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Abstract

We study the limiting thermodynamic behavior of the normalized sums of spins in multi-

species Curie-Weiss models. We find sufficient conditions for the limiting random vector

to be Gaussian (or to have an exponential distribution of higher order) and compute the

covariance matrix in terms of model parameters.

Introduction

The study of the normalized sum of random variables and its asymptotic behavior

has been and continues to be a central chapter in probability and statistical mechanics.

When those variables are independent the central limit theorem ensures that the sum with

square-root normalization converges toward a Gaussian distribution. The generalization of

that result to non-independent variables is particularly interesting in statistical mechanics

where the random variables have an Hamiltonian interaction.

Ellis and Newman [EN78a,EN78b,ENR80] have studied the distribution of the normal-

ized sums of spins whose interaction is described by a wide class of mean field Hamiltonian

a la Curie-Weiss. They have found the conditions, in terms of the interaction, that lead
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in the thermodynamic limit to a Gaussian behavior and those who lead to a higher order

exponential probability distribution.

In recent times a multispecies extension of the Curie-Weiss model has been proposed in

the attempt to describe the large scale behavior of some socio-economic systems [CG07].

Multi-populated non-interacting spin models are at the basis of the so called Mc Fadden

discrete choice [McF01] theory. The extension of the discrete choice theory to the in-

teracting, and more realistic, case is an important problem toward the understanding of

the collective behavior of social and economical systems. The investigation of the model

introduced in [CG07] has been pursued at a mathematical level [GC08] where they have

been proved properties like the existence of the thermodynamic limit by monotonicity, the

computation of the free energy and of the intensive quantities like local magnetizations.

The phenomenological test of the model has been started in [GBC08] and it is a topic of

current investigations.

In this paper we deal with the study of the normalized sum behavior for a multi-

populated model with mean field interaction. We prove that, under the assumption that

the mean field Hamiltonian interaction has a convexity property, when the system reaches

its thermodynamic limit, the random vector whose components are the sums of spins on

each population, converges to a nontrivial random variable S. The behavior of S depends

crucially upon the nature of the minima points of a function G (the pressure functional)

which we associate to the model interaction type. In particular it is the value of the

determinant of the Hessian matrix of G computed on the minima points that establish

the Gaussian or non Gaussian behavior of the random vector. In the case of a unique

minimum point if the determinant is different from zero then S is a multivariate Gaussian

of covariance that can be computed from the mean field equations. Otherwise S has a

distribution whose density is proportional to a higher order exponential.

This work is organized as follows. Chapter one introduces the language and the

notations and states the main results in theorems 1 and 2. Chapter 2 contains the proofs.

Chapter 3 describes specific cases in which the distribution is Gaussian and others in

which is not. The appendix contains the proof of two lemmas that make the paper self
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contained.

1 Definitions and statements

We consider a system of N particles that can be divided into n subsets P1, . . . , Pn with

Pl ∩ Ps = ∅, for l #= s and sizes |Pl| = Nl, where
∑n

l=1Nl = N . Particles interact with

each other and with an extern field according to the mean field Hamiltonian:

HN(σ) = − 1

2N

∑

i,j

Jijσiσj −
N∑

i=1

hiσi . (1)

The σi represents the spin of the particle i, σi = ±1 while Jij is the parameter that tunes

the mutual interaction between the particle i and the particle j and takes values according

to the following simmettrix matrix:

N1

{

N2

{

Nn






N1︷︸︸︷ N2︷︸︸︷ Nn︷ ︸︸ ︷




J11 J12 . . . J1n

J12 J22

...

J1n J2n . . . Jnn





where each block Jls has constant elements Jls. For l = s, Jll is a square matrix, whereas

the matrix Jls is rectangular. We assume J11, J22, . . . , Jnn be positive, whereas Jls with

l #= s can be either positive or negative allowing both ferromagnetic and antiferromagnetic

interactions. The vector field takes also different values depending on the subset the

particles belong to:
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N1

{

N2

{

Nn










h1

h2

...

hn





where each hl is a vector of costant elements hl.

The distribution of a spin configuration σ is given by:

e−HN (σ)
N∏
i=1

dρ(σi)

∫

RN

e−HN (σ)
N∏

i=1

dρ(σi)

(2)

whit:

ρ(x) =
1

2

[
δ(x− 1) + δ(x+ 1)

]
(3)

where δ(x− x0) x0 ∈ R denotes the unit point mass with support at x0.

By introducing the magnetization of a set A as:

mA(σ) =
1

|A|
∑

i∈A

σi (4)

and indicating by ml(σ) the magnetization of the set Pl, and by αl = Nl/N the relative

size of the set Pl, we may easily express the Hamiltonian (1) as:

HN(σ) = −Ng(m1(σ), . . . , mn(σ)) (5)

where:

g(m1(σ), . . . , mn(σ)) =
1

2

( n∑

l=1

α2
l Jllm

2
l (σ)+

∑

l #=s

αlαsJlsml(σ)ms(σ)

)
+

n∑

l=1

αlhlml(σ) (6)

In [GC08] it is shown that the thermodynamic limit of the pressure function

pN =
1

N
ln
∑

σ

e−HN (σ) (7)
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exists and is reached monotonically if the the function g(m1(σ), . . . , mn(σ)) is convex and

bounded (see also [BCG03]). In the first paper the limiting value is computed:

lim
N→∞

pN = sup
x∈[−1,1]n

p(x) (8)

where the functional p(x) is:

p(x) = p(x1, . . . , xn) = ln 2− 1

2

( n∑

l=1

α2
l Jll x

2
l +
∑

l #=s

αlαs Jls xlxs

)

+
n∑

l=1

αl ln

[
cosh

( n∑

s=1

αsJls xs + hl

)] (9)

The extremality conditions of p(x1, . . . , xn) give the Mean Field Equations of the model.






