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Abstract

We prove two inequalities for the direct and truncated correlation for the nearest-

neighboor one-dimensional Edwards-Anderson model with symmetric quenched dis-

order. The second inequality has the opposite sign of the GKS inequality of type

II. In the non symmetric case with positive average we show that while the direct

correlation keeps its sign the truncated one changes sign when crossing a suitable

line in the parameter space. That line separates the regions satisfying the GKS

second inequality and the one proved here.

1 Introduction and Results

In a recent paper [CL] a correlation inequality was proved for spin systems with quenched

symmetric random interaction in arbitrary dimension, extending a previous result for the

Gaussian case [CG]. That inequality yield results for spin glasses similar to those ob-

tained for ferromagnetic systems from the first GKS inequality [Gr, Gr2, KS] e.g. it gives

monotonicity of the pressure in the volume and bounds on the surface pressure. Other

inequalities were considered: in particular the extension to non-symmetric interactions

and possible versions of a second type GKS inequality.

In this work we study the d = 1 case with nearest neighboor interaction. In the

same spirit of the GKS systems no assumption of translation invariance is made on the
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interaction distributions and by consequence our results cannot be obtained by an exact

solution. We prove that both the inequality of the first type does extend to the non

symmetric case and that an inequality of the second type holds indeed in the symmetric

case. A similar result with a complete proof of inequalities of type I and II has been

obtained so far only in the Nishimori line [CMN, MNC].

Let us consider a chain with periodic boundary condition

H(σ, J) = −
N
∑

i=1

Jiσiσi+1

with σN+1 = σ1. The random variables Ji have independent distributions p(Ji). Those

fulfills one of the three following hypothesis, which will be called system I, II and III in

the remaining part of the paper:

I)

p(|Ji|) ≥ p(−|Ji|), ∀i and ∀|Ji| ∈ R
+

II) the Ji are symmetric around a positive mean µi > 0:

p(µi + |Ji|) = p(µi − |Ji|), ∀i and ∀|Ji| ∈ R
+

In the case of discrete variables: Ji = µi±J (i), p(µi+J (i)) = p(µi−J (i)) = 1/2, we assume

that J (i) > µi (see below for further explanations) and we introduce the notations:

ai = µi + J (i)

−bi = µi − J (i)

ai, bi > 0

III) the Ji are discrete variables taking on values ±J (i) with J (i) > 0 such that:

where pi = p(J (i)), qi = p(−J (i)) ,

and

α :=
∏

i

(pi − qi) ≥ 0 .
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Let ωh the thermal average of the quantity σhσh+1, ωh,k that of the quantity σhσh+1σkσk+1

and Av [·] the average over the quenched disorder.

Our main results are:

Proposition 1.1 For all three systems:

Av [Jhωh] > 0, ∀h = 1...N (1.1)

Proposition 1.2 For systems I and III with α = 0:

Av [JhJk(ωhk − ωhωk)] < 0, ∀h, k = 1...N, h 6= k (1.2)

Proposition 1.3 For system III, with α > 0, the following properties hold:

∀l, there exists in the (J (l), α) quadrant, a curve α(J (l)) such that the quantity

Av [JhJk(ωhk − ωhωk)] (1.3)

changes its sign from negative to positive when crossing the curve α(J (l)) by increas-

ing α and such that on the curve α(J (l))

Av [JhJk(ωhk − ωhωk)] = 0, ∀h, k = 1...N, h 6= k . (1.4)

Moreover Av [JhJk(ωhk − ωhωk)] is increasing in α along the J (l) = const lines.

2 Proofs

We start by proving the following lemmata.

Lemma 2.1 System III can be rewritten as:

H(τ, K) = −KNτNτN−1 −

N−1
∑

i=1

J (i)τiτi+1 (2.5)

with:

KN = J (N)
N
∏

i=1

sgn(Ji) = ±J (N) . (2.6)
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Setting P = prob(KN = J (N)) and Q = prob(KN = −J (N)) we have:

P =
1 +

∏

i(pi − qi)

2
(2.7)

Q =
1 −

∏

i
(pi − qi)

2
(2.8)

Lemma 2.2 Consider system II with discrete variables and assume that µh = 0 for at

least one h. Such a system can be rewritten as:

H(τ, K) = −

N
∑

i=1

Kiτiτi+1

where:

Kh = Jh = ±ah, ah > 0 (2.9)

Ki =







ai > 0

bi > 0
(2.10)

the two cases having probability 1/2.

Proof of Lemma 2.1

The proof is based on the Gauge transformation αj =
∏

1≤i<j sgn(Ji), for 2 ≤ j ≤ N

α1 = 1. Set τi = αiσi H is given by (2.5) with KN = J (N)
∏N

i=1 sgn(Ji). We have now to

compute the new probability measure for
∏N

i=1 sgn(Ji). Clearly the expectation

Av

[

N
∏

i=1

sgn(Ji)

]

=
N
∏

i=1

Av [sgn(Ji)] =
N
∏

i=1

(pi − qi) = P − Q .

Proof of Lemma 2.2

Group the bond configurations in couples that only differ for the sign of Jh and Gauge

transform them using the same transformation of Lemma 3.1 What we obtain is:

Ki = |Ji| > 0

Kh = Jh = ±J (h)

Moreover, since p(K(h)) = p(J (h)) or p(K(h)) = p(−J (h)), p(K(l)) = 1/2 for all l.
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Introduce, for system III, the following shorthand notations:

Ci := cosh(K(i)) = cosh(J (i)); Si := sinh(K(i)) = sinh(J (i))

Proof of Proposition 1.1

First we prove the thesis for discrete variables (system II and III). The partition function

and correlation of an N spins chain with periodic boundary conditions can be written as:

Z =
∏

i

Ci +
∏

i

Si (2.11)

ωh =
1

Z

[

Sh

∏

i6=h

Ci + Ch

∏

i6=h

Si

]

(2.12)

System III Using Lemma 2.1 one has:

Av{J}[Jhωh] = Av(Kh)[Khωh] = K(h)
{

Pω|kh=k(h) − Qω|kh=−k(h)

}

=

= K(h)
{

Q
[

ω|kh=k(h) − ω|kh=−k(h)

]

+ (P − Q)ω|kh=k(h)

}

≥ 0

due to the first Griffith’s inequality for ferromagnetic systems.

