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Summary
We study a disordered d-dimensional Ising model defined by random couplings and
quenched free energy. After some general results we concentrate on mean field solutions.
For these we prove that the critical value of § is the same as in the Ising case. A particu-
lar study is devoted to the mean field solutions for fully frustrated configurations: using a
Schwartz inequality for frustrated cubes we find the exact critical .

PACS 05.50 Ising models, lattice theory.
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1. Introduction.

In the last two decades disordered mean field models in statistical mechanics have been
investigated and interesting proposals have been done to solve them. Looking backwards one
notices that mean field models were often proposed as exactly solvable models with phase
structure very close to mean field solutions of some model in physical lattices. By mean field
solution we simply mean the product state best approximating the true equilibrium state
according to the prescription of entropic variational principle. For instance the Kac model
defined by the Hamiltonian HY = —% P 25 0i0; has the same spontaneous magnetization
behaviour that one finds in mean field solution for Ising model (ref [1]). It is very natural
to ask whether the same correspondence holds also in disordered case. For instance can
Sherrington-Kirkpatrick (S.K.) or some more complicated disordered mean field model be
considered, in some sense, a mimic of mean field solutions for a disordered model of Ising
type? This work is only a preliminary step in this direction.

The chapters are organised as follows. In chapter 1 we summarize some theorems of
existence of thermodynamical limit; using convexity estimates and cluster expansion we point
out a non trivial difference between S.K. model and our lattice model. The saturation of
convexity inequality for the logarithm, which in the S.K. model reflect the absence of any
phase transition in the high temperature regime, doesn’t hold any more in our case.

In chapter 3 we consider a possible class of mean field models corresponding to our lattice
model. The main result of this section is theorem 3.1., which prove that these models reduce
essentially to S.K.

Chapter 4 collects some results on mean field free energy obtained by variational princi-
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ple. Theorems on thermodynamical limit are similar to the exact case. We present the proof
in the appendix showing how it simply follows from reflection positivity property. Using the
so obtained monotonicity property for mean field free energy we find that the critical value
of B is ﬁ , as in usual Ising mean field.

Finally in chapter 5 we study the mean field behaviour for fully frustrated configurations.
We prove for them that the value 2—\1/3, already found as upper bound for the critical 3 (ref
[9]), is the exact critical value. This result is obtained with a Schwartz inequality for fully
frustrated cubes.

2. A disordered Ising model. Some preliminary results.

Our geometrical space is the d-dimensional lattice Z¢. We will consider also the associ-
ated bond space B¢ , and the plaquettes space IP¢. If A C Z%¢, B(A) will be the corresponding
subset of 1B,

To each site n € Z% we associate the spin variable o(n) and to each bond (n,n’) € IB¢
the coupling variable j(n,n'); with obvious symbols

Oy = {U(n)}neA Iy = {j(nan/)}(n,n’)EB(A) (2'1)

Both 5 and o take value +1; for them we define different probability measures by

(0(n))e =0 (j(n,n)); =J (2.2)

Our disordered Ising model is defined by the Hamiltonian

Hy (o jsw) == Y, dmn)o(n)a(n) (2:3)
(n.n")€B(A)

and by the quenched free energy density

Fpg(B) = (log(exp~#14),); (2.4)

1
BIA]
Of great importance, for mathematical and physical reasons, is also the not j-averaged
free energy, i.e. the random variable

Fp (B, Jsmy) = — 10g<eXp_ﬁHA>a (2.5)

1
BIA
With the above notations the following theorems hold:
Proposition 2.1.

In V.Hove sense

3 Jim Fs (9) (2.6)



3 lim Fx(B,jsn) with probability one (2.7)
AZd

Ali(rgd Fr (B, dsmy) = AlirnZld Fa j(B) with probability one (2.8)
This means that the random free energy density is a selfaveraging function, in thermo-
dynamical limit, almost everywhere.
The theorem (2.6) is completely analogous to the ordered case. (For (2.7) and (2.8) see
2], [3], [4]). The proofs are essentially based on estimates of boundary contributions and
on strong law of large numbers for mutually independent and identically distributed random
variables.