µ1 = tanh
( n∑

l=1
αlJ1l µl + h1

)

µ2 = tanh
( n∑

l=1
αlJ2l µl + h2

)

...

µn = tanh
( n∑

l=1
αlJln µl + hn

)
.

(10)

In the themodynamic limit the random vector (m1(σ), . . . , mn(σ)) converges, with re-

spect to the Boltzamann-Gibbs measure, to the deterministic vector (µ1, . . . , µn) solution

of the Mean Field Equations. This means that the variances of the magnetizations vanish

for large N (see [GC08] for the precise statement).

In this paper, defined the sum of the spins of a set A as:

SA(σ) =
∑

i∈A

σi (11)

and indicating by Sl(σ) the sum of the spins of the set Pl we want to determinate a suitable

normalization for S1(σ), . . . , Sn(σ) so that in the thermodinamic limit they converges to
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well defined random variables with finite (non zero) variance. The problem in n = 1 has

been solved in [EN78a] and [ENR80].

We consider the function G(x) = −p(x)

G(x1, . . . , xn) = − ln 2 +
1

2

( n∑

l=1

α2
l Jll x

2
l +
∑

l #=s

αlαs Jls xlxs

)

−
n∑

l=1

αl ln

[
cosh

( n∑

s=1

αsJls xs + hl

)]
.

(12)

It is a real analytic function. Since

G(x1, . . . , xn) ≥ − ln 2 +
1

2

( n∑

l=1

α2
l Jll x

2
l +
∑

l #=s

αlαs Jls xlxs

)

−
n∑

l=1

αl

∣∣∣∣
n∑

s=1

αsJls xs + hl

∣∣∣∣

(13)

If the r.h.s. function is convex, G must have a finite number of global minimum points.

In this case also it is true that:

∫

Rn

exp[−NG(x1, . . . , xn)]dx1 . . . dxn < ∞ for any N ∈ {1, 2, . . . } (14)

Proof. We prove the statement by induction. For N = 1 we have:

∫

Rn

exp[−G(x1, . . . , xn)]dx1 . . . dxn ≤
∫

Rn

exp

[
− 1

2

( n∑

l=1

α2
l Jll x

2
l +
∑

l #=s

αlαs Jls xlxs

)]

×
n∏

l=1

(
exp

[ n∑

s=1

αsJls xs + hl

]
+ exp

[
−

n∑

s=1

αsJls xs − hl

])
dx1 . . . dxn

≤ 2n exp
[
nmax

i
{hi}+max

bσ

{1
2
〈Q−1bσ,bσ〉}]

where Q = DαDαJDαDα with

Dα =





√
α1 0 . . . 0

0
√
α2 . . . 0

...
...

...

0 0 . . .
√
αn




J =





J11 J12 . . . J1n

J12 J22 . . . J2n

...
...

...

J1n J2n . . . Jnn




(15)
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and bσ is the vector:

bσ =





α1

∑n
i=1 σiJ1i

α2

∑n
i=1 σiJ2i

...

αn

∑n
i=1 σiJin





(16)

The matrix J is called the redux interaction matrix. Defined f = min{G(x)|x ∈ Rn} and

supposed true: ∫

Rn

e−(N−1)G(x)dx < ∞ (17)

we have:

∫

Rn

e−NG(x)dx <

∫

Rn

e−(N−1)G(x)e−G(x)dx < ef
∫

Rn

e−(N−1)G(x)dx < ∞ (18)

Consider a (global or local) minimum point µ = (µ1, . . . , µn) of the function G(x), we

can write the Taylor expansion around µ:

G(x) = G(µ) +
∑

2≤|η|≤2k(µ)

(∂ηG)(µ)

η!
(x− µ)η + o

(∣∣∣∣

∣∣∣∣
∑

|η|=2k(µ)

(x− µ)η
∣∣∣∣

∣∣∣∣

)
(19)

where η = (η1, . . . , ηn) is a multi-index. We recall that:

• |η| = η1 + · · ·+ ηn

• η! = η1!η2! . . . ηn!

• ∂ηG =
∂η1

∂xη1
1

. . .
∂ηn

∂xηn
n
G

• (x− µ)η = (x1 − µ1)η1 . . . (xn − µn)ηn
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The polynomial:
∑

|η|=p

(∂ηG)(m)

η!
(x− µ)η (20)

is positive semidefinite for p < 2k(µ) and positive definite for p = 2k(µ).

The integer k(µ) is positive and is called the type of the minimum point µ. In particular

if k(µ) = 1, that is the determinant of the Hessian matrix of G(x) computed in the

minimum point is not zero, around µ we have:

G(x) = G(µ) +
1

2
〈HG(µ)(x− µ), (x− µ)〉+ o

(∣∣∣∣

∣∣∣∣
∑

|η|=2

(x− µ)η
∣∣∣∣

∣∣∣∣

)
(21)

where HG(µ) is the Hessian matrix computed in the minimum point µ.

