
ar
X

iv
:0

80
9.

42
29

v2
  [

m
at

h-
ph

] 
 1

4 
O

ct
 2

00
8

Thermodynamic Limit for Spin Glasses.

Beyond the Annealed Bound

Pierluigi Contucci1 and Shannon Starr2

P1 Departimento di Matematica
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Abstract

Using a correlation inequality of Contucci and Lebowitz for spin glasses, we demonstrate ex-

istence of the thermodynamic limit for short-ranged spin glasses, under weaker hypotheses than

previously available, namely without the assumption of the annealed bound.
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1 Introduction

With Sandro Graffi, one of the authors proved Griffiths-type inequalities for Gaussian spin glasses in

[1]. These inequalities were extended to all possible spin glasses by a simple argument by Joel Lebowitz

and one of the authors in [2]:

Theorem 1.1 (Contucci and Lebowitz 2006) Consider a spin glass model with Hamiltonian

−HΛ(σ, J) =
∑

X⊆Λ

λXJXσX ,

where all the JX are random and satisfy E[JX ] = 0, E[J2
X ] = 1, and all the λX are nonnega-

tive. Here σ ∈ {+1,−1}Λ =: ΩΛ is the spin configuration and σX =
∏

i∈X σi. Then, for PΛ =

E
[

ln
∑

σ∈ΩΛ
e−βHΛ(σ,J)

]

,
∂PΛ

∂λX

≥ 0 , (1)
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for all X ⊆ Λ.

This inequality is a perfect analogue of the first Griffiths inequality. (See, for example, [6].)

Theorem 1.2 (Griffiths 1967, Kelly and Sherman 1968) Consider the Hamiltonian

−HΛ(σ) =
∑

X⊆Λ

JXσX ,

where all the JX are nonnegative. Then, for PΛ =
∑

σ∈ΩΛ
e−βHΛ(σ),

∂PΛ

∂JX

≥ 0 ,

for all X ⊆ Λ.

In [2], Theorem 1.1 was used to prove that the thermodynamic limit of a general spin-glass model

exists under the very general condition of Thermodynamic Stability,

E[e−βHΛ(σ)] ≤ ec|Λ| , (2)

for some c < ∞ (and all σ by symmetry). In the case that all of the random couplings are Gaussian,

this condition reduces to the condition of a stable potential from [1],

sup
Λ

1

|Λ|

∑

X⊂Λ

λ2
XE[J2

X ] < ∞ . (3)

When the couplings are such that exponential moments are finite, the condition (2) is optimal. If the

couplings have “fat tails,” however, then it may occur that E[e−βHΛ(σ)] = ∞ which means that the

annealed pressure does not exist. But this does not preclude the existence of the thermodynamic limit

for the quenched pressure, N−1PN (β). In this letter, we would like to consider another inequality that

allow one to prove Theorem 1.1 with weaker assumptions.

2 Recursive Formula for the Pressure

The inequalities of this section are motivated by similar inequalities for mean-field diluted spin glasses

which appear, for example, in [7]. Let us consider a general Ising Hamiltonian. Suppose Λ ⊂ Z
d is

a finite set, and suppose N(Λ) is some integer and X1, . . . , XN(Λ) are subsets of Λ, and J1, . . . , JN(Λ)

are reals. Let us denote X = (X1, . . . , XN(Λ)) and J = (J1, . . . , JN(Λ)). Then we define

−HΛ(σ, X , J) =

N(Λ)
∑

n=1

JnσXn
.

Let us define the partition function and the pressure density as

ZΛ(β, X, J) =
∑

σ∈ΩΛ

e−βHΛ(σ,X,J) and pΛ(β, X , J) =
1

|Λ|
lnZΛ(β, X , J) .
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Also, let us define the Boltzmann-Gibbs measure

〈f(σ)〉Λ,β,X,J =
∑

σ∈ΩΛ

f(σ)
e−βHΛ(σ,X,J)

ZΛ(β, X, J)
.

For each n ≤ N(Λ), let us denote X [n] = (X1, . . . , Xn) and J [n] = (J1, . . . , Jn).

