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Abstract

A review of the stochastic stability property for the Gaussian spin glass models is

presented and some perspectives discussed.

1 Introduction

In this paper we review the property of stochastic stability originally introduced for the

Sherrington-Kirkpatrick spin-glass mean field model in [AC]. Here we show some of

its consequences expressed in terms of the quenched equilibrium state both in the form

of identities for the overlap distribution and of quenched additivity of the free energy.

Overlaps between two spin configurations σ(1) and σ(2) are usually defined as

q(σ(1), σ(2)) =
1

N

N
∑

i=1

σ
(1)
i σ

(2)
i , (1.1)

but our treatment is given in full generality since it is by now well known [Co] that

every Gaussian spin glass model has an equilibrium state well expressed by the properties

of a probability measure of a suitable overlap structure given by its covariance matrix.

Stochastic stability provided a first and simple method to produce an infinite family of

identities for the overlap variables. Identities for random variables with respect to the

quenched state reduce the degrees of freedom of the model and go toward the core of

1

http://arxiv.org/abs/0911.1091v2


the Parisi mean-field theory: spin glasses are described by a probability distribution of

a single overlap variable and the collections of copies necessary to describe the whole

equilibrium state can be obtained by a suitable combinatorial rule called ultrametric

which holds for classes of equivalent overlap structures (overlap equivalence). Although

a similar research project is not even completed for the Sherrington-Kirkpatrick model

important progresses have been done toward it and there are clear indications, some

based on numerical work [CGGV, CGGPV1, CGGPV2] some on rigorous grounds (see

the last section), that mean field models and short-range finite-dimensional ones behave

quite similarly as far as the factorization rules are concerned. Stochastic stability is

deeply rooted also within the physics community. It has immediately been used in fact in

[FMPP1, FMPP2] to determine a relation between the off-equilibrium dynamics which is

experimentally accessible and the static properties and is considered, from the theoretical

point of view, a structural property of the spin glass phase [Pa1, Pa2].

The paper is organized as follows: the first section introduce the basic notions of

a spin glass systems and the relative notations, the second the property of stochastic

stability and its consequences. The third examines some perspectives in the light of some

interesting recent development and provides some perspective.

2 Definitions

We consider a disordered model of Ising configurations σn = ±1, n ∈ Λ ⊂ L for some

subset Λ (volume |Λ|) of some infinite graph L. We denote by ΣΛ the set of all σ =

{σn}n∈Λ, and |ΣΛ| = 2|Λ|. In the sequel the following definitions will be used.

1. Hamiltonian.

For every Λ ⊂ L let {HΛ(σ)}σ∈ΣN
be a family of 2|Λ| translation invariant (in distri-

bution) Gaussian random variables defined according to the general representation

HΛ(σ) = −
∑

X⊂Λ

JXσX (2.2)
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where

σX =
∏

i∈X

σi , (2.3)

(σ∅ = 0) and the J ’s are independent Gaussian variables with mean

Av(JX) = 0 , (2.4)

and variance

Av(J2
X) = ∆2

X . (2.5)

2. Average and Covariance matrix.

The Hamiltonian HΛ(σ) has covariance matrix

CΛ(σ, τ) := Av (HΛ(σ)HΛ(τ))

=
∑

X⊂Λ

∆2
XσXτX . (2.6)

The two classical examples are the covariances of the Sherrington-Kirkpatrick model

and the Edwards-Anderson model. A simple computation shows that the first is the

square of the function (1.1) and the second is the link-overlap

1

|Λ|

∑

|i−j|=1

σiσjτiτj . (2.7)

By the Schwarz inequality

|CΛ(σ, τ)| ≤
√

CΛ(σ, σ)
√

CΛ(τ, τ) =
∑

X⊂Λ

∆2
X (2.8)

for all σ and τ .

3. Thermodynamic Stability.

The Hamiltonian (2.2) is thermodynamically stable if there exists a constant c̄ such

that

sup
Λ⊂L

1

|Λ|

∑

X⊂Λ

∆2
X ≤ c̄ < ∞ . (2.9)

Thanks to the relation (2.8) a thermodynamically stable model fulfills the bound

CΛ(σ, τ) ≤ c̄ |Λ| (2.10)
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and has an order 1 normalized covariance

cΛ(σ, τ) :=
1

|Λ|
CΛ(σ, τ) . (2.11)

4. Random partition function.

ZΛ(β) :=
∑

σ∈ΣΛ

e−βHΛ(σ) , (2.12)

5. Random free energy/pressure.

−βFΛ(β) := PΛ(β) := lnZΛ(β) , (2.13)

6. Random internal energy.

UΛ(β) :=

∑

σ∈ΣΛ
HΛ(σ)e−βHΛ(σ)

∑

σ∈ΣΛ
e−βHΛ(σ)

, (2.14)

7. Quenched free energy/pressure.

−βFΛ(β) := PΛ(β) := Av (PΛ(β)) . (2.15)

8. Random Boltzmann-Gibbs state.

ω(−) :=
∑

σ

(−)
e−βHΛ

ZΛ(β)
, (2.16)

and its R-product version.