We define the random vector v(k(µ)):

v(k(µ)) =

(
S1(σ)−N1µ1

(N1)1−1/2k(µ)
, . . . ,

Sn(σ)−Nnµn

(Nn)1−1/2k(µ)

)
(22)

In particolar as k(µ) = 1:

v(1) =

(
S1(σ)−N1µ1√

N1

, . . . ,
Sn(σ)−Nnµn√

Nn

)
(23)

Theorem 1. Let HN = −Ng(m1(σ), . . . , mn(σ)) be the Hamiltonian where g(m1(σ), . . . , mn(σ))

is a convex bounded function defined in (6). Let µ = (µ1, . . . , µn) be the unique global

minimum point of the function G(x) given from (12). Let k(µ) the type of the minimum

point.

• If k(µ) = 1 the asymptotic behaviour of the random vector v(1) defined in (23)

as N1 → ∞, . . . , Nn → ∞, for fixed values of α1, . . . , αn, is given by a normal

multivariate distribution whose covariance matrix is:

8



χ̃ =





∂µ1

∂h1

√
∂µ1

∂h2

∂µ2

∂h1
. . .

√
∂µ1

∂hn

∂µn

∂h1

√
∂µ1

∂h2

∂µ2

∂h1

∂µ2

∂h2
. . .

√
∂µ2

∂hn

∂µn

∂h2

...
...

...

√
∂µ1

∂hn

∂µn

∂h1

√
∂µ2

∂hn

∂µn

∂h2
. . .

∂µn

∂hn





(24)

where (µ1, . . . , µn) is the solution of the Mean Field Equations (10) corresponding

to the minimum.

• if k(µ) > 1 and the partial derivatives of order smaller then 2k(µ) are equal to zero

(homogenity hipothesis), that is

(∂ηG)(µ)

η!
= 0 for 2 ≤ |η| < 2k(µ) (25)

the asymptotic behavior of the random vector v(k(µ)) defined in (22) as N1 → ∞,

. . . , Nn → ∞, for fixed values of α1, . . . , αn, has density proportional to:

exp

[
−
∑

|η|=2k(µ)

(∂ηG)(µ)

η!

( x

α1/2k(µ)

)η]
(26)

where α = (α1, . . . ,αn)

Theorem 2. Let HN = −Ng(m1(σ), . . . , mn(σ)) be the Hamiltonian where g(m1(σ), . . . , mn(σ))

is a convex bounded function defined in (6). Let µ = (µ1, . . . , µn) be a global or a local min-

imum point of the function G(x) given from (12). Let k(µ) the type of the minimum point.

Then there exists A > 0 such that for all a ∈ (0, A) when (m1(σ), . . . , mn(σ)) ∈ B(n)(µ, a),

1. if k(µ) = 1 the asymptotic behavior of the random vector v(1) defined in (23) as

N1 → ∞, . . . , Nn → ∞, for fixed values of α1, . . . , αn, is given by a normal multi-

variate distribution whose covariance matrix is χ̃ defined in (24).
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2. If k(µ) > 1 and the partial derivatives of order smaller then 2k(µ) are equal to zero

(homogenity hipothesis), that is

(∂ηG)(µ)

η!
= 0 for 2 ≤ |η| < 2k(µ) (27)

the asymptotic behavior of the random vector v(k(µ)) defined in (22) as N1 → ∞,

. . . , Nn → ∞, for fixed values of α1, . . . , αn, has density proportional to:

exp

[
−
∑

|η|=2k(µ)

(∂ηG)(µ)

η!

( x

α1/2k(µ)

)η]
(28)

where α = (α1, . . . ,αn)

2 Proofs

2.1 Proof of theorem 1

To prove this theorem we need the following two lemmas.

Lemma 1. Suppose that X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are independent random

vectors such that X → ν.

Then Y → µ if and only if X + Y → ν ∗ µ

Lemma 2. Given the random vector (W1, . . . ,Wn) which joint distribution is the normal

multivariate

ρ(x) =

√
detA

(2π)n
exp

[
− 1

2
〈Ax,x〉

]
(29)

where A = DαJDα is a matrix positive defined, if (W1, . . . ,Wn) is independent of

(S1(σ), . . . , Sn(σ)) then for (µ1, . . . , µn) ∈ Rn and γ ∈ R the joint distribution of

(
W1

(N1)1/2−γ
, . . . ,

Wn

(Nn)1/2−γ

)
+

(
S1 −N1µ1

(N1)1−γ
, . . . ,

Sn −Nnµn

(Nn)1−γ

)
(30)
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is given by

exp

[
−NG

( x1

N γ
1

+ µ1, . . . ,
xn

N γ
n

+ µn

)]
dx1 . . . dxn

∫
exp

[
−NG

( x1

N γ
1

+ µ1, . . . ,
xn

N γ
n

+ µn

)]
dx1 . . . dxn

(31)

where G(x) is the fuction defined in (12).

The proof of the lemma is in the appendix. We remark that as γ < 1/2, the random

vector (W1, . . . ,Wn) does not contribute to the limit of (31) as N1 → ∞, . . . , Nn → ∞.