The main inequality that we need in order to use Theorem 1.1 is the following one-sided bound.

Lemma 2.1

pΛ(β, X, J) − pΛ(β, X [n], J [n]) ≤
1

|Λ|

N(Λ)
∑

k=n+1

[

ln cosh(βJk) + tanh(βJk)〈σXk
〉Λ,β,X[k−1],J [k−1]

]

.

Proof: The lemma follows by iterating

pΛ(β, X [n+1], J [n+1]) − pΛ(β, X [n], J [n]) ≤
ln cosh(βJn+1) + tanh(βJn+1)〈σXn

〉Λ,β,X[n],J [n]

|Λ|
. (4)

In order to prove this, note

ZΛ(β, X [n+1], J [n+1])

ZΛ(β, X [n], J [n])
=

〈

eβJn+1σXn+1

〉

Λ,β,X[n],J [n]

.

But since σXn+1 is either +1 or −1, we have eβJn+1σXn+1 = cosh(βJn+1)[1 + tanh(βJn+1)σXn+1 ]. So

ZΛ(β, X [n+1], J [n+1])

ZΛ(β, X [n], J [n])
= cosh(βJn+1)

[

1 + tanh(βJn+1)
〈

σXn+1

〉

Λ,β,X[n],J [n]

]

.

But since 1 + x ≤ ex, it follows that

ZΛ(β, X [n+1], J [n+1])

ZΛ(β, X [n], J [n])
≤ cosh(βJn+1)e

tanh(βJn+1)〈σXn+1〉Λ,β,X[n],J[n] .

Taking logarithms yields (4). �

Corollary 2.1 If J1, . . . , JN(Λ) are non-random, then

pΛ(β, X , J) ≤ pΛ

(

β, X [n], J [n]

)

+
1

|Λ|

N(Λ)
∑

k=n+1

[ln cosh(βJk) + | tanh(βJk)|] . (5)

If J1, . . . , JN(Λ) are random and dependent, then

E [pΛ(β, X, J)] ≤ E
[

pΛ

(

β, X [n], J [n]

)]

+
1

|Λ|

N(Λ)
∑

k=n+1

(E [ln cosh(βJk)] + E [|tanh(βJk)|]) . (6)
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If J1, . . . , JN(Λ) are independent, then

E [pΛ(β, X, J)] ≤ E
[

pΛ

(

β, X [n], J [n]

)]

+
1

|Λ|

N(Λ)
∑

k=n+1

(E [ln cosh(βJk)] + |E [tanh(βJk)]|) . (7)

Proof: From the lemma, we know

pΛ(β, X , J) ≤ pΛ

(

β, X [n], J [n]

)

+
1

|Λ|

N(Λ)
∑

k=n+1

[

ln cosh(βJk) + tanh(βJk)〈σXk
〉Λ,β,X[k−1],J [k−1]

]

. (8)

But |〈σXk
〉Λ,β,X[k−1],J [k−1]

| ≤ 1, and this leads to (5). Taking expectations of that leads to (6). If the

Jk’s are all independent, then taking expectations of (8), we obtain

E [pΛ(β, X, J)] ≤ E
[

pΛ

(

β, X [n], J [n]

)]

+
1

|Λ|

N(Λ)
∑

k=n+1

(

E [ln cosh(βJk)] + E [tanh(βJk)] E
[

〈σXk
〉Λ,β,X[k−1],J [k−1]

])

.

But
∣

∣E
[

〈σXk
〉Λ,β,X[k−1],J [k−1]

]∣

∣ ≤ 1. So this leads to (7). �

3 Application to Ferromagnets

Before considering spin-glasses, we mention that the lemma, combined with the first Griffiths inequality,

Theorem 1.2, implies the existence of the pressure for a broad range of ferromagnets. Suppose for each

finite X ⊂ Z
d there is a nonnegative coupling JX such that Jτj(X) = JX where τj(X) = {i+j : i ∈ X}.