The two following theorems study the high temperature phase; as one expects there is
no relevant difference with the ordered case. Indicating with F} (3) the free energy density
for the Ising case it is easy to obtain with usual convexity arguments the following estimate:

Theorem 2.3.

h
oL )~ oy (2200 ) < o (9) < 0FL () (2.9
with 3’ and 3" defined by
J tanh(3) = tanh(3) (2.10)
and
Jg=p" (2.11)
Proof:

The lower bound is a simple application of the convexity inequality for the logarithm,
i.e. log ((€)) > (log (&)); the relation (2.10) is needed in order to identificate the first term of
the left hand side with the Ising free energy density.

The upper bound is obtainable as follows: indicating with Hf (o4) = Hp (04, T5(s,) the

I
1B _ (exp ?"h)o
= o o

energy of the Ising configuration and with (-) ;
Ao

the equilibrium state for the
(exp

Ising configuration, one obtain

_BHH/I\(UA)>U

exp
_ //HI
B A(UA)>0'

<eXp—ﬁHA (O'A JB(A) ) >U <exp_,6HA (O'A 7jB(A))+,B”H/I\((7A)
_ﬂuH[I\(UA)>U -

(exp (exp

1"

' " g "
_ <eXp_,8HA(UA7JB(A))+,8 H}\(a,\)> > exp (—BH, (04, js) + 6" HE (UA)>I’ﬁ .

We can now optimize the last inequality choosing 3" = J which gives

. I7 1
(—BH, (O-AajB(A)) + ﬁ//H/I\ (04)) - 0
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from which the (2.9) upper bound immediately follows.

It is evident that for all A C Z% the estimates (2.9) are saturate, i.e. its become equalities,
in the limit g = 0.

It has been proved ([5], [6]) that the equivalent lower bound for the S.K. model, i.e. the
estimate obtained with the convexity property for the logarithm is saturate in the thermo-
dynamical limit when g is sufficiently small.

We can prove that this property never holds in our case unless § = 0. In fact with
classical cluster expansion techniques ([7]), at high temperature regime and with periodic
boundary conditions, we easily obtain the following;:

Theorem 2.3.

cosh()

BEp, (ﬁ) — 3'Fy (ﬁ/) = —dlog (m

) _ @(w“’ +1) (tanh(B))® + o ((tanh(ﬁ))s)
(2.12)

We can conclude that the hight temperature phase for our lattice model is not charac-
terised by the saturation of convexity inequality for the logarithm.

3. A class of disordered mean field models. The reduction to S.K.

As explained in the introduction one of the principal motivation to study mean field
models is that they are generally exactly solvable and its phase structure reproduce the mean
field solution of some model in physical lattice. A mean field model can be thought as a
group of N spin arranged in a infinite dimensional space in such a way that each of them sees
the remanent ones at the same distance; the interaction between two spin decrease with the
inverse of N. The Kac model is one of the simplest examples of mean field model. In the case
of disordered systems a possible class of mean field models can be defined by an Hamiltonian
sum of two parts representing respectively a disordered version of Kac Hamiltonian (D.K.)
and the S.K. Hamiltonian.

HN — HﬁK _|_H:‘7K _ _Z
1£]

10 5 - (31)

where the sum runs to all the couples of spin. The variables o, J, J take value +1 and .J , J
are the random variables with

(Jij)o = (Jij)s =0 (3.2)



The suggested Hamiltonian can be thought as a series expansion in % truncated at
the second order with random coupling variables able to control the relative normalization
factors.

The main result of this section is that the D.K. part is exactly solvable and that the
disorder act on it as a simple temperature rescaling of the ordered case. We have obtained
this conclusion simply rephrasing the theorem 2.2 for the Hamiltonian H ZIV) K- which give the

Theorem 3.1

indicating with FPE(3) and F¥ () the free energy density respectively for the disordered
Kac model and the usual one we have

GFE (3) N@N-1) | (cosh(

%) D.K. 11K 7ol
2 (@ > < BFN " (B) < B"Fy (87) (3.3)

with 3’ and 3" defined by

Jtanh(%) = tanh(%’) (3.4)
and
Jp=p" (3.5)

8
Now in the limit N — oo one obtain #” = 3 = J3 and w log (COSE((;;C))> — 0 so
COSs ~

that the upper and the lower bound coincide in the thermodynamical limit:

Theorem 3.2

FP5(6) = JF*(3J) (3.6)

This means that the disordered behaviour for H is entirely due to the S.K. part.