Taking γ = 1/2k(µ) by lemma (2) and lemma (1) we have to prove that, for any bounded

continuous function ψ(x1, . . . , xn)

∫
exp

[
−NG

( x1

Nγ
1

+ µ1, . . . ,
xn

Nγ
n
+ µn

)]
ψ(x1, . . . , xn)dx1 . . . dxn

∫
exp

[
−NG

( x1

Nγ
1

+ µ1, . . . ,
xn

Nγ
n
+ µn

)]
dx1 . . . dxn

→

∫
exp

[
−
∑

|η|=2k

(∂η1
x1
. . . ∂ηn

xn
G)(µ)

(2k)!

( x

αγ

)η]
ψ(x1, . . . , xn)dx1 . . . dxn

∫
exp

[
−
∑

|η|=2k

(∂η1
x1
. . . ∂ηn

xn
G)(µ)

(2k)!

( x

αγ

)η]
dx1 . . . dxn

(32)

where k = k(µ). Defined the function B(x,µ) = G(x+µ)−G(µ) then there exists δ > 0

sufficiently small so that for ||x|| < δa with a = max{
√
N1, . . . ,

√
Nn}, as N1 → ∞, . . . ,

Nn → ∞

N · B
(

x1

Nγ
1

, . . . ,
xn

Nγ
n
, µ1, . . . , µn

)
=
∑

|η|=2k

(∂η1
x1
. . . ∂ηn

xn
G)(µ1, . . . , µn)

(2k)!

(
x1

α1/2k
1

)η1

. . .

(
xn

α1/2k
n

)ηn

+ o

(∣∣∣∣

∣∣∣∣
x1

α1/2k
1

, . . .
xn

α1/2k
n

∣∣∣∣

∣∣∣∣
η)

(33)

Defined f = min{G(x)|x ∈ Rn} for any closed (possibly unbounded) subset V of Rn
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which contains no global minima of G(x) there exist ε > 0, so that

eNf

∫

V

exp[−NG(x)]dx = O(e−Nε) N → ∞ (34)

We pick δ > 0 as in (33). By (34) there exists ε > 0 so that

eNf

∫

||x||≥δa

exp

[
−NG

( x1

Nγ
1

+ µ1, . . . ,
xn

Nγ
n
+ µn

)]
ψ(x1, . . . , xn)dx1 . . . dxn

= O((Nγ
1 + · · ·+Nγ

n ) exp[−Nε]) (35)

whereas by (33) and dominate convergence, we have that:

eNf

∫

||x||<δa

exp

[
−NG

( x1

Nγ
1

+ µ1, . . . ,
xn

Nγ
n
+ µn

)]
ψ(x1, . . . , xn)dx1 . . . dxn

=

∫

||x||<δa

exp

[
−NB

( x1

Nγ
1

+ µ1, . . . ,
xn

Nγ
n
+ µn, µ1, . . . , µn

)]
ψ(x1, . . . , xn)dx1 . . . dxn

=

∫

||x||<δa

exp

[
−
∑

|η|=2k

(∂η1
x1
. . . ∂ηn

xn
G)(µ1, . . . , µn)

(2k)!

xη1

1

αη1/2k
1

. . .
xηn
n

αηn/2k
n

]
ψ(x1, . . . , xn)dx1 . . . dxn

For k = 1 the (33) becomes:

N · B
(

x1√
N1

, . . . ,
xn√
Nn

, µ1, . . . , µn

)
=

1

2

( n∑

l=1

Hll

αl
x2
l +
∑

k,l

Hlk√
αlαk

xlxk

)

+ o

(∣∣∣∣

∣∣∣∣
x1√
N1

, . . . ,
xn√
Nn

∣∣∣∣

∣∣∣∣
3)

(36)
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In analogous way, for ||x|| < δa, we prove that for any bounded continuous function

ψ(x1, . . . , xn):

∫
exp

[
−NG

( x1√
N1

+ µ1, . . . ,
xn√
Nn

+ µn

)]
ψ(x1, . . . , xn)dx1 . . . dxn

→
∫

exp

[
− 1

2
〈H̃G(µ)x,x〉

]
ψ(x)dx (37)

and:

∫
exp

[
−NG

( x1√
N1

+ µ1, . . . ,
xn√
Nn

+ µn

)]
dx1 . . . dxn →

√
det H̃G(µ)

(2π)n/2
(38)

where H̃G = D−1
α HGD−1

α . Hence to obtein the result we have to see that the distribution

√
det H̃G(µ)

(2π)n/2
exp

[
− 1

2
< H̃G(µ)x,x >

]
dx (39)

is exactly the convolution of the distribution of the random vector (W1, . . . ,Wn) with a

multivariate normal which covariance matrix is χ̃.