ΩΛ(−) :=
∑

σ(1),...,σ(R)

(−)
e−β[HΛ(σ(1))+···+HΛ(σ(R))]

[ZΛ(β)]R
. (2.17)

9. Quenched overlap observables.

For any smooth bounded function G(cΛ) (without loss of generality we consider

|G| ≤ 1 and no assumption of permutation invariance on G is made) of the covari-

ance matrix entries we introduce (with a small abuse of notation) the random R×R

matrix of elements {ck,l} (called generalized overlap) and its measure 〈−〉Λ by the

formula

〈G(c)〉Λ := Av (Ω(G(cΛ))) . (2.18)
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E.g.: G(cΛ) = cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))

〈c1,2c2,3〉Λ = Av





∑

σ(1),σ(2),σ(3)

cΛ(σ(1), σ(2))cΛ(σ(2), σ(3))
e−β[

P3
i=1 HΛ(σ(i))]

[Z(β)]3



 . (2.19)

3 Stochastic Stability

Given the Gaussian process HΛ(σ) of covariance CΛ(σ, τ) we introduce an independent

Gaussian process, KΛ(σ), defined by the covariance cΛ(σ, τ), the deformed random state

ω
(λ)
Λ (−) =

ω(−eλKΛ)Λ

ω(eλKΛ)Λ

(3.20)

and its relative deformed quenched state 〈−〉
(λ)
Λ = Av

(

Ω
(λ)
Λ (−)

)

.

Definition 3.1 Stochastic Stability [AC, CGi]

A Gaussian spin glass model is stochastically stable if the deformed quenched state and

the original one do coincide in the thermodynamic limit:

lim
ΛրL

〈−〉
(λ)
Λ = lim

ΛրL
〈−〉Λ (3.21)

Remark 1 In spin glass models the existence of the thermodynamic limit has been set-

tled only at the level of the free energy [GT, CL]. For the correlation functions there are

only abstract results using compactness arguments or, equivalently, existence along subse-

quences. In comparison with models without disorder, for instance the ferromagnetic ones,

what is lacking is the control of the local correlation functions in terms of the interaction

parameters. While ferromagnetic correlations increase motononically when varying any

spin interactions (Griffiths, Kelly and Sherman inequalities of type II [Gr, KS]) nothing

is know about a spin glass correlation when the interaction distribution is changed. It is

known nevertheless that spin glass correlation functions are not monotonic in the volume

[CUV] when the interaction is centered. For non zero average of the interaction a special

result exists in the Nishimori line where motononicity is recovered [CMN].

Since the Hamiltonian H and the field K have a mutually rescaled distribution

HΛ(σ)
D
=
√

|Λ|KΛ(σ) (3.22)
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the addition law for the Gaussian variables implies

√

β2 +
λ2

|Λ|
H(σ, J)

D
= βH(σ, J) + λK(σ) , (3.23)

i.e. the deformation with a field K is equivalent to a change of the order O( 1
N

) in the

temperature. The previous identity shows that the deformed measures do coincide, a part

on points of discontinuity with respect to the temperature, with the original unperturbed

one. Let consider some consequences of the stochastic stability that have been proved in

a series of works.

Proposition 3.1 Zero-average polynomials.

For every monomial Q of the overlap algebra (e.g. c1,2, or c2
1,2c2,3) for a gaussian spin

glass model defined by the covariance in (2.6) the following property hold:

∂2

∂λ2
〈Q〉

(λ)
Λ |λ=0 = 〈∆Q〉Λ , (3.24)

where the quantities ∆Q are polynomials which can be computed with a graph-theoretical

algorithm or with the standard Parisi replica limit n → 0 formula (see [AC]). Moreover

the property (3.23) implies

∂

2β∂β
〈Q〉Λ = |Λ|

∂2

∂λ2
〈Q〉

(λ)
Λ |λ=0 = |Λ|〈∆Q〉Λ . (3.25)

A simple computation allows to deduce that, for every interval [β0, β1]

lim
ΛրL

∫ β2
1

β2
0

〈∆Q〉Λdβ2 = 0 (3.26)

i.e. the vanishing in β2-average of the quantities 〈∆Q〉Λ when the thermodynamic limit is

considered. See also [Ba] for an independent method to obtain the previous result which

works for general (including non Gaussian) distributions and [BaGe] for an interpretation

of the identities as the Noether’s conserved quantities in a classical mechanics theory.

