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Abstract

Using a correlation inequality of Contucci and Lebowitz for spin glasses, we demonstrate ex-
istence of the thermodynamic limit for short-ranged spin glasses, under weaker hypotheses than

previously available, namely without the assumption of the annealed bound.

Keywords: Spin glass, correlation inequality, Griffiths inequality, super-additivity, thermody-

namic limit, quenched pressure.

MCS numbers: 82B44; 60K35

1 Introduction

With Sandro Graffi, one of the authors proved Griffiths-type inequalities for Gaussian spin glasses in
[1]. These inequalities were extended to all possible spin glasses by a simple argument by Joel Lebowitz

and one of the authors in [2]:

Theorem 1.1 (Contucci and Lebowitz 2006) Consider a spin glass model with Hamiltonian

—Hx(o.J) = Y AxJxox,
XCA

where all the Jx are random and satisfy E[Jx] = 0, E[J%] = 1, and all the Ax are nonnega-
tive. Here o € {+1,—1}" =: Qy is the spin configuration and ox = [licx 0i- Then, for Py =
E[In),eq, e D],

—207 (1)
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for all X CA.
This inequality is a perfect analogue of the first Griffiths inequality. (See, for example, [6].)

Theorem 1.2 (Griffiths 1967, Kelly and Sherman 1968) Consider the Hamiltonian

—H(o) = Y Jxox,
XCA

where all the Jx are nonnegative. Then, for Py = Zoesz,\ e~ PHA(o)

9Py 0,
0Jx —

for all X CA.

In [2], Theorem [[T] was used to prove that the thermodynamic limit of a general spin-glass model

exists under the very general condition of Thermodynamic Stability,
E[e AHa(@)] < oAl (2)

for some ¢ < 0o (and all o by symmetry). In the case that all of the random couplings are Gaussian,

this condition reduces to the condition of a stable potential from [I],

1
SUp 7o > AXEJR] < 0. (3)
a 1Al £

When the couplings are such that exponential moments are finite, the condition (2)) is optimal. If the
couplings have “fat tails,” however, then it may occur that E[e‘ﬁHA(U)] = oo which means that the
annealed pressure does not exist. But this does not preclude the existence of the thermodynamic limit
for the quenched pressure, N~ Py(3). In this letter, we would like to consider another inequality that

allow one to prove Theorem [[LT] with weaker assumptions.

2 Recursive Formula for the Pressure

The inequalities of this section are motivated by similar inequalities for mean-field diluted spin glasses
which appear, for example, in [7]. Let us consider a general Ising Hamiltonian. Suppose A C Z? is
a finite set, and suppose N(A) is some integer and X1, ..., Xy (a) are subsets of A, and Ji, ..., Jy(a)
are reals. Let us denote X = (X1,..., Xy(y)) and J = (J1,..., Jy()). Then we define

Let us define the partition function and the pressure density as

_ b

ZNB, X, J) = Y e PEXI) and py(8,X,J) = e

AN

InZx(8,X,J).



Also, let us define the Boltzmann-Gibbs measure
e—BHA(0,X,J)

(f(o) AﬁXJ:Zf A X J)

IS N

For each n < N(A), let us denote X1,,) = (X1,...,X,) and Jp) = (J1, ..., Jn).

The main inequality that we need in order to use Theorem [[[T] is the following one-sided bound.

Lemma 2.1

N(A)
1
PA(B, X, ) — pa(B, X ), ) < T > [Incosh(BJx) + tanh(BJx)(0x, A8, X 1Ty -
k=n+1

Proof: The lemma follows by iterating

In COSh(ﬁJn+1) + tanh(ﬁJnH)(axﬁAﬁ’X 1o I
PA(Bs Xpnra)s T 1) — pa(Bs Xy, I ) < Al N O

In order to prove this, note

258 X1, ) _ (Hnriona)
ZAB X )y T ) ABX () T ()

But since ox, ., is either 4+1 or —1, we have P In19%011 = cosh(BJny1)[1 + tanh(8J,41)0x, ] So

ZAB, X nt1), T 1))
ZAB, X (n)y I )

= cosh(8Jp+1) {1 + tanh(8J,+1) <0Xn+1>A,ﬁ,X[n],J[nJ .