The characteristic function of a random vector

(X1, . . . , Xn) ∼
√
detB

(2π)n/2
exp[−1/2(〈Bz, z〉)]

is

φ(λ) = exp[−1/2〈B−1λ,λ〉]

Indicated with φA(λ), φv(λ) and φ
H̃G

(λ) respectively the characteristic function of the

random vectors (W1, . . . ,Wn), v(1) and of their sum we have:

φ
H̃G

(λ) = φA(λ) φv(λ) (40)

So to determinate φv(λ) we compute the matrix A−1 and H̃
−1

G . Taking off A−1 from

H̃
−1

G we obtein the matrix χ̃.
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2.2 Proof of theorem 2

To ease the notation, we set k = k(µ) and γ = 1/2k(µ). Given k(µ) > 1, we must

find A > 0 such that for each r = (r1, . . . , rn) ∈ Rn and any a ∈ (0, A)

ωN(exp[irv])
∣∣
E
=

∫
E exp[irv] exp[−HN (S1, . . . , Sn)]

∏
dρ(σj)∫

E exp[−HN (S1, . . . , Sn)]
∏

dρ(σj)
(41)

where:

E =

{∣∣∣∣
S1

N1
− µ1

∣∣∣∣ ≤ a× · · ·×
∣∣∣∣
Sn

Nn
− µn

∣∣∣∣ ≤ a

}
(42)

and:

HN(S1, . . . , Sn) = −1

2

[ n∑

l=1

αlJll

Nl
S2
l +
∑

l #=s

Jls

√
αlαs

NlNs
SlSs

]
−

n∑

l=1

hlSl (43)

tends as N1 → ∞, . . . , Nn → ∞, for fixed values of α1, . . . , αn to

∫
exp[irw] exp

[
−
∑

|η|=2k

(∂ηG)(µ)

η!

( w

α1/2k

)η]
dw

∫
exp

[
−
∑

|η|=2k

(∂ηG)(µ)

η!

( w

α1/2k

)η]
dw

. (44)

Given

H̃N(S1, . . . , Sn) = −1

2

[ n∑

l=1

αlJll

(
Sl −Nlµl√

Nl

)2

+
∑

l #=s

Jls
√
αlαs

(
Sl −Nlµl√

Nl

)(
Ss −Nsµs√

Ns

)]

we can rewrite (41) as:

∫
E exp[irv] exp[−H̃N (S1, . . . , Sn)] exp[

∑n
l=1 Sl(hl +

∑n
s=1 Jlsαsµs)]

∏
dρ(σj)∫

E exp[−H̃N (S1, . . . , Sn)] exp[
∑n

l=1 Sl(hl +
∑n

s=1 Jlsαsµs)]
∏

dρ(σj)
(45)

Defining:

dρj(x) =
exp[x(hj +

∑n
s=1 Jjsαsµs)]dρ(x)∫

exp[x(hj +
∑n

s=1 Jjsαsµs)]dρ(x)
j = 1, . . . , n (46)

we have:

ωN(exp[irv])
∣∣
E
=

∫
E exp[irv] exp[−H̃N (S1, . . . , Sn)]

∏n
j=1

∏
l∈Pj

dρj(σl)
∫
E exp[−H̃N(S1, . . . , Sn)]

∏n
j=1

∏
l∈Pj

dρj(σl)
(47)
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We introduce the random vector:

(U1, . . . , Un) =

(
S1 −N1µ1

N1
, . . . ,

Sn −Nnµn

Nn

)
(48)

and indicate by dν(u) its distribution on (RN ,
∏n

j=1

∏
l∈Pj

dρj(xl)). We can write:

ωN(exp[irv])
∣∣
E
=

∫
||u||≤a exp[iN

γrαγu+ N
2 〈Qu,u〉]dν(u)

∫
||u||≤a exp[

N
2 〈Qu,u〉]dν(u)

(49)

Since

exp
[N
2
〈Qu,u〉

]
=

√
N detQ

(2π)n

∫
exp
[
− N

2
〈Qw,w〉

]
exp
[
N〈Qw,u〉

]
dw (50)

After the semplification of the terms
√

N detA/(2π)n and the change of variable

w′
j = wj +

iNγ−1

αj detJ
ξj(r1, . . . , rn) j = 1, . . . , n

where the functions ξj(r1, . . . , rn) are properly choosen to semplify exp[iNγrαγu], we

have:

ωN(exp[irv])
∣∣
E

=

exp
[ N2γ−1

2(detJ)2
〈Jξ, ξ〉

]∫
exp
[
− N

2 〈Qw,w〉+ iNγrαγu
]∫

||u||≤a

exp
[
N〈Qw,u〉

]
dν(u)dw

∫
exp
[
− N

2 〈Qw,w〉
]∫

||u||≤a

exp
[
N〈Qw,u〉

]
dν(u)dw

(51)

Since k > 1 we have 2γ − 1 < 0 and thus exp
[ N2γ−1

2(detJ)2
〈Jξ, ξ〉

]
→ 1 as N → ∞ for each

r ∈ Rn. For the rest of the proof we need the following:

Lemma 3 (Transfer Principle). There exists B̂ > 0 depending only on ρ such that for

each B ∈ (0, B̂) and for each a ∈ (0, B/2) and each r ∈ Rn, there exists δ = δ(a, B) > 0

such that as N → ∞:
∫

exp
[
− N

2
〈Qw,w〉

]
exp[iNγrαγw]

∫

||u||≤a

exp
[
N〈Qw,u〉

]
dν(u)dw

=

∫

||w||≤B

exp
[
− N

2
〈Qw,w〉

]
exp[iNγrαγw]

∫
exp
[
N〈Qw,u〉

]
dν(u)dw +O(e−Nδ)

(52)
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For the proof of the transfer princeple see the appendix.