4. Study of mean field solutions.

In the following we will indicate the product state by wy = ¢ wn with wy (0(n)) =
m(n) and M, = {m(n)}nea
It is trivial to give an upper bound of free energy with a functional of product states; with
standard convexity estimates we find, for every configuration j

FA (ﬁva(A)) S UA (MAajB(A)) - 5_15 (MA) (4'1)

where U and S are respectively the internal energy density and entropy density in a general
product state i.e.



A|Ux (My, ) = wa (Ha (00, Jo)) == Y (0 )m(n)m(n’)

(n,n")EB(A)
and
AlS (M) =) S, (4.2)
neA
with
5=~ 10y (14 () — L g (1 )

Defining the right hand side of (4.1) as F, (M, jan,,3) we define the mean field free
energy density by

FX 7 (B) = (FA"" (Usy, 8))4 (4.3)
and
F/I\V['F' (jB(A)7ﬁ) = 3\?,{ FA (MAva(A)wB)

The thermodynamical limit for the mean field case is similar to the exact one:

Theorem 4.1.

Fy 7 (B) < F{'/(B) monotonicity property (4.4)
for those A which admit a rational disjoint decomposition
A =Ui A,

where A; are congruents to an arbitrary A.
Being free energy density lower bounded one obtains that, in Van Hove sense:

70 (B) =l Fyy(8) = lim inf F(5(5) (4.5)
= Alimd FY'"" (4w, B) = F7(8) with probability one . (4.6)
A

For the proof see Appendix A.

We look now for those M which minimize the functional F,; imposing the stationarity
condition one obtains the well known mean field consistency equation

m(n) = tanh(3 Z j(n,n")m(n")) (4.7)

n'€N(n)
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where N(n) is the set of nearest-neighbours of n.

The positivity of second order variation has to be added to exclude maximum and saddle
points.

It’s clear that, for a given j, the (4.7) is a fixed point equation for an operator acting in
the space of M, equipped with some metric. This suggests the possibility that the property
of stationary points of Fy (M,,j By, ) can be translated in terms of ergodicity property of
the abstract dynamical system associated to (4.7). We will use for our purpose the degree of
freedom connected to this association in the choice of operator and metric. The sup metric
seems to be the only candidate able to survive in the infinite volume. We choose the operator
acting on the metric space in such a way that F' shall be a Ljapounov function for it; in this
way the set of fixed stable points will correspond to the points of relative minima for our
functional.

The operator can be obtained as follows: defining

(Ke'uenM) (’Il) = { tanh (6 Zn’EN(n) J(n, n’)m(n’)) if n is even (48)
M(n) otherwise

and similarly K,qq our operator is K(j,3) = KeyenKoda- It is obvious that this K has the
same fixed points as equation (4.7). The fact that F is a Ljapounov function for K follows
by the convexity of F' with respect to every variable M(n).

This allows us to obtain the following (see Appendix B I):

Theorem 4.2.

defined 8" = [sup B : F;""(8) = 0] we have

B = o (4.9)

5. The fully frustrated case.

It is a well known heuristic fact that the peculiar features of these kind of models are
due essentially to the presence of frustrated plaquettes between the configurations on which
one perform the average. A plaquette p € IP¢ is said frustrated in a configuration j if
i) = Il(nn)epi(n,n') = —1. For this reason a good starting point to understand our
model seems to be the study of those configurations in which every plaquette is frustrated,
the so called fully frustrated (f.f.) configurations jss.

We recall that fixing the j(p) one fixes an orbit of configurations for the gauge group
defined by the action on point’s functions, e.g.