But since 1 + x < €7, it follows that

ZA(B Xns1)y I nt1)) tanh(8Jn41)(0x, 1)

B X ) T

< cosh(BJp41)e

ZA(Bs X (n)s I )

Taking logarithms yields ({@]). O

Corollary 2.1 If Jy,...,JJy) are non-random, then
N(A)

pa(B. X, ) < pa (B, Xy I pny) + A > [ncosh(BJx) + | tanh(B.Jx)][] - (5)

k=n+1

If Ji,..., Ny are random and dependent, then

1 N(A)

k=n-+1



If Ji,...,JINna) are independent, then

N(A)
1
E [pA(ﬂ, X, J)] < E [pA (6, X[n], J[n])] + W Z (E [ln cosh(BJk)] + |E [tanh(ﬂJk)H) . (7)
k=n-+1
Proof: From the lemma, we know
1 N(A)
pA(Bv Xa J) < pa (65 X[n]a J[n]) + m Z I:hl COSh(BJk) + tanh(ﬁz]k)<UXk>A,Q,X[k,1],J[k,1]] . (8)
k=n+1

But [{(0x,)A,8,X .y | < 1, and this leads to (B). Taking expectations of that leads to (G). If the

Ji’s are all independent, then taking expectations of (8)), we obtain

E[pa(8, X, J)] < E [pa (8, X[}, T 1ny) ]

N(A)
1
+ oy Z (E [In cosh(B3.Jy,)] + E [tanh(BJ)] E [(0x,)A.8.X (1T o)) -
k=n-+1
But |E [(0x,)A,8.Xp_1. 70y || < 1. So this leads to (). O

3 Application to Ferromagnets

Before considering spin-glasses, we mention that the lemma, combined with the first Griffiths inequality,
Theorem [[L2] implies the existence of the pressure for a broad range of ferromagnets. Suppose for each
finite X C Z< there is a nonnegative coupling Jx such that Jr,(x) = Jx where 7;(X) = {i+j : i € X}.

In other words, the couplings are translation invariant. We also suppose Jy = 0 for simplicity. Define

Hp(o) = Z Jxox,
XCA
for all o € Q. Let pn(8) = pp,nje(B). Suppose that Ny > 1 is fixed and N = Nym +r where m < 0

and r > 0. Then one has following inclusion

[17N]d ) |_| TNlj([laNl]d>a
j€[0,m—1]4

where N1j = (Niji,...,Nija) for j = (ji,...,7a). Let us define an inequality Hx = H) if the

couplings in Hp are all greater than or equal to the couplings in H}. Therefore, we see that

Hpy nye = Z Hey Ny
]

jE[0,m—1]¢

because in the latter we simply set Jy to 0 for any X that does not fit entirely in one 7, ;([1, N1]9).
Then the first Griffiths inequality, combined with an interpolation argument, implies that the ther-

modynamic potential of the full Hamiltonian Hy dominates the thermodynamic potential of the right



hand side, which specifically means

mld mld
p(® 2 8 b+ (1- P Y.

We can choose m so that N — mN; < N7 — 1. Therefore, limy_,o,(mN1/N) = 1. So, we deduce

liminf v (8) > pw, (8).-

Since this was true for all Ny, this implies

liminfpy (6) > sup pw, (B) > limsuppy(f).
N—oo Ni>1 N—oo

This means that limy . pn(3) exists and equals supy s py(3). Of course, it is possible that the
supremum, and hence the limit, may equal co. That is precisely where we use the bounds from the

last section.

Corollary 3.1 Define

B

xczt
X350

If | J|| < oo then p(B) = limn_oo PN (0) exists as a finite number and p(8) < In(2) + 23||J|.

Proof: Enumerate the subsets X C A any way, in order to express Hj (o) as Hy(o, X, J), as in
the last section. Note that Hx (o, X o), Jjo)) = 0 so that pa(3, X0}, Jjo]) = In(2). Then taking n =0
in (@) and noting that Incosh(z) < |z| and |tanh(x)| < |z|, we obtain

pa(B) < |A| Z Jx .

XCA

But, of course, using translation invariance and the definition of ||.J||,

M- A - o X < Ml

XCA XCAieX €A XCA
X321

So each A has the bound pa () < In(2) +24]|J||, and hence sup 1 p1,n14(3) also satisfies the bound.
O

For the ferromagnet, the result obtained in the corollary is well-known. See, for example, [6]. But
for spin glasses, the same line of reasoning leads to new results.

4 Application to Spin Glasses

Corollary 4.1 Suppose that there are independent, random couplings Jx for each finite subset X C

72, which are centered and such that the distributions are translation invariant. (For simplicity,



suppose Jy = 0, again.) Define

E[J%]
17 = 0 =X
=X
cZ
X>0

Assuming ||J||3 < oo, we have p(B) = limy .o p1,nja(3) exists as a finite number and satisfies the
bound p(B) < In(2) + @HJH%, where pa(B) is the quenched pressure

pa(B) = Elpa (8, J)] .

This corollary is comparable to results of Khanin and Sinai [5] and van Enter and van Hemmen
[3], except that we do not attempt to prove convergence in the van Hove sense, settling instead for
convergence in the Fisher sense (see, for example, [3| [4] for the difference), but also, we do not make
any conditions on finite moments of the random couplings beyond existence of the variance.