Once we have found B̂ we set A in the theorem equal to B̂/2. If a ∈ (0, B̂/2), then at the

price of an exponentially small error, the quotien of integrals in (51) can be replaced by a

quotient of integrals using the formula (52) chosing the numerator with generic r and the

denominator with r equal to the zero vector. Making the following change of variables:

wj =
w′

j

(Nαj)γ
j = 1, . . . , n (53)

we obtain:

ωN(exp[irv])
∣∣
E
=

∫

F

exp
[
− N

2 〈Q
w

(Nα)γ ,
w

(Nα)γ 〉
]
exp[irw]

∫
exp
[
N〈Q w

αγ ,u〉
]
dν(u)dw

∫

F

exp
[
− N

2 〈Q
w

(Nα)γ ,
w

(Nα)γ 〉
]∫

exp
[
N〈Q w

αγ ,u〉
]
dν(u)dw

(54)

where F = {|w1| ≤ BNγ
1 , . . . |wn| ≤ BNγ

n}.

We define the function:

Φ(x1, . . . , xn) =
n∑

l=1

αl ln

[
cosh

( n∑

s=1

αsJls xs + hl

)]

= − ln 2 +
1

2

( n∑

l=1

α2
l Jll x

2
l +
∑

l #=s

αlαs Jls xlxs

)
−G(x1, . . . , xn)

(55)

So we have:

exp
[
− N

2
〈Q w

(Nα)γ
,

w

(Nα)γ
〉
] ∫

exp
[
N〈Q w

αγ
,u〉
]
dν(u)

= exp

[
−N

(
1

2

n∑

l=1

α2
l Jll

w2
l

N2γ
l

+
1

2

∑

l #=s

αlαs Jls
wl

Nγ
l

ws

Nγ
s

−
(
Φ
( w1

Nγ
1

+ µ1, . . . ,
wn

Nγ
n
+ µn

)
− Φ(µ1, . . . , µn)−

n∑

l=1

α2
l Jll

wl

Nγ
l

µl −
∑

l #=s

αlαs Jls
wl

Nγ
l

µs

)]

= exp

[
−N

(
G
( w1

Nγ
1

+ µ1, . . . ,
wn

Nγ
n
+ µn

)
−G(µ1, . . . , µn)

)]

= exp

[
− N

N |η|γ

∑

|η|=2k

(∂ηG)(µ)

η!

( w

αγ

)η
+NO

(∣∣∣∣

∣∣∣∣
∑

|η|=2k+1

( w

(Nα)γ

)η∣∣∣∣

∣∣∣∣

)]

(56)

Hence, for each w ∈ Rn the expression (56) as N → ∞ tends to:

exp

[
−
∑

|η|=2k

(∂ηG)(µ)

η!

( w

αγ

)η]
(57)
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Let ε be any number which satisfies

ε ∈
(
0, min

|η|=2k

{
(∂ηG)(µ)

η!

})

We may find B̃ > 0 such that

N

(
Φ
( w1

Nγ
1

+ µ1, . . . ,
wn

Nγ
n
+ µn

)
− Φ(µ1, . . . , µn)−

n∑

l=1

α2
l Jll

wl

Nγ
l

µl −
∑

l #=s

αlαs Jls
wl

Nγ
l

µs

)

≤ N

( n∑

l=1

α2
l Jll

w2
l

N2γ
l

+
∑

l #=s

αlαs Jls
wl

Nγ
l

ws

Nγ
s

)
−
∑

|η|=2k

(
(∂ηG)(µ)

η!
− ε

)( w

αγ

)η

(58)

whenever
∣∣∣ wj

Nγ
j

∣∣∣ ≤ B̃ i = 1, . . . , n. Hence the last expression in (56) is bounded by

exp

[
−
∑

|η|=2k

(
(∂ηG)(µ)

η!
− ε

)( w

αγ

)η]
whenever

∣∣∣
wj

Nγ
j

∣∣∣ ≤ B̃ (59)

Setting B = min{B̂, B̃} we obtain the result by the dominated convergence theorem.

This proves the statement 2 of the theorem.

For k = 1 in analogous way we prove that as N1 → ∞, . . . , Nn → ∞, for fixed values of

α1, . . . , αn, the expression (41) converges to:

exp

[
1
2〈(DαJDα)−1r, r〉

]∫
exp[irw] exp

[
− 1

2〈HG(µ)
w√
α
,
w√
α
〉
]
dw

exp

[
− 1

2〈HG(µ)
w√
α
,
w√
α
〉
]
dw

(60)

In particular

∫
exp[irw] exp

[
− 1

2〈HG(µ)
w√
α
,
w√
α
〉
]
dw

∫
exp

[
− 1

2〈HG(µ)
w√
α
,
w√
α
〉
]
dw

= exp

[
− 1

2
〈H̃−1

G (µ)r, r〉
]

(61)

where H̃G = D−1
α HGD−1

α . Taking off (DαJDα)−1 from H̃
−1
G we obtain the matrix χ̃.

Hence the (41) tends to a normal multivariate distribution whose covariance matrix is χ̃.