In other words, the couplings are translation invariant. We also suppose J∅ = 0 for simplicity. Define

HΛ(σ) =
∑

X⊆Λ

JXσX ,

for all σ ∈ ΩΛ. Let pN (β) = p[1,N ]d(β). Suppose that N1 ≥ 1 is fixed and N = N1m + r where m ≤ 0

and r ≥ 0. Then one has following inclusion

[1, N ]d ⊇
⊔

j∈[0,m−1]d

τN1j([1, N1]
d) ,

where N1j = (N1j1, . . . , N1jd) for j = (j1, . . . , jd). Let us define an inequality HΛ < H ′
Λ if the

couplings in HΛ are all greater than or equal to the couplings in H ′
Λ. Therefore, we see that

H[1,N ]d <
∑

j∈[0,m−1]d

HτN1j([1,N1]d) ,

because in the latter we simply set JX to 0 for any X that does not fit entirely in one τN1j([1, N1]
d).

Then the first Griffiths inequality, combined with an interpolation argument, implies that the ther-

modynamic potential of the full Hamiltonian HΛ dominates the thermodynamic potential of the right
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hand side, which specifically means

pN (β) ≥
(mN1)

d

Nd
pN1(β) +

(

1 −
(mN1)

d

Nd

)

ln(2) .

We can choose m so that N − mN1 ≤ N1 − 1. Therefore, limN→∞(mN1/N) = 1. So, we deduce

lim inf
N→∞

pN(β) ≥ pN1(β) .

Since this was true for all N1, this implies

lim inf
N→∞

pN (β) ≥ sup
N1≥1

pN1(β) ≥ lim sup
N→∞

pN (β) .

This means that limN→∞ pN(β) exists and equals supN≥1 pN(β). Of course, it is possible that the

supremum, and hence the limit, may equal ∞. That is precisely where we use the bounds from the

last section.

Corollary 3.1 Define

‖J‖ :=
∑

X⊂Z
d

X∋0

JX

|X |
.

If ‖J‖ < ∞ then p(β) = limN→∞ pN(β) exists as a finite number and p(β) ≤ ln(2) + 2β‖J‖.

Proof: Enumerate the subsets X ⊆ Λ any way, in order to express HΛ(σ) as HΛ(σ, X , J), as in

the last section. Note that HΛ(σ, X [0], J [0]) = 0 so that pΛ(β, X [0], J [0]) = ln(2). Then taking n = 0

in (5) and noting that ln cosh(x) ≤ |x| and | tanh(x)| ≤ |x|, we obtain

pΛ(β) ≤ ln(2) +
2β

|Λ|

∑

X⊆Λ

JX .

But, of course, using translation invariance and the definition of ‖J‖,

1

|Λ|

∑

X⊆Λ

JX =
1

|Λ|

∑

X⊆Λ

∑

i∈X

JX

|X |
=

1

|Λ|

∑

i∈Λ

∑

X⊂Λ
X∋i

JX

|X |
≤ ‖J‖ .

So each Λ has the bound pΛ(β) ≤ ln(2)+2β‖J‖, and hence supN≥1 p[1,N ]d(β) also satisfies the bound.

�

For the ferromagnet, the result obtained in the corollary is well-known. See, for example, [6]. But

for spin glasses, the same line of reasoning leads to new results.

4 Application to Spin Glasses

Corollary 4.1 Suppose that there are independent, random couplings JX for each finite subset X ⊂

Z
d, which are centered and such that the distributions are translation invariant. (For simplicity,
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suppose J∅ ≡ 0, again.) Define

‖J‖2
2 =

∑

X⊂Zd

X∋0

E[J2
X ]

|X |
.

Assuming ‖J‖2
2 < ∞, we have p(β) = limN→∞ p[1,N ]d(β) exists as a finite number and satisfies the

bound p(β) ≤ ln(2) + 3β2

2 ‖J‖2
2, where pΛ(β) is the quenched pressure

pΛ(β) = E[pΛ(β, J)] .

