049 users is analyzed. Again, for visualization purposes, the solution A=B=C=D=E at
(9.84,0.46) has been omitted.

nicely on any voting instance we have studied. Here we report some more results from jokes

and Airesis data in the usual two-dimensional space (µ, σ).

Figure 9 plots σ and µ for another set of five jokes from the Jester database, rated by 16049

voters. As before, for each voter the ranked ballot is obtained by ordering the five jokes based

on the rating the voter provided for them. The figure shows that standard methods obtain good

results in terms of µ, however σ can be improved by selecting a different consensus ranking,

which in this case contains equalities.

Further examples of data from the AIRESIS platform are shown in Figure 10. These show

again that, in general, existing winner selection methods are not optimal with respect to mini-

mizing σ(c) (and sometimes neither in minimizing µ(c)). A clear improvement can be achieved
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• Rankings with no ties ♦ Condorcet solution
♦ Rankings with one tie � Copeland solution
♦ Rankings with two ties H Schulze solution
♦ Rankings with three ties N Tideman solution
♦ Rankings with four ties ♦ Optimal set

Figure 10: Further examples from polls run on the AIRESIS platform.

by considering rankings in the optimal set we have introduced.

Different distance measures

The new method proposed in this paper has been illustrated using the Kemeny distance among

rankings. There are of course many different distances to be considered and the choice among

them depends mostly on the application. There are classes of distances bounded from above

and below by multiplicative constants (9).
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Figure 11: Example of using an alternative distance for the same jokes rating data shown in
Figure 2 of the main paper. The distance used here is Kemeny with position weights. The
structure of the ranking space remains the same.

An important generalization of a given distance is to introduce weights. In some problems

there are, for instance, candidates of different importance and it is possible to introduce can-

didate weights. In other problems the position where the candidate is in the ballot counts, e.g.

candidates near the top of the ballot are more likely to be important than those at the bottom,

so it may be useful to introduce position weights. Weights can be introduced also by dividing

candidates in homogeneity classes: i.e. swaps of two candidates belonging to the same class

have a smaller weight than swaps between different classes. The properties of these weighted
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distances are studied in (10).

Moreover, beyond the distances in `1 metrics, like the Kemeny one, it is natural to consider

also distances in `2 metrics (11) or even higher order metrics.

We have checked several of the above generalizations and found that the general structure

of the rankings in the (µ, σ) space, and hence the conclusions drawn in the main paper, does not

change with the distance measure. As a representative example we show in Figure 11 the same

data from the joke ratings presented in Figure 2 of the main paper, but using a Kemeny distance

modified with position weights. This gives more importance to candidates at the top of a voter

ballot (a pair swapped at the top counts more in the distance than a pair swapped at the bottom

of the ranking). Specifically, in the computation of the distance, equation 4 is replaced by:

dKem,pos(r, s) =
1

2

m

4m− 6

∑
i,j

(|Mij(r)−Mij(s)| (2m− ri − rj)) (5)

The structure of the ranking space is mostly unchanged and indeed the consensus ranking that

we identify through the minimization of σ(c) among the low µ(c) rankings is still the same one

we found with the standard Kemeny distance, i.e. D=E>A=B=C.

Another possible generalization is to measure the fluctuations in the voters’ satisfaction,

that is the σ(c) in formula (2), not only through the measure of the standard deviation of the

distances, but also by the average of the absolute deviations from the mean. Since the two

measures are both robust estimators of the fluctuations, we expect them to give similar results

when the number of voters is large.

Noise sensitivity and how to estimate the uncertainty on µ and σ

A very important feature of a fair voting method is the robustness with respect to small noise

fluctuations, that is one would like to avoid a consensus ranking changing drastically because

of some noise induced fluctuations. When running a poll, there may be several different sources
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Figure 12: Uncertainties on µ(c) and σ(c), as obtained from the bootstrap analysis, are very
close to noise fluctuations shown in Fig. 3, and make consensus rankings of low σ more reliable.

of noise, the simplest one being fluctuations in the number of participants. In Fig. 3 in the main

paper we have shown fluctuations in µ and σ induced by a random elimination of a fraction α of

votes, uniformly chosen among the n votes available. Data shown in Fig. 3 have been obtained

with α = 0.1 and α = 0.2, and they show a rather good collapse once scaled according to the

following scaling.

Given a set of n votes, where ranking r appears n(r) times, the subsampling produces a

subset of (1 − α)n votes with frequencies k(r) Binomially distributed in [0, n(r)], with mean

E[k(r)] = (1− α)n(r) and variance V[k(r)] = α(1− α)n(r). Calling µ(c) the mean Kemeny

distance computed with frequencies n(r) and µα(c) those computed with frequencies k(r),

a simple computation based on the assumption of independence of the k(r), shows that the

variance V[µα] over many subsamplings scales proportionally to α/(1− α). In other words the

quantity V[µα](1 − α)/α should be roughly α-independent (as shown in Fig. 3) and is closely

related to the uncertainty on µ(c).
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A standard way to compute the uncertainty on any experimental measure is the so-called

bootstrap method of analysis: starting from the original data set of n measures, new data sets of

n measures each can be obtained by randomly choosing the original measures with repetitions

(that is each measure appears in a new data set a number of times which is a Poisson random

variable of mean 1). For any observable, e.g. µ(c), computed on the original data set, the

uncertainty can be computed from its fluctuations among the new data sets. In Fig. 12 we show

uncertainties for µ(c) and σ(c), and we notice they are very close to fluctuations induced by

subsampling (shown in Fig. 3).
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