This proves the statement 1 of the theorem.
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3 Examples

We now analyze the case of two populations of same cardinality. The Hamiltonian

HN(m1, m2) = −N

8
(J11m

2
1 + J22m

2
2 + 2J12m1m2 + 4h1m1 + 4h2m2) (62)

is a convex function of the magnetizations if the redux interaction matrix J

J =



J11 J12

J12 J22



 (63)

is positive definited, that is J11 > 0 and J11J22 − J2
12 > 0. The stationary points of the

function G

G(x1, x2) =
1

8

(
J11x

2
1 + J22x

2
2 + 2J12 x1x2

)

− 1

2
ln
[
2 cosh(

J11

2
x1 +

J12

2
x2 + h1)

]

− 1

2
ln
[
2 cosh(

J12

2
x1 +

J22

2
x2 + h2)

]
(64)

are solutions (µ1, µ2) of the Mean Field Equations of the model:






µ1 = tanh(J112 µ1 +
J12
2 µ2 + h1)

µ2 = tanh(J122 µ1 +
J22
2 µ2 + h2)

(65)

The Hessian matrix of the function G computed in a stationary point is:

HG =
1

8



 2J11 − J2
11(1− µ2

1)− J2
12(1− µ2

2) 2J12 − J11J12(1− µ2
1)− J22J12(1− µ2

2)

2J12 − J11J12(1− µ2
1)− J22J12(1− µ2

2) 2J22 − J2
12(1− µ2

1)− J2
22(1− µ2

2)





(66)

and its determinant is:

det
HG

(µ1, µ2) =
detJ

64
[4− 2J11(1− µ2

1)− 2J22(1− µ2
2) + detJ(1− µ2

1)(1− µ2
2)] (67)

So the stationary point (µ1, µ2) is a minimum of G of type k = 1 if:






(HG)11(µ1, µ2) > 0

detHG
(µ1, µ2) > 0

(68)
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For example if we consider the particular case in which the external field h1 and h2 are

equal to zero and the parameters J11 and J22 are the same. The stationary point (0, 0)

verifies the conditions (68) if:

• 0 < J11 ≤ 1 and −J11 < J12 < J11

• 1 < J11 < 2 and J11 − 2 < J12 < 2− J11

To have a minimum point of type k > 1 the Hessian matrix HG(µ1, µ2) must be equal to

the matrix with zero elements. This means:





J11 ≥ 2

J22 ≥ 2

J12 = 0

µ2
1 =

J11 − 2

J11

µ2
2 =

J22 − 2

J22

(69)

Only if the third partial derivatives of G computed in (µ1, µ2) are equal to zero the point

can be a minimum. This is verified if and only if J11 = J22 = 2. Hence (µ1, µ2) = (0, 0).

Computing the partial derivatives of fourth order we can assert that this is a minimum

of type k = 2.

4 Appendix

Proof of lemma (2). Given θ1, . . . , θn real

P

{
W1

(N1)1/2−γ
+

S1 −N1µ1

(N1)1−γ
≤ θ1, . . . ,

Wn

(Nn)1/2−γ
+

Sn −Nnµn

(Nn)1−γ
≤ θn

}
=

P
{√

N1W1 + S1 ∈ E1, . . . ,
√

NnWn + Sn ∈ En

}
(70)
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where El =
[
−∞, (Nl)1−γθl +Nlµl

]

The distribution of (
√
N1 W1, . . . ,

√
Nn Wn) is

ρ̃(x) =

√
det Ã

(2π)n
exp

[
− 1

2
〈Ãx,x〉

]
(71)

where Ã = 1/NJ. From the definition of the matrix A follows that Ã is positive defined.

The joint distribution of the random vector (S1(σ), . . . , Sn(σ)) is:

e−HN (x1,...,xn)dρ∗N1(x1) ∗ · · · ∗ ρ∗Nn(xn)∫

RN

e−HN (x1,...,xn)dρ∗N1(x1) ∗ · · · ∗ ρ∗Nn(xn)
(72)

where d(ρ∗N1(x1) ∗ · · · ∗ ρ∗Nn(xn)) denotes the N -fold convolution of the measure ρ with

itself and HN(x1, . . . , xn) is the Hamiltonian expressed as function of the sums of spins

(43). The distribution of (30) is given by the convolution of the distribution (71) with

the distribution (72), so we have:

P
{√

N1 W1 + S1 ∈ E1, . . . ,
√

Nn Wn + Sn ∈ En

}
=

=

√
det Ã

(2π)n/2ZN

∫

E

dx1 . . . dxn

∫

Rn

exp

[
− 1

2

( n∑

l=1

αlJll

Nl
(xl − tl)

2 +
∑

l #=s

Jls

√
αlαs

NlNs
(xl − tl)(xs − ts)

)]

exp

[
1

2

( n∑

l=1

αlJll

Nl
t2l +
∑

l #=s

Jls

√
αlαs

NlNs
tlts

)
+

n∑

l=1

hltl

]
ρ∗N1(dt1) . . . ρ

∗Nn(dtn)

=

√
det Ã

(2π)n/2ZN

∫

E

dx1 . . . dxn exp

[
− 1

2

( n∑

l=1

αlJll

Nl
x2
l +
∑

l #=s

Jls

√
αlαs

NlNs
xlxs

)]

n∏

l=1

∫

R

exp

[
tl

( n∑

k=1

Jlk

√
αlαk

NlNk
xk + hl

)]
ρ∗Nl(dtl)

(73)
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where E = E1 × E2 × · · ·×En. If we make the following change of variables:

sl =
xl −Nlµl

(Nl)1−γl
(74)

we obtain for (73):
√

det Ã (N1)1/2−γ . . . (Nn)1/2−γ

(2π)n/2ZN

∫ θ1

−∞

. . .