System II (discrete variables) Since the pressure is a convex function of the µi’s we can

prove our theorem for µh = 0. If for some i J (i) ≤ µi the variable Ji takes positives values

and it doesnt influence the sign of the average. Now, using lemma 2.2 and observing that

P = Q = 1/2 and the J average is a linear combination of Kh average with all positive

remaining Ki, we have the thesis with the same steps as before. The extension to the

continuos case is obtained by the usual method of integrating over the positive parts of

the Ji distributions.

Proof of Proposition 1.2

For discrete variables (system III), using the standard hyperbolic expansion:

ωhk =
1

Z

[

ShSk

∏

i6=h,k

Ci + ChCk

∏

i6=h,k

Si

]

⇒
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ωhk − ωhωk =
1

Z2

{(

ShSk

∏

i6=h,k

Ci + ChCk

∏

i6=h,k

Si

)(

∏

i

Ci +
∏

i

Si

)

+

−

(

Sh

∏

i6=h

Ci + Ch

∏

i6=h

Si

)(

Sk

∏

i6=k

Ci + Ck

∏

i6=k

Si

)}

=

=
1

Z2

{

∏

i6=h,k

(CiSi) ·
(

C2
hC

2
k + S2

hS
2
k − C2

hS
2
k − S2

hC
2
k

)

}

=

=

∏

i6=h,k

CiSi

(

∏

i

Ci +
∏

i

Si

)2

If at least one of the random variables is symmetric we have: P = Q = 1/2; using lemma

2.1 one has:

Av[KhKk(ωhk − ωhωk)] = J (k) · Av(KN )









Kh ·
∏

i6=h,k

(CiSi)

(
∏

i Ci +
∏

i Si)2









=

= J (k)J (h)
∏

i6=h,k

(CiSi) ·
1

2

{

1

(
∏

i Ci +
∏

i Si)2
−

1

(
∏

i Ci −
∏

i Si)2

}

=

= −2 J (k)J (h)
∏

i6=h,k

(CiSi) ·

∏

i(CiSi)

(
∏

i C
2
i −

∏

i S
2
i )

2
< 0

The extension to the continuous case is as above.

Proof of Proposition 1.3

Let α > 0 or equivalently P = 1+α
2

> 1
2

> Q = 1−α
2

.

We obtain analogously as before:

Av[KhKk(ωhk − ωhωk)] = J (k)J (h)
∏

i6=h,k

(CiSi)
P (
∏

Ci −
∏

Si)
2 − Q(

∏

Ci +
∏

Si)
2

(
∏

C2
i −

∏

S2
i )

2
=

=
J (k)J (h)

∏

i6=h,k(CiSi)

(
∏

i C
2
i −

∏

i S
2
i )

2
· {(P − Q)(

∏

i
C2

i +
∏

i
S2

i ) − 2
∏

i
(CiSi)}

The sign of the previous expression is, by inspection, the same as that of the curly

parentheses:

g(α; {J}) := α(
∏

i

C2
i +

∏

i

S2
i ) − 2

∏

i

(CiSi)
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One obtains:

- α = 0 (zero mean spin glass) ⇒ g(α; {J}) < 0;

- α = 1 (ferromagnetic) ⇒ g(α; {J}) = (
∏

i Ci −
∏

i Si)
2 > 0;

- for all J (l), g(α; {J}) is increasing function of α;

- Av(Kh)[KhKk(ωhk − ωhωk)] = 0 on the (J (l), α) plane curve with J (l) > 0 and

0 ≤ α ≤ 1 defined by:

α(J (l)) =
2ClSl

∏

i6=l(CiSi)

C2
l

∏

i6=l C
2
i + S2

l

∏

i6=l S
2
i

(2.13)

The proof of the inequalities for one dimensional systems with free boundary conditions

or for tree-like lattices is trivial since, due to the absence of loops the partition function

factorizes

Z = 2N
∏

i

cosh(λiJi)

and by consequence the first inequality is fulfilled even without taking the average and

the second inequality reduces obviously to the equality to zero.

3 Comments

We proved that a one dimensional spin glass system fulfills a family of correlation inequali-

ties without the assumption of translation invariance for the interaction distribution. The

first inequality extends a similar one proved in [CL] for any lattice and any interaction

with zero mean value. Here we have shown that the inequality is stable by suitable defor-

mations of the zero mean hypotheses. The inequality of type II proved here shows that in

the zero mean case the truncated correlation function has the opposite sign of the stan-

dard GKS inequality i.e. the case of interactions with zero variance and positive mean.

We have moreover identifyed the line crossing which the truncated correlation changes its

7



sign. It would be interesting to establish if an inequality of type (1.2) is fulfilled also in

higher dimensions (see [KNA]). In fact, as a straightforward computation shows in the

Gaussian case, if such an inequality holds then the overlap expectation would be mono-

tonic in the volume and several nice regularity properties would follow [CG2]. We also

mention that the inequality (1.2) doesn’t hold in general topologies as it was shown to us

by Hal Tasaki for a Bernoulli spin chain with an extra bond connecting two non adjacent

sites. Moreover a similar violation for the inequality (1.2) can be obtained in the case in

which the disorder, still having zero average, is non symmetric.
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