This corollary is comparable to results of Khanin and Sinai [5] and van Enter and van Hemmen

[3], except that we do not attempt to prove convergence in the van Hove sense, settling instead for

convergence in the Fisher sense (see, for example, [3, 4] for the difference), but also, we do not make

any conditions on finite moments of the random couplings beyond existence of the variance.

Proof: Using the CL inequality (1), we conclude that limN→∞ pN(β) = supN≥1 pN (β), where

pN(β) is the quenched pressure p[1,N ]d(β), using the same argument as in the last section. All that

remains is to obtain bounds. From (7), we know

pΛ(β) = E[pΛ(β, J)] ≤ ln(2) +
β

|Λ|

∑

X⊆Λ

(E[ln cosh(βJX)] + |E[tanh(βJX)]|) . (9)

Now we know E[ln cosh(βJX)] ≤ β2
E[J2

X ]/2 because ln cosh(x) ≤ x2/2. Also, by assumption, we know

E[JX ] = 0. So

|E[tanh(βJX)]| = |E[tanh(βJX) − βJX ]| ≤ E [| tanh(βJX) − βJX |] .

But |x−tanh(x)| =
∫ |x|

0 tanh2(y) dy ≤ |x| tanh2(x) ≤ min(|x|, |x|3). It is easy to see that min(|x|, |x|3) ≤

x2. So we obtain, |E[tanh(βJX)]| ≤ β2
E[J2

X ]. Combining these bounds with (9) leads to the desired

bound. �

The main improvement over previous results by Khanin and Sinai, and van Hemmen and van

Enter, is that we weakened the hypotheses on the moments of the random couplings JX . In fact,

the condition in the corollary is just the specialization of the thermodynamic stability condition (3)

from [1], specialized to translation-invariant distributions for the couplings. Therefore, it is optimal.

However, one can imagine a situation with even fatter tails, so that even the variance does not exist.

In that case, we can apply the following corollary:

Corollary 4.2 Suppose that there are independent, random couplings JX for each finite subset X ⊂

Z
d, which are centered and such that the distributions are translation invariant (and J∅ ≡ 0). Define

‖J‖1 =
∑

X⊂Zd

X∋0

E[|JX |]

|X |
.

Assuming ‖J‖1 < ∞, the thermodynamic limit of the quenched pressure exists, p(β) = limN→∞ p[1,N ]d(β),

and satisfies the bound p(β) ≤ ln(2) + 2β‖J‖1.
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Proof: In this case the upper bound on the quenched pressure is easy. We already know that

pΛ(β, J) ≤ ln(2) +
2β

|Λ|

∑

X⊆Λ

|JX | ,

as in the proof of Corollary 3.1. Taking expectations leads to pΛ(β) := E[pΛ(β, J)] ≤ ln(2) + 2β‖J‖1.

However, in this case, we need to check that (1) still applies. The situation for the CL inequality

was that E[J2
X ] = 1 < ∞ for all X (and then the random variables were scaled by multipliers λX).

It is intuitively obvious that an integrated version of the inequality still holds for the case where the

first moment is finite, but not the second. So let us quickly prove it. Define the centered truncation

J
(1)
X = JX ·χ[−R,R](JX)−E[JX ·χ[−R,R](JX)], where R < ∞ is arbitrary. Let J

(2)
X = JX −J

(1)
X . Clearly

J
(1)
X does have a second moment. Therefore, we know that (1) is true if we replace all JX ’s by J

(1)
X ’s.

In particular, this means we have the necessary type of super-additivity as long as we replace the JX ’s

by J
(1)
X ’s. All that remains is to check that if we take R → ∞, we recover the original pressure. But,

using (6), we see that

pΛ(β) − p
(1)
Λ (β) ≤

1

|Λ|

∑

X⊆Λ

(

E

[

ln cosh(βJ
(2)
X )

]

+ E

[
∣

∣

∣
tanh(βJ

(2)
X )

∣

∣

∣

])

≤
2β

|Λ|

∑

X⊆Λ

E[|J
(2)
X |] . (10)

Note that J
(2)
X is dependent on J

(1)
X , but (6) applies in this case. All the |J

(2)
X |’s are dominated

by |JX | + E[|JX |]. (The E[|JX |] comes from the shift to J
(1)
X .) Also, clearly as R → ∞, we have

J
(2)
X = JX · [1 − χ[−R,R](JX)] − E[JX · (1 − χ[−R,R](JX))] converging to 0, almost surely. So by the

Dominated Convergence Theorem, it is true that limR→∞ p
(1)
Λ (β) = pΛ(β). Therefore, one recovers

the Contucci-Lebowitz super-additivity in the limit. �

We could easily combine the two types of results.