∫ θn

−∞

ds1 . . . dsn exp

[
− N

2

( n∑

l=1

α2
l Jll

( sl
N γ

l

+ µl

)2
+

∑

l #=k

αlαkJlk

( sl
N γ

l

+ µl

)( sk
N γ

k

+ µk

))
+

n∑

l=1

Nl ln

[
2 cosh

( n∑

k=1

αkJlk

( sk
N γ

k

+ µk

)
+ hl

)]]

=

√
det Ã N1 . . . Nn

(2π)n/2ZN

∫ θ1

−∞

. . .

∫ θn

−∞

exp

[
−NG

( s1
N γ

1

+ µ1, . . . ,
sn
N γ

n
+ µn

)]
ds1 . . . dsn

Taking θ1 → ∞, . . . , θn → ∞ gives an equation for ZN which when substituted back

yiealds the result. The integral in the last expression is finite by (14).

Proof of Transfer Principle. We shall find B̂ such that for each B ∈ (0, B̂) and each

a ∈ (0, B/2) there exists δ = δ(a, B) such that as N → ∞
∫

||w||>B

exp
[
− N

2
〈Qw,w〉

]∫

||u||≤a

exp
[
N〈Qw,u〉

]
dν(u)dw = O(e−Nδ) (75)

and ∫

||w||≤B

exp
[
− N

2
〈Qw,w〉

]∫

||u||>a

exp
[
N〈Qw,u〉

]
dν(u)dw = O(e−Nδ) (76)

For any B > 0, any a ∈ (0, B/2), the left-hand side of (75) is bounded by:
∫

||w||≥B

exp
[
−N〈Qw,

w

2
−a〉
]
dw ≤

∫

||w||≥B

exp
[
−N〈Qw,

B

2
−a〉
]
dw = O(e−Nδ1) (77)

with δ1 = 〈QB, B2 − a〉, where a = (a, . . . , a) and B = (B, . . . , B). To prove (76) we

introduce the Legendre transformation Φ∗ of the function Φ:

Φ∗(y) = sup
x∈Rn

{〈y,x〉 − Φ(x)} y ∈ R
n (78)
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and the function Φ̃∗(y) = Φ∗(α ! I(y)) where I(y) =
( n∑

i=1
αiJ1i yi, . . . ,

n∑
i=1

αiJni yi
)
and

we give the following:

Lemma 4. The function Φ∗ is convex, finite and smooth on a certain open (possibly

unbounded) set I containing µ. Φ∗ = +∞ on ĪC, and Φ∗ is strictly convex on I.

For any u = (u1, . . . , un) with u1, . . . , un positive

P{U1 > u1, . . . , U1 > un} ≤ exp[−N(Φ̃∗(µ+ u)− Φ̃∗(µ)−∇Φ̃∗(µ) ! u)] (79)

There exists a number u0 > 0 such that for all uj ∈ (0, u0)

∂Φ̃∗

∂xj
(µ+ u)− ∂Φ̃∗

∂xj
(µ) = αjIj(u) + ζj(u) (80)

with ζj(u) > 0.

The left-hand side of (76) is bounded by

πn/2Bn

Γ(n/2 + 1)
sup
|w|≤B

∫

|u|>a

exp

[
−N

(
1

2
〈Qw,w〉 − 〈Qw,u〉

)]
dν(u) (81)

Integrating by parts, we have:

sup
|w|≤B

∫

|u|>a

exp

[
−N

(
1

2
〈Qw,w〉 − 〈Qw,u〉

)]
dν(u)

≤ sup
|w|≤B

exp

[
−N

(
1

2
〈Qw,w〉 − 〈Qw, a〉

)]
P{U1 > a, . . . , Un > a}

+N sup
|w|≤B

〈Qw, 1〉
∫

|u|>a

exp

[
−N

(
1

2
〈Qw,w〉 − 〈Qw,u〉

)]
P{U1 > u1, . . . , Un > un}du

(82)

Using (79) we bound P{U1 > u1, . . . , Un > un} where u1, . . . , un ≥ a. The last term in

(82) is bounded by:

N sup
|w|≤B

〈Qw, 1〉
∫

a<|u|<u0

exp

[
−N

(
1

2
〈Qw,w〉 − 〈Qw,u〉1

2
〈Qu,u〉+ 〈θ, 1〉

)]
du

+N sup
|w|≤B

〈Qw, 1〉
∫

|u|>u0

exp

[
−N

(
1

2
〈Qw,w〉 − 〈Qw,u〉+ 〈u,ϑ〉

)]
du

= O(e−Nδ2)

(83)

where δ2 = min{〈θ, 1〉/2, 〈u0,ϑ−B〉}. The term in (82) involving P{U1 > a, . . . , Un > a}

is handled similarly. We have thus proved (75) and (76) with δ = min{δ1, δ2}
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5 Conclusions and outlooks

In this paper we have generalized to multi-species Curie-Weiss models the study of the

normalized sums of spins and their limiting distributions. We worked under a condition

of convexity of the reduced interaction matrix which allows us to use the Ellis-Newman

method. The theorems presented in this work obtain a complete classification of the distri-

bution when the first non vanishing partial derivatives are all the same order (homogeneity

hypothesis). The extension to non convex interactions or the complete classification of

the limiting distribution beyond the homogeneity hypothesis will be subject of further

investigation.
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