The consequences seen so far derive from the computation of the first two derivatives

and basically mean that for a stochastic perturbation tuned by a parameter λ not only
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the first derivative vanishes when computed in zero (which is obvious for symmetry rea-

sons) but also the second one in the thermodynamic limit does i.e. the curvature of the

perturbed state is a vanishing function for increasing volumes.

The possibility that the computation of higher order derivatives could lead to new

results beyond (3.26) has been investigated in [Co2, BCK] and has a negative answer due

to the following result

∂2n

∂λ2n
〈Q〉

(λ)
Λ |λ=0 = (2n − 1)!!〈∆nQ〉Λ , (3.27)

which implies that the vanishing of higher order derivatives provides the same information

of the second one at the level of the whole algebra of observables.

In the paper [AC] it has been proved that stochastic stability is equivalent to the

following property:

Proposition 3.2 Quenched additivity.

Given any finite collection of independent Gaussian fields K(1)(σ), K(2)(σ), . . . , K(l)(σ)

(independent also on the Hamiltonian) with the same covariance (2.6), and any smooth

polynomially bounded functions F1, F2, . . . , Fl a Gaussian spin glass model fulfills the fol-

lowing relation

lim
ΛրL

Av ln ΩΛ

(

exp(

l
∑

i=1

Fi(K(i)))

)

= lim
ΛրL

l
∑

i=1

Av ln ΩΛ

(

exp Fi(K(i))
)

. (3.28)

where the Gaussian measure Av(−) include the integration on all the fields K(i) and

the Hamiltonian, and the state Ω(−) is defined in (2.17). The previous formula would

be trivial if the fields Fi would be independent with respect to the measure Ω which is

not the case for the class of fields considered here. Equivalently, denoting the truncated

expectations (cumulants) of order p of the Gibbs-Boltzmann state by Ω(−; p), the previous

relation says that

lim
ΛրL

Av ΩΛ

(

l
∑

i=1

Fi(K
(i)); p

)

= lim
ΛրL

l
∑

i=1

Av ΩΛ

(

Fi(K
(i)); p

)

(3.29)

for every integer p, i.e. the linearity in average of the truncated correlation functions of

every order.
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4 Some perspectives: toward ultrametricity

The method of stochastic stability is strictly related to the fluctuation method introduced

in [Gu] and developed in [GhiGu]. The main idea of that method is to show that from

the simple control of the fluctuations for the Hamiltonian per particle, which parallels the

law of large numbers, one can deduce a set of identities. The relation between stochastic

stability and the method of the fluctuations is developped in the paper [CGi2] where

it was proved that the linear part of the Ghirlanda-Guerra identities coincide with the

identities produced by stochastic stability (see also [Ar] for a further interesting result in

the framework of the competing particle systems).

The relation between stochastic stability and the method of fluctuation is still under

investigation, in particular one would like to know if the two properties suffice to prove a

much stronger property called ultrametricity: an overlap distribution is called ultrametric

if it is supported (in the thermodynamic limit) only on isoceles and equilateral overlap

configurations. For such distributions the measure of scalenes configurations is zero.

Some recent interesting developments are approching the solution of the problem.

To explain them it is important to report a stronger definition of stochastic stability

introduced in [AC]

Definition 4.2 Extended Stochastic Stability

A Gaussian spin glass model is stochastically stable in the extended sense if it is stochas-

tically stable under deformation with respect to all K
(p)
Λ (σ) whose covariance are c

p
Λ(σ, τ).

Its consequences clearly extend to every power of the covariance c the results already proved

with the standard stochastic stability.

In the framework of the competing particle systems it has been proved [ArAi] that the

extended stochastic stability if applied to overlaps which take only a finte number of

values implies ultrametricity. The same result has been obtained, for the same class of

overlap distribution, using an extended version of the fluctuation method in [Pa, Ta].

It is important to stress that the formalism developed so far is not limited to the mean

field spin glasses. Indeed all the results which we have shortly reviewed hold for a general
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Gaussian spin glass model in terms of the proper covariance matrix. In particular the

recent developments, in which ultrametricity under certain hypotheses has been proved, do

not distinguish between the mean field case or the short-range finite-dimensional one like

the Edwards-Anderson model. They give indeed a clear indication that the factorization

structure of the two cases is likely to be the same. Of course even such similarity for

the factorization structure wouldn’t be enough to guarantee the same low-temperature

phase for the two models. The celebrated Parisi self-consistence equation [MPV], which

implies that the overlap distribution of the Sherrington-Kirlpatrick model has a non-

trivial support, is in fact very specific for the mean field case with its strong permutation

invariance symmetry. It is still not clear what would be the structure of the link-overlap

distribution for the Edwards-Anderson model if a complete ultrametric factorization would

take place.

Acknowledgements: We thank M.Aizenman, L-P. Arguin, A.Barra, A.Bovier, C.Giardina,
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