Corollary 4.3 Suppose JX and J ′
X are random, centered couplings (with J∅ ≡ J ′

∅ ≡ 0) which are all

independent and such that ‖J‖2
2 < ∞ and ‖J ′‖1 < ∞. Then taking

HΛ(σ) =
∑

X⊆Λ

(JX + J ′
X)σX ,

the thermodynamic limit of the quenched pressure exists and satisfies p(β) ≤ ln(2)+ 3β2

2 ‖J‖2
2+2β‖J ′‖1.

Proof: This is the setting of Corollary 2.1. Namely, define N(Λ) = 2 · 2|Λ| and let X1, . . . , X2|Λ|

and X2|Λ|+1, . . . , X2·2‖Λ| each enumerate the subsets of Λ, independently. Similarly, let Jn = JXn
for

n ≤ 2|Λ|, Jn = J ′
Xn

for n > 2|Λ|. Then the Hamiltonian is defined as HΛ(σ, X , J). The bounds from

before then imply the result. �

The result of the previous corollary reproduces a main result from the paper [8] by Zegarlinski. (We

thank A.C.D. van Enter for bringing this to our attention.) However, our proof uses the Griffiths-type

inequality (1) for spin glasses, which seems to give a simpler, more modern approach. We can also

easily interpolate the results to obtain the following.
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Corollary 4.4 Define ‖J‖p
p =

∑

X∋0 |X |−1
E[|JX |p]. As long as ‖J‖p < ∞ for some 1 ≤ p ≤ 2, then

the thermodynamic limit of the pressure exists in the Fisher sense.

Proof: We may bound both | tanh(x) − x| and ln cosh(x) by some constants times min(|x|, |x|2).

Therefore, for any 1 ≤ p ≤ 2, we may bound these functions by some constant time |x|p, and this

suffices to derive an upper bound on pΛ(β) in terms of ‖J‖p, which is uniform in Λ. �
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8 pp. 1461–1467. http://arxiv.org/abs/cond-mat/0612371

[3] A. C. D. van Enter and J. L. van Hemmen. (1983) The thermodynamic limit for long-range

random systems. J. Statist. Phys. 32 pp. 141–152.

[4] A. .C. D. van Enter, R. Fernandez and A. D. Sokal. (1993) Regularity properties and pathologies of

position-space renormalization-group transformations: scope and limitations of Gibbsian theory.

J. Statist. Phys. 72 pp. 879–1167.

[5] K. M. Khanin and Ya. G. Sinai. (1979) Existence of free energy for models with long-range random

Hamiltonians. J. Statist. Phys. 20 pp. 573–584.

[6] D. Ruelle. Statistical mechanics. Rigorous results. Reprint of the 1989 edition. World Scientific

Publishing Co., Inc., River Edge, NJ; Imperial College Press, London, 1999.

[7] S. Starr and B. Vermesi. (2007) Some observations for mean-field spin glass models.

Lett. Math. Phys. 83 pp. 281–303. http://arxiv.org/abs/0707.0031

[8] B. Zegarlinski. (1991) Interactions and Pressure Functionals for Disordered Lattice Systems.

Commun. Math. Phys. 139 pp. 305–339.

8

http://arxiv.org/abs/math-ph/0302013
http://arxiv.org/abs/cond-mat/0612371
http://arxiv.org/abs/0707.0031

	Introduction
	Recursive Formula for the Pressure
	Application to Ferromagnets
	Application to Spin Glasses