M — M with M'(n)=M(n)a(n) where «a(n)==+1 (5.1)
and on bond’s functions, e.g.

j—4" with j'(n,n) =jn,n)a(n)a(n) (5.2)
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It is easy to prove that free energy for a given j, real or mean field, is invariant under the gauge
group. The same holds for the density whenever it exists ( in fact (2.8) and (4.6) doesn’t
exclude pathological configurations of measure 0) and, as a consequence, for the critical values
of  for a given configuration defined as 527 (j) = [sup B : F"(j5,08) = 0].

The existence of thermodynamical limit for f.f. configurations is easily obtained as in
the ordered case thanks to their homogeneity.

Our main result, for f.f. configurations, is the following:

Theorem 5.1.

1
MF [ + -
Bt Usr) = 57 7
The square root on d is typical for critical parameters in f.f. models (ref [8]).

Proof:

The theorem consist of the upper and lower bound for 82" (j¢¢). We need the following
lemma (see Appendix B II):

Lemma 5.1) Considering a f.f. cube one has:

Z j(n,n Ym(n)m(n') < g Zm (5.4)

(n,n')

where the sum are extended to the cube.
From this we obtain

BIAIE, > ) (Sn — 28Vdm(n)?) (5.5)

neA

minimizing and performing the thermodynamical limit we find:

BF " (jus,8) > F(26Vd) (5.6)
where F'is the usual mean field free energy density for Ising model i.e. F(3') = ins (S(m) —

A with g = 1
This means that

B (Jeg) = (5.7)

2f

The estimate in the other direction have been obtained (ref. [9]) linearising the opera-
tor K(ji¢,3). It is interesting to compare this operator to the corresponding one in Ising.
Denoting with A, the k-step Laplacian in Z ¢ we have

Llsing = ﬁ(A(l) + 2d:[[)
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L? = B%(A, + 4dT) (5.8)

We stress that this form for the linearized operator holds only for f.f. configurations restricted
by the condition j(n,m)j(m,l) = 1 when n and [ are opposite sites with respect to m, and
of course it’s not gauge invariant; nevertheless the results obtained on critical # and on m.f.
free energy are gauge invariant because the latter is so.

Using the sup norm induced by our metric

L2 M|
M|

122 =
M

one finds
(LPM)(n)| = B°|( D> M(n')+2dM(n))| < 4dB*| M|

n'€N(n)
[(L>M)(n)|| < 4dB%|| M || (5.9)
|L?|| < 4dp?

This inequality is saturated with every periodic M of period 2. In other words we take a
d-dimensional cube with arbitrary magnetization in his vertex and replicate it by reflexion
with respect to the plaquettes limiting it:

(L*>M)(n) = 4dB>M (n) (5.10)

which gives
IL?]| = 4d 3 (5.11)

It follows that

Be'" (ep) < (5.12)

1
2v/d
which proves the theorem 5.1.

This last result suggests that the natural lattice for f.f. configurations have a doubled
step. This implies that the estimate (5.12) can also be obtained with an appropriate Ansatz
with period 2; actually one can show that the Ansatz M parameterized by the 2% value of
magnetisations in the cube and replicate by reflexion have the right critical temperature.

6. Comments

Up to now we have obtained a rather clear picture of mean field behaviour for fully
frustrated configurations. In the usual Ising case the A, binds the magnetization to be
constant and only Zs symmetry breaking is permitted. In f.f. configurations A ,, leaves ”one
step” degree of freedom that allows a 2¢ multiplicity in the starting directions for mean field
solutions when g > 2—\1/3. How the f.f. behaviour is reflected in the j-averaged mean field is not

yet clear. Further developments are needed to establish whether the embryonic degeneracy
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we have found can be responsible of multivalley picture that one expects from this kind of
models.