Proof: Using the CL inequality (), we conclude that limy .. pn(8) = supys; pn(5), where
pN(B) is the quenched pressure P, N]d(ﬁ), using the same argument as in the last section. All that
remains is to obtain bounds. From (), we know

pa(B) = E[pa(8,J)] < In(2 > (E[lncosh(8Jx)] + [E[tanh(5]x)]|) - (9)

|A| <

Now we know E[ln cosh(8Jx)] < B?E[J%]/2 because In cosh(z) < z?/2. Also, by assumption, we know
E[Jx] =0. So

[Eftanh(8.Jx)]| = [E[tanh(8.Jx) — BJx]| < E[[tanh(8.Jx) — BJx]] -

But |z—tanh(x)| = fow‘ tanh?(y) dy < |z|tanh?(z) < min(|z|, |z|?). It is easy to see that min(|z|, |z|?) <
. So we obtain, |E[tanh(8Jx)]| < B%E[J%]. Combining these bounds with () leads to the desired
bound. O

The main improvement over previous results by Khanin and Sinai, and van Hemmen and van
Enter, is that we weakened the hypotheses on the moments of the random couplings Jx. In fact,
the condition in the corollary is just the specialization of the thermodynamic stability condition (B3]
from [I], specialized to translation-invariant distributions for the couplings. Therefore, it is optimal.
However, one can imagine a situation with even fatter tails, so that even the variance does not exist.

In that case, we can apply the following corollary:

Corollary 4.2 Suppose that there are independent, random couplings Jx for each finite subset X C

Z2, which are centered and such that the distributions are translation invariant (and Jy = 0). Define

ot = 3 A

xcz?
X350

Assuming ||J|[1 < oo, the thermodynamic limit of the quenched pressure exists, p(3) = imy o0 pp1, N} (5),
and satisfies the bound p(3) < In(2) + 28||.J||1.



Proof: In this case the upper bound on the quenched pressure is easy. We already know that

|A| Z x|,

XCA

pa(B,J) <1

as in the proof of Corollary Bl Taking expectations leads to pa () := E[pa(8, J)] < 1n(2) + 28]|J]1.
However, in this case, we need to check that (II) still applies. The situation for the CL inequality
was that E[J%] = 1 < oo for all X (and then the random variables were scaled by multipliers Ax).
It is intuitively obvious that an integrated version of the inequality still holds for the case where the
first moment is finite, but not the second. So let us quickly prove it. Define the centered truncation
J)((l) = Jx - X|-r,r)(Jx) —E[Jx - X[~ r,r) (Jx)], where R < oo is arbitrary. Let J)(?) =Jx —J)((l). Clearly
J )((1 ) does have a second moment. Therefore, we know that () is true if we replace all Jx’s by J )((1 Vs,
In particular, this means we have the necessary type of super-additivity as long as we replace the Jx’s
by J )((1 )s. All that remains is to check that if we take R — o0, we recover the original pressure. But,

using (@), we see that

pa(8) -V () < Z( [1ncosh(3J )] +E [[rann(87$)]]) < |A| OSSP (o)

XCA

Note that J)(?) is dependent on J)((l), but (G) applies in this case. All the |J)((2)|’s are dominated
by |Jx| + E[|Jx|]. (The E[|Jx]|] comes from the shift to J(l).) Also, clearly as R — oo, we have
J(2) = Jx - [1 = xj—r,r)(Jx)] = E[Jx - (1 = x[=r,Rr)(Jx))] converging to 0, almost surely. So by the
Dominated Convergence Theorem, it is true that limp_.o p&l)(ﬁ) = pa(B). Therefore, one recovers

the Contucci-Lebowitz super-additivity in the limit. O

We could easily combine the two types of results.

Corollary 4.3 Suppose Jx and J% are random, centered couplings (with Jy = J@ = 0) which are all
independent and such that ||.J||3 < oo and ||.J'||1 < co. Then taking

Hy(o) = Y (Jx +Jx)ox,
XCA

. . . . . 2
the thermodynamic limit of the quenched pressure exists and satisfies p(3) < ln(2)+% Il J113+28]J"||1-

Proof: This is the setting of Corollary 21l Namely, define N(A) = 2-2/A1 and let X, ..., Xy,

and Xgjaiyq,...,Xo.91a each enumerate the subsets of A, independently. Similarly, let J,, = Jx, for
n <2 J, = Jé(n for n > 2/Al. Then the Hamiltonian is defined as Hp(o, X ,J). The bounds from
before then imply the result. O

The result of the previous corollary reproduces a main result from the paper [§] by Zegarlinski. (We
thank A.C.D. van Enter for bringing this to our attention.) However, our proof uses the Griffiths-type
inequality () for spin glasses, which seems to give a simpler, more modern approach. We can also

easily interpolate the results to obtain the following.



Corollary 4.4 Define ||J||5 =" 5, | X[T'E[|Jx|P]. As long as ||J||, < co for some 1 < p <2, then

the thermodynamic limit of the pressure exists in the Fisher sense.

Proof: We may bound both |tanh(x) — x| and Incosh(z) by some constants times min(|z|, |x|?).
Therefore, for any 1 < p < 2, we may bound these functions by some constant time ||, and this

suffices to derive an upper bound on py () in terms of ||J||,, which is uniform in A. O
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