Appendix A

I)

The (4.4) is a direct consequence of reflection positivity property. We show the proof for
A=A UA,

with A; congruent and adjacent to Ay. The generalization to multidecomposition is trivial.
Defining B(1,2) the set of bonds between A; and A, and indicating M, = M,, ® M,,, we
obtain

By My, @ M,,) = & (B (M) + B (M) — o S0 g0 yma(nyma(n’) (A1)

|A| (n,n')eB(1,2)
it fO].].OWS, deﬁnlng MA With F/\MF (jB(A)7 ﬁ) — FA (MA,jB(A),IB)
(AT AT 1 MF MF 1 . / I
F,(M,, ®M,,) = 5 (FU7+ FuT) — i Z j(n,n"ymq(n)ma(n') (A.2)
(n,n")e€B(1,2)

observing that

Fy(M,) = F\(—M,) (A.3)
one obtain
(AT Vi 1 MF MF 1 . ! !
B (M@ -M,) =5 (B +E) - g 3 d)mma() (44

(n,n")eB(1,2)

and

1
FK‘”SE(FANIIF—FFAMF) (A.5)
and finally j-averaging
FYl7(B) < Fyr5(P) (4.6)

with A’ congruent to Aj.

IT)
To prove (4.5) we first consider those A for which it is possible a rational disjoint decom-
position i.e.

A=UA, (A7)
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where A; are congruents to an arbitrary A. From the above lemma generalized to multiple
decomposition we obtain:

FM JB(A) ZFM JB(A ) 0 (A.8)

Estimating boundary terms in (A.1) we find the inequality in the other direction:

oA
FM jB(A) ZFM ._7B(A ) % (Ag)

Now one observes that F' [{‘fF (4s(x,)) are mutually independent identically distributed
random variables. By strong law of large numbers (ref [10]) we have:

Na
3 lim Y FY (fui,) = (FYF (jaw)), = Fi'f with probability one (A.10)
Np —o0 H ’

performing limsup in (A.8) and liminf in (A.9) for A ~Z% we find

limsup F'" (jpwy) — F'7 <0 (A.11)
AZd ’
and

OA|
lim inf F FMF > _lo:
}\rglzn "Uswy) — Fi) > x

(A.12)

The last couple of inequalities holds for every j,a € A; where 1 indicizes the growth A~z
Now performing the lim A ~Z% and using (4.4) we get

limsup F'" (jpny) < F7'7 <liminf F'" () (A.13)
AAZd AzZd

The last equality holds for every j,« belonging to all A; after some [ i.e.

Vi € A=UL NZ, A (A.14)
and
P(A)=1-P(A) =1-P(NZ,U2A) = (A.15)
=1— lim Y P(4) =
k—o00
=k

With standard technicality one extends the result to Van Hove limit.
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Appendix B

I)
The theorem 4.2 is proved in two steps; first one notes that the operator K(j, ) is a
contraction for 3 < ﬁ for every j.In fact

(K (7 6)M1)(n) — (K (4, ) M) (n)| =

= [tanh(8 Y j(n,n)ymy(n')) —tanh(8 D j(n,n")ma(n'))| =

n'€N(n) n'€N(n)
<pl Y i) (ma(n') —ma(n))] =
n'€N(n)

and

This implies

1
MF > _ B.
Bz o (B.3)

In the other direction we observe that, for the well known properties of mean field Ising free
energy

1
PR s ) <0 for 8> oo (B4)
and for monotonicity we get

) 1
Fim <(Fy"" (s, 0)), <0 for 3> 2d (B.5)

because in the j-average there is at least the contribution of Ising configurations. So we find

1

and the theorem is proved.

IT)
Considered a fully frustrated cube one has:

Y d(nnym(n)m(n’) < v > m(n)? (B.7)
2

(n,n') n
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The inequality is proved reducing to the Jordan form the matrix corresponding to our
quadratic form. For simplicity we show the proof in d=2. Keeping in mind the frustrated
plaquette we have to prove:

2
mims + Mmams + msamyg — mamy < 'l%(ml2 + ma? 4+ ms® + my?) (B.8)

finding the better choice for p. Performing the transformation:
my=a-+c

m4:d—|—b

Mo =a —C

ms = d—>b
the (B.8) becomes
a® —b* — 2 +d? — 2ab — 2cd < p?(a® + 0% + 2 + d?) (B.9)
and the associated matrix
u?r—1 1 0 0
1 w2+ 1 0 0
B — 2
0 0 pe+1 1
0 0 1 u?r—1

We immediately find from the B > 0 condition
(ut—2)2>0 (B.10)

which gives as best choice

p? =2 (B